π-adic Eisenstein series for function fields
Compositio Mathematica, Tome 41 (1980) no. 1, pp. 3-38.
@article{CM_1980__41_1_3_0,
     author = {Goss, David},
     title = {$\pi $-adic {Eisenstein} series for function fields},
     journal = {Compositio Mathematica},
     pages = {3--38},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {41},
     number = {1},
     year = {1980},
     zbl = {0422.10020},
     language = {en},
     url = {http://www.numdam.org/item/CM_1980__41_1_3_0/}
}
TY  - JOUR
AU  - Goss, David
TI  - $\pi $-adic Eisenstein series for function fields
JO  - Compositio Mathematica
PY  - 1980
SP  - 3
EP  - 38
VL  - 41
IS  - 1
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://www.numdam.org/item/CM_1980__41_1_3_0/
LA  - en
ID  - CM_1980__41_1_3_0
ER  - 
%0 Journal Article
%A Goss, David
%T $\pi $-adic Eisenstein series for function fields
%J Compositio Mathematica
%D 1980
%P 3-38
%V 41
%N 1
%I Sijthoff et Noordhoff International Publishers
%U http://www.numdam.org/item/CM_1980__41_1_3_0/
%G en
%F CM_1980__41_1_3_0
Goss, David. $\pi $-adic Eisenstein series for function fields. Compositio Mathematica, Tome 41 (1980) no. 1, pp. 3-38. http://www.numdam.org/item/CM_1980__41_1_3_0/

[1] P. Deligne and D. Husemoller: Survey of Drinfeld Modules (to appear). | MR

[2] V.G. Drinfeld: Elliptic Modules (Russian). Math. Sbornik, 94 (1974) 594-627. (English translation, Math USSR, Sbornik, Vol. 23 (1974) No. 4). | MR | Zbl

[3] D. Goss: von Staudt For F q[T], Dec. 1978, Duke Math. Journal. | MR | Zbl

[4] D. Hayes: Explicit Class Field Theory in Global Function Fields (Preprint). | MR | Zbl

[5] P. Deligne and M. Rappoport, Les Schémas de Modules de Courbes Elliptiques in Modular Function of One Variable II. Springer-Verlag, Lecture Notes #349 (1973) 55-316. | MR | Zbl

[6] P. Deligne: Formes Modulaires et Représentations de GL(2), in Modular Functions of One Variable II. Springer-Verlag, Lecture Notes #349 (1973) 55-105. | MR | Zbl

[7] E. Hecke: Mathematische Werke. Vanderhoeck and Ruprecht (1970). | MR | Zbl

[8] N. Katz: P-adic Properties of Modular Schemes and Modular Forms, in Modular Functions of One Variable III. Springer-Verlag, Lecture Notes #350 (1973) 69-190. | MR | Zbl

[9] S. Lang: Elliptic Functions. Addison-Wesley (1973). | MR | Zbl

[10] A. Ogg: Modular Forms and Dirichlet Series, Benjamin (1969). | MR | Zbl

[10a] A. Ogg: Rational Points on Certain Elliptic Modular Curves. Proc. Symp. Pure Math., 24 AMS, Providence (1973) 221-231. | MR | Zbl

[11] J.-P. Serre: A course in Arithmetic, Springer-Verlag (1973). | MR | Zbl

[12] G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions. Publ. Math. Soc. Japan, No 11, Tokyo-Princeton (1971). | MR | Zbl

[13] H. Grauert: L.L. Gerritzen, Die Azyklizität der affinoiden Überdeckungen, in Global Analysis, Univ. of Tokyo Press (1969) 159-184. | MR | Zbl

[14] R. Kiehl: Der Endlichkeitsatz für eigenliche Abbildungen in der nichtarchimedischen Funktionen Theorie. Invent. Math. 2 (1967) 191-214. | MR | Zbl

[15] R. Kiehl: Theorem A and Theorem B in der nichtarchimedischen Funcktionen Theorie. Invent. Math. 2 (1967) 256-273. | MR | Zbl

[16] M. Raynaud: Géométrie Analytic Rigid d'aprés Tate, Kiehl, Bull. Soc. Math. France. Memoire 39-40 (1974) 319-327. | Numdam | MR | Zbl

[17] M. Raynaud: Unpublished Notes.

[18] A. Robert: Elliptic Curves, Springer-Verlag, Lecture Notes #326 (1973) II.70-II.85. | MR | Zbl

[19] J. Tate: Rigid Analytic Space, Inventiones Math 12 (1971) 257-258. | MR | Zbl

[20] A. Altman and S. Kleiman: Introduction to Grothendieck Duality Theory. Springer-Verlag, Lecture Notes #146 (1970). | MR | Zbl

[21] C. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras. Interscience (1962) 144-154. | MR | Zbl

[22] A. Fröhlich: Formal Groups. Springer-Verlag, Lecture Notes #74 (1968). | MR | Zbl

[23] A. Grothendieck: Éléments de Géométrie Algébrique III (rédigé avec la collaboration de J. Dieudonné). Publ. Math. IHES (1961). | Numdam

[24] D. Mumford: Geometric Invariant Theory. Springer-Verlag (1965). | MR | Zbl

[25] D. Mumford: Varieties Defined by Quadratic Equations. C.I.M.E. (1969) 31-94. | MR | Zbl

[26] J.P. Serre: Cohomologie des Groupes Discrets, in Prospects in Mathematics. Princeton University Press (1971) 77-169. | MR | Zbl