@article{CM_1979__38_3_347_0, author = {Globevnik, J.}, title = {Separability of analytic images of some {Banach} spaces}, journal = {Compositio Mathematica}, pages = {347--354}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {38}, number = {3}, year = {1979}, mrnumber = {535076}, zbl = {0406.46039}, language = {en}, url = {http://www.numdam.org/item/CM_1979__38_3_347_0/} }
TY - JOUR AU - Globevnik, J. TI - Separability of analytic images of some Banach spaces JO - Compositio Mathematica PY - 1979 SP - 347 EP - 354 VL - 38 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - http://www.numdam.org/item/CM_1979__38_3_347_0/ LA - en ID - CM_1979__38_3_347_0 ER -
Globevnik, J. Separability of analytic images of some Banach spaces. Compositio Mathematica, Tome 38 (1979) no. 3, pp. 347-354. http://www.numdam.org/item/CM_1979__38_3_347_0/
[1] Growth properties of pseudoconvex domains and domains of holomorphy in locally convex linear topological vector spaces. Math. Ann. 226 (1977) 229-236. | MR | Zbl
:[2] An extension of a theorem of Rosenthal on operators acting from 1∞(Γ). Studia Math. 57 (1976) 209-215. | Zbl
:[3] Un théoreme sur les opérateurs de 1∞(Γ). C. R. Acad. Sc. Paris, Ser A, 281 (1975) 967-969. | Zbl
:[4] On the range of analytic functions into a Banach space. Infinite Dim. Holomorphy Appl. (Matos Ed.) North Holland Math. Studies 12 (1977) pp. 201-209. | MR | Zbl
:[5] On the ranges of analytic maps in infinite dimensions. (To appear in Advances in Holomorphy, Barroso Ed., North Holland). | MR | Zbl
:[6] On the range of analytic maps on c0(Γ). (To appear in Boll. Un. Mat. Ital.)
:[7] Functional Analysis and semi-groups. Amer. Math. Soc. Colloq. Publ. 31 (1957). | MR | Zbl
, :[8] A counterexample in the Levi problem. Proc. Inf. Dim. Holomorphy. Lecture Notes in Math. 364, pp. 168-177, Springer 1974. | MR | Zbl
:[9] Some remarks on Banach valued polynomials on c0(A). Infinite Dim. Holomorphy Appl. (Matos Ed.) North Holland Math. Studies 12 (1977) pp. 231-238. | MR | Zbl
:[10] Conditions under which all the bounded linear maps are compact. Math. Ann. 158 (1965) 1-5. | MR | Zbl
, :[11] Topology on spaces of holomorphic mappings. Erg. der Math., Bd. 47, Springer 1969. | MR | Zbl
:[12] On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math. 37 (1970) 13-16. | MR | Zbl
: