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Abstract

A space X is called (strongly) retractifiable if for every nonempty
closed subset F of X there is a (closed) retraction from X onto F.
The Sorgenfrey line is both strongly retractifiable and hereditarily
retractifiable but is not hereditarily strongly retractifiable. The Alex-
androff double arrow space is strongly retractifiable but not heredi-

tarily retractifiable.

1. Introduction

We’call a space X (strongly) retractifiable if for every nonempty
closed subset F of X there is a (closed) retraction from X onto F [2].
Improving older results, Engelking [4] has shown that each strongly
zero-dimensional metrizable space is (necessarily hereditarily) stron-
gly retractifiable. His proof can easily be adapted so as to show that
each K-metrizable space, with K (dl, is hereditarily strongly
retractifiable (the fact that K-metrizable spaces are paracompact,
which is used in this proof, can be found in [8]). Another class of

hereditarily strongly retractifiable spaces is the class of spaces of the
form [0, a], where a is an ordinal. We omit the easy proof.

Retractifiable spaces have strong separation properties. It is not

difhcult to prove that a retractifiable space is strongly zero-dimen-
sional, and also hereditarily collectionwise normal, see [2] for a

stronger result (we do not know if a retractifiable space must be

hereditarily strongly zero-dimensional). Retractifiable spaces are of
interest because they have the extension properties considered in [2],
[3], [5], [6] and [7].

’ Part of this paper is contained in the author’s thesis [2].
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Let S be the Sorgenfrey line: the underlying set of S is the set of
reals, and the collection of all sets of the form [a, b) is a base. Let
T be the "irrational Sorgenfrey line", i.e. the subspace {x E S 1 x
irrational} of S. We prove

(1) S is both hereditarily retractifiable and strongly retractifiable,
but

(2) T is not strongly retractifiable.

COROLLARY: S and T are not homeomorphic.

This shows that strong retractifiability is not hereditary, even in the
class of first countable hereditarily- (Lindenlôf and separable and
retractifiable) spaces.

Let A be the Alexandroff double arrow space: the underlying set of
A is ([0,1] x 10, 1}) - {(0, 0), (1, 1)}, where [0, 1] is the unit interval, and
A is topologized by the lexicographic ordering [1]. Let B be the
"irrational double arrow space", i.e. the subspace f(x, i) E A x irra-
tional} of A. We prove

(3) A is (necessarily strongly) retractifiable, but

(4) B is not retractifiable.

This shows that retractifiability is not hereditary, even in the class of

perfectly normal hereditarily separable compact spaces.

2. Positive results

PROOF oF (1): Let Y be a subspace of S, and let F be a nonempty
closed subset of Y. Let C be the collection of all convex components2
of SBF which contain some point of Y. Each C Cz W contains a

nondegenerate interval, hence diam(C) &#x3E; 0.3 Observe that YBF C U W.
Choose for each C E ’W a k(C) E F satisfying

(1) If sup(C) and diam(C) are finite, then sup(C)  k ( C) 
sup(C) + diam(C).

(2) If sup(C) E F, then k(C) = sup(C).

For each x E YBF let C(x) be the unique member of 16 that contains

2 A subset C of an ordered set L is called convex if [a, b] C C whenever a, b E C. C is
a convex component of a subset U of L if C is convex and if C is not properly
contained in a convex subset of U.

3 The underlying set of S is the set of reals so that the notion of diameter makes sense.
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If x E YBF, then Y n c(x) is a neighbourhood of x on which r is

constant, hence r is continuous at x. Next consider a point x E F. We
may assume that x is not isolated. Then there are two cases to

consider.

Case 1: x = inf(C(y)) for some y E YBF. Then r is continuous at x,
being constant on Y n [x, y).

This proves that S is hereditarily retractifiable. Next we show that
S is strongly retractifiable. Let F be any nonempty closed subset of S.
Let Y = S and define a retraction r: S = Y - F as above. We have to
show that r is a closed map. Before we proceed we take care of a
technical nuisance. If F has an upper bound, then let U = [sup(F), oo).
Otherwise let U = 0. If U 0 0, then r maps U onto a single point, p say
(note that p sup(F) is possible because sup(F) El F is possible).
Now let G be any closed subset of S, and let x E r[G]-. If x E G,

then x = r(x) E r[G], so we assume that xe G. Then there is an a &#x3E; 0

such that [x, x + a) n G = 0, and such that p 9 (x, x + a) if U 0 0.

two cases to consider.

Case 1. b  x. Then C(b) is bounded above, hence sup(C(b)) exists.

Case 2. r(a)  b. If C(b) does not have an upper bound, then b E U,
hence r(b) = p e (x, r(a)). Therefore x = r(b) E r[G]. If C(b) has an
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upper bound, then r(a)  inf ( C( b ))  r( b )  sup( C(b )). It follows that
r(a):5 r(b), a contradiction.
This completes the proof that r[G] is closed..

The following Proposition implies (3).

PROPOSITION: Any totally disconnected locally compact orderable
space is strongly retractifiable.

Let  be a compatible ordering for a totally disconnected locally
compact orderable space L. For each x E L define

Then L is easily seen to be the topological sum of {Lx 1 x EL}, since
each Lx is a neighbourhood of x and Ljc n Ly = 0 or Lx = Ly for

x, y E L. The ordering  induces a Dedekind complete ordering on
each Lx. Since a topological sum of strongly retractifiable spaces is
again strongly retractifiable, it follows that we may assume in fact

that  is Dedekind complete. 

The easy proof that r is continuous is omitted. Let A C L be closed,
and assume that x E r[A]-. There have to be p, q E F, p :5 x  q such
that x E r[A fl [p, q]]-. Since the restriction of r to [p, q] is a closed
map, because [p, q] is compact, it follows that x E r[A]. ·
The idea of the definition of the above retractions is known [9,

lemma on page 118].
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3. Négative results

The proofs of (2) and (4) are based on the same idea, and show that
in some cases retractions must look like the retractions we con-

structed.

Let K be the Cantor ternary set, i.e.

and let E be the set of all end points of the convex components of
S)K. E is countable, and for each x E KBE and for each E &#x3E; 0 the sets

K n (x - E, x) and K n(x, x + E) are uncountable. So if we put

F=KnT

then the fact that T n E = 0 implies
A. For each x E F and for each E &#x3E; 0 the sets F n (x -,E, x) and

F n (x, x + E) are not empty.
Observe that F is closed in T, and that F x {0,1} is closed in B.

Proof o f fact 1 : Define

4 Whether one considers F as a subspace of S or as a subspace of R.
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The proof of Fact 2 is similar.

PROOF oF (4) : Let r: B - B be a continuous map such that r(x) = x
for x E F x 10, Il. Let p and q be as in Fact 2. Since F is nowhere
dense in T, there is a y E (p, q) n(TBF). Then the statement of Fact 2

implies that r«y, i)) E F x 10, 11, where i = 0 or 1. Therefore r is not a
retraction. ·

fore r is not a closed map.
Let fb,, 1 n 1} be the set of all rationals. Let {Cn n &#x3E;_ 1} be the

collection of all convex components of TBF. Since F is nowhere

dense, we have
B. Each interval (s, t) intersects TBF, therefore A implies
C. Each interval (s, t) that intersects F, contains infinitely many

Cn’s.
Let p and q be as in Fact 1. Then

REMARK: There is a direct proof of the corollary to (1) and (2), that
S and T are not homeomorphic, which is based on the fact that each
homeomorphism from S into S has to be increasing on some
nonempty open subset of S, cf. Fact 1.
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