@article{CM_1979__38_3_299_0, author = {Tong, Yue Lin Lawrence}, title = {Weighted intersection numbers on {Hilbert} modular surfaces}, journal = {Compositio Mathematica}, pages = {299--310}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {38}, number = {3}, year = {1979}, mrnumber = {535073}, zbl = {0409.10017}, language = {en}, url = {http://www.numdam.org/item/CM_1979__38_3_299_0/} }
TY - JOUR AU - Tong, Yue Lin Lawrence TI - Weighted intersection numbers on Hilbert modular surfaces JO - Compositio Mathematica PY - 1979 SP - 299 EP - 310 VL - 38 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - http://www.numdam.org/item/CM_1979__38_3_299_0/ LA - en ID - CM_1979__38_3_299_0 ER -
Tong, Yue Lin Lawrence. Weighted intersection numbers on Hilbert modular surfaces. Compositio Mathematica, Tome 38 (1979) no. 3, pp. 299-310. http://www.numdam.org/item/CM_1979__38_3_299_0/
[1] JR: The decomposition theorem for V-manifolds. Amer. Jour. Math. 78 (1956) 862-888. | MR | Zbl
,[2] Function theory of finite order on algebraic varieties I(A). Jour. Diff. Geometry, 6, 285-306 (1972). | MR | Zbl
:[3] On the cohomology of discrete arithmetically defined groups. Proc. Int. Colloq. on Discrete subgroups of Lie groups, 129-160, Bombay (1973). | MR | Zbl
:[4] Hilbert modular surfaces. L'Ens. Math, 19, 183-281 (1973). | MR | Zbl
:[5] Intersection numbers of curves on Hilbert Modular surfaces and modular forms of Nebentypus, Inventiones math. 36, 57-113 (1976). | MR | Zbl
and :[6] Introduction to Modular forms. Grundlehren der mathematischen Wissenschaften 222, Springer-Verlag 1976. | MR | Zbl
:[7] On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds. Annals of Math. 78, No. 2, 365-416 (1963). | MR | Zbl
and :[8] Sur les intégrales attachées aux formes automorphes, Journal of Math. Soc. of Japan, 11, No. 4, 291-311 (1959). | MR | Zbl
:[9] Duality and intersection theory in complex manifolds I. Math. Ann. 237, 41-77 (1978). | MR | Zbl
and :[10] Modular forms aseociated to real quadratic fields. Inventiones math. 30, 1-46 (1975). | MR | Zbl
:[11] Modular forms whose Fourier coefficients involve Zeta functions of quadratic fields, collected papers in International Summer School on Modular Functions Bonn 1976. Springer-Verlag Lecture Notes in Mathematics 627. | MR | Zbl
: