@article{CM_1978__37_3_291_0, author = {Babai, L\'aszl\'o}, title = {On a conjecture of {M.} {E.} {Watkins} on graphical regular representations of finite groups}, journal = {Compositio Mathematica}, pages = {291--296}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {37}, number = {3}, year = {1978}, mrnumber = {511746}, zbl = {0401.20004}, language = {en}, url = {http://www.numdam.org/item/CM_1978__37_3_291_0/} }
TY - JOUR AU - Babai, László TI - On a conjecture of M. E. Watkins on graphical regular representations of finite groups JO - Compositio Mathematica PY - 1978 SP - 291 EP - 296 VL - 37 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - http://www.numdam.org/item/CM_1978__37_3_291_0/ LA - en ID - CM_1978__37_3_291_0 ER -
%0 Journal Article %A Babai, László %T On a conjecture of M. E. Watkins on graphical regular representations of finite groups %J Compositio Mathematica %D 1978 %P 291-296 %V 37 %N 3 %I Sijthoff et Noordhoff International Publishers %U http://www.numdam.org/item/CM_1978__37_3_291_0/ %G en %F CM_1978__37_3_291_0
Babai, László. On a conjecture of M. E. Watkins on graphical regular representations of finite groups. Compositio Mathematica, Tome 37 (1978) no. 3, pp. 291-296. http://www.numdam.org/item/CM_1978__37_3_291_0/
[1] Neighbourhoods of transitive graphs and GGR's, preprint, University of Melbourne (1978).
:[2] Graphical regular representations of cyclic extensions of small and infinite groups (to appear).
:[3] Graphs with transitive Abelian automorphism groups, in: Comb. Th. and Appl. (P. Erdös et al. eds. Proc. Conf. Balatonfüred, Hungary 1969) North-Holland 1970, 651-656. | Zbl
:[4] Graphical regular representations of groups of odd order, in: Combinatorics (A. Hajnal and Vera T. Sós, eds.), North-Holland 1978, 611-622. | MR | Zbl
:[5] On the action of non-abelian groups on graphs. J. Comb. Theory (B) 1 (1971) 95-104. | MR | Zbl
:[6] Graphical regular representations of alternating, symmetric, and miscellaneous small groups, Aequat. Math. 11 (1974) 40-50. | MR | Zbl
:[7] The state of the GRR problem, in: Recent Advances in Graph Theory (Proc. Symp. Prague 1974), Academia Praha 1975, 517-522. | MR | Zbl
: