@article{CM_1978__37_3_277_0, author = {Foster, Dorothy and Williams, David}, title = {The {Hawkins} sieve and brownian motion}, journal = {Compositio Mathematica}, pages = {277--289}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {37}, number = {3}, year = {1978}, mrnumber = {511745}, zbl = {0402.10052}, language = {en}, url = {http://www.numdam.org/item/CM_1978__37_3_277_0/} }
TY - JOUR AU - Foster, Dorothy AU - Williams, David TI - The Hawkins sieve and brownian motion JO - Compositio Mathematica PY - 1978 SP - 277 EP - 289 VL - 37 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - http://www.numdam.org/item/CM_1978__37_3_277_0/ LA - en ID - CM_1978__37_3_277_0 ER -
Foster, Dorothy; Williams, David. The Hawkins sieve and brownian motion. Compositio Mathematica, Tome 37 (1978) no. 3, pp. 277-289. http://www.numdam.org/item/CM_1978__37_3_277_0/
[1] Brownian Motion and Diffusion (Holden-Day, San Francisco, 1971). | MR | Zbl
:[2] Branching processes since 1873, J. London Math. Soc. 41 (1966) 385-406. | MR | Zbl
:[3] Probability Theory (van Nostrand, Princeton, N.J., 1963). | MR | Zbl
:[4] Stochastic Integrals (Academic Press, New York-London, 1969). | MR | Zbl
:[5] The 'Riemann hypothesis' for the Hawkins random sieve, Compositio Math. 29 (1974) 197-200. | EuDML | Numdam | MR | Zbl
and :[6] Differential equations with a small parameter and the central limit theorem for functions defined on a Markov chain, Z. Wahrscheinlichkeitstheorie 9 (1968) 101-111. | MR | Zbl
:[7] Almost sure behavior of sums of independent random variables and martingales, Proc. 5th Berkeley Symp., Vol. 2, part 1 (1966) 315-343. | MR | Zbl
:[8] Two limit theorems for random evolutions having non-ergodic driving processes, (to appear in proceedings of Park City, Utah conference on stochastic differential equations). | Zbl
:[9] A study of a diffusion process motivated by the sieve of Eratosthenes, Bull. London Math. Soc. 6 (1974) 155-164. | MR | Zbl
:[10] The prime number theorem for random sequences, J. Number Theory 8 (1976) 369-371. | MR | Zbl
: