Compositio Mathematica

G. VAN DiJK

Smooth and admissible representations of p-adic unipotent groups

Compositio Mathematica, tome 37, n 1 (1978), p. 77-101
http://www.numdam.org/item?id=CM_1978__37_1_77_0
© Foundation Compositio Mathematica, 1978, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SMOOTH AND ADMISSIBLE REPRESENTATIONS OF P-ADIC UNIPOTENT GROUPS

G. van Dijk

§1. Introduction

A representation π of a totally disconnected group G on a complex vector space V is said to be smooth if for each $v \in V$ the mapping

$$
x \mapsto \pi(x) v \quad(x \in G)
$$

is locally constant. π is called admissible if in addition the following condition is satisfied: For any open subgroup K of G, the space of vectors $v \in V$ left fixed by $\pi(K)$ is finite-dimensional. An admissible representation is said to be pre-unitary if V carries a $\pi(G)$-invariant scalar product.

These representations play an important role in the harmonic analysis on reductive p-adic groups [6]. The aim of this paper is to emphasize their importance in harmonic analysis on unipotent p-adic groups. Let Ω be a p-adic field of characteristic zero. \boldsymbol{G} will denote a connected unipotent algebraic group, defined over Ω and G its subgroup of Ω-rational points. Let \mathscr{G} be the Lie algebra of \boldsymbol{G} and \mathscr{G} its subalgebra of Ω-points. G is a totally disconnected group. We show:
(i) any irreducible smooth representation of G is admissible,
(ii) any irreducible admissible representation of G is pre-unitary.

Jacquet [7] has shown that (i) holds for reductive p-adic groups G. Actually, we make use of a remarkable lemma from [7]. The main tool for the proof of (i) and (ii) is the interference of so-called supercuspidal representations, which are known to play a decisive role in the representation theory of reductive groups [6]. We apply some results of Casselman concerning these representations [3], which originally were only stated for $G L(2)$. For the proof, which is by
induction on $\operatorname{dim} G$, one has to go to the three-dimensional p-adic Heisenberg group. A new version of von Neumann's theorem ([11], Ch. 2) is needed to complete the induction. All this is to be found in sections $2,3,4$ and 5 .

Section 6 is concerned with the Kirillov construction of irreducible unitary representations of G, which is standard now. In the next section we discuss the character formula, following Pukanszky [12]. As a byproduct we obtain a homogeneity property for the distribution, defined by a G-orbit O in $\mathscr{G}^{\prime}:$ if $\operatorname{dim} O=2 m$, then

$$
\int_{O} \phi(t v) \mathrm{d} v=|t|^{-m} \int_{O} \phi(v) \mathrm{d} v \quad\left(\phi \in C_{c}^{\infty}\left(\mathscr{G}^{\prime}\right)\right)
$$

for all $t \in \Omega, t \neq 0$. Similar results are true for nilpotent orbits of reductive G in \mathscr{G} [2]; there they form a substantial help in proving that the formal degrees of supercuspidal representations are integers, provided Haar measures are suitably normalized. Let Z denote the center of G.

Section 8 deals with square-integrable representations $\bmod Z$ of G. Moore and Wolf [10] have discussed them for real unipotent groups. The main results still hold for p-adic groups.

Let π be an irreducible square-integrable representation $\bmod Z$ of G. For any open compact subgroup K of G, let $m(\pi, 1)$ denote the multiplicity of the trivial representation of K in the restriction of π to K. Normalize Haar measures on G and Z in such a way that $\operatorname{vol}(K)=\operatorname{vol}(K \cap Z)=1$. Choose Haar measure on G / Z accordingly. Then, according to a general theorem ([5], Theorem 2) one has:

$$
m(\pi, 1) \leq \frac{1}{d(\pi)}, \quad \text { where } d(\pi) \text { is the formal degree of } \pi
$$

Now assume in addition K to be a lattice subgroup of $G: L=\log K$ is a lattice in \mathscr{G}. Moreover, let $m(\pi, 1)>0$. Then we have equality:

$$
m(\pi, 1)=\frac{1}{d(\pi)}
$$

This is proved in section 9.
In section 10 we relate our results to earlier work of C.C. Moore [9] on these multiplicities, involving numbers of K-orbits. We conclude with an example in section 11.

§2. Smooth representations

We call a Hausdorff space X a totally disconnected (t.d.) space if it satisfies the following condition: Given a point $x \in X$ and a neighborhood U of x in X, there exists an open and compact subset ω of X such that $x \in \omega \subset U$. Clearly a t.d. space is locally compact.

Let X be a t.d. space and S a set. A mapping $f: X \rightarrow S$ is said to be smooth if it is locally constant. Let V be a complex vector space. We write $C^{\infty}(X, V)$ for the space of all smooth functions $f: X \rightarrow V$ and $C_{c}^{\infty}(X, V)$ for the subspace of those f which have compact support. If $V=\mathbb{C}$ we simply write $C^{\infty}(X)$ and $C_{c}^{\infty}(X)$ respectively. One can identify $C_{c}^{\infty}(X, V)$ with $C_{c}^{\infty}(X) \otimes V$ by means of the mapping $i: C_{c}^{\infty}(X) \otimes V \rightarrow C_{c}^{\infty}(X, V)$ defined as follows: If $f \in C_{c}^{\infty}(X)$ and $v \in V$, then $i(f \otimes v)$ is the function $x \mapsto f(x) v(x \in X)$ from X to V.

Let G be a t.d. group, i.e. a topological group whose underlying space is a t.d. space. It is known that G has arbitrarily small open compact subgroups. By a representation of G on V, we mean a map $\pi: G \rightarrow \operatorname{End}(V)$ such that $\pi(1)=1$ and $\pi(x y)=\pi(x) \pi(y)(x, y \in G)$. A vector $v \in V$ is called π-smooth if the mapping $x \mapsto \pi(x) v$ of G into V is smooth.
Let V_{∞} be the subspace of all π-smooth vectors. Then V_{∞} is $\pi(G)$-stable. Let π_{∞} denote the restriction of π on $V_{\infty} \pi$ is said to be a smooth representation if $V=V_{\infty}$. Of course π_{∞} is always smooth.

We call a smooth representation π on V irreducible if V has no non-trivial $\pi(G)$-invariant subspaces.

Let π be a representation of G on the complex vector space $V . \pi$ is called admissible if
(i) π is smooth,
(ii) for any open subgroup K of G, the space of vectors $v \in V$ which are left fixed by $\pi(K)$, is finite-dimensional.

An admissible representation π of G on V is called pre-unitary if V carries a $\pi(G)$-invariant scalar product. Let \mathscr{H} be the completion of V with respect to the norm, defined by the scalar product. Then π extends to a continuous unitary representation ρ of G on \mathscr{H} such that $V=\mathscr{H}_{\infty}$ and $\pi=\rho_{\infty}$. It is well-known that π is irreducible if and only if ρ is topologically irreducible. Note that V is dense in \mathscr{H}.

Let π be a smooth representation of G on V and V^{\prime} the (algebraic) dual of V. Then the dual representation π^{\prime} of G on V^{\prime} is given by

$$
\left\langle v, \pi^{\prime}(x) \lambda\right\rangle=\left\langle\pi\left(x^{-1}\right) v, \lambda\right\rangle \quad\left(x \in G, \lambda \in V^{\prime}, v \in V\right)
$$

Put $\check{V}=\left(V^{\prime}\right)_{\infty}$ and $\check{\pi}=\left(\pi^{\prime}\right)_{\infty}$. Then $\check{\pi}$ is a smooth representation which is called contragredient to π. It is easily checked that π is admissible if and only if $\check{\pi}$ is.

Let H be a closed subgroup of G and σ a smooth representation of H on W. Then we define a smooth representation $\pi=\operatorname{ind}_{H \uparrow G} \sigma$ as follows: Let V denote the space of all smooth functions $f: G \rightarrow W$ such that
(1) $f(h x)=\sigma(h) f(x) \quad(h \in H, x \in G)$,
(2) $\operatorname{Supp} f$ is compact $\bmod H$.

Then π is the representation of G on V given by

$$
\pi(y) f(x)=f(x y) \quad(x, y \in G, f \in V)
$$

Let π_{1}, π_{2} be two smooth representations of G on V_{1} and V_{2} respectively. We say that π_{1} is equivalent to π_{2} if there is a linear bijection $T: V_{1} \rightarrow V_{2}$ such that $\pi_{2}(x) T=T \pi_{1}(x)$ for all $x \in G$.

§3. Smooth and admissible representations of the three-dimensional p-adic Heisenberg group

Let Ω be a p-adic field, i.e. a locally compact non-discrete field with a discrete valuation. There is an absolute value on Ω, denoted $|\cdot|$, which we assume to be normalized in the following way. Let $\mathrm{d} x$ be an additive Haar measure on Ω. Then $\mathrm{d}(a x)=|a| \mathrm{d} x\left(a \in \Omega^{*}\right)$. Let \mathscr{O} be the ring of integers: $\mathcal{O}=\{x \in \Omega:|x| \leq 1\} ; \mathcal{O}$ is a local ring with unique maximal ideal P, given by $P=\{x \in \Omega:|x|<1\}$. The residue-class field \mathcal{O} / P has finitely many, say q, elements. P is a principal ideal with generator ϖ. So $P=\varpi \mathcal{O},|\varpi|=q^{-1}$. Put $P^{n}=\varpi^{n} \mathscr{O}(n \in \mathbb{Z})$.

Since P^{n} is a compact subgroup of the additive group of Ω and $\Omega=\bigcup_{n} P^{n}$, any additive character of Ω is unitary. Let $G=H_{3}$ be the 3-dimensional Heisenberg group over Ω :

$$
G=\left\{[x, y, z]=\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) ; \quad x, y, z \in \Omega\right\} .
$$

G is a t.d. group. The group multiplication is given by:

$$
[x, y, z]\left[x^{\prime}, y^{\prime}, z^{\prime}\right]=\left[x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x y^{\prime}\right]
$$

Theorem 1: (1) Each irreducible smooth representation π of H_{3} is admissible; (2) Each irreducible admissible representation π of H_{3} is pre-unitary.

We make use of the following result of Jacquet [7].

Lemma 1: Let H be a group and ρ an (algebraically) irreducible representation of H on a complex vector space V of at most denumerable dimensions. Then every operator A which commutes with $\rho(H)$ is a scalar.

Let V be the space of π. Let $v \in V, v \neq 0$ and $K=\{g \in G: \pi(g) v=v\}$. Then K is open and G / K is denumerable. Since $V=$ $\operatorname{span}\{\pi(g) v: g \in G / K\}$, the lemma applies. $Z=\{[0,0, z]: z \in \Omega\}$ is the center of G. Therefore, there exists an additive (unitary) character ψ_{π} of Ω such that $\pi([0,0, z])=\psi_{\pi}(z) I(z \in \Omega)$, where I is the identity in End (V). We have two cases:
(a) $\psi_{\pi}=1$. Then π actually is a representation of $G / Z \simeq \Omega^{2}$ which is (again by the lemma) one-dimensional and, as observed above, unitary.
(b) $\psi_{\pi} \neq 1$. Fix $w \in \check{V}, w \neq 0$. For any $v \in V$, put $c_{v}(g)=\langle\pi(g) v, w\rangle$ $(g \in G)$. The mapping $v \mapsto c_{v}$ is a linear injection of V into the space of smooth functions f on G, satisfying

$$
f([x, y, z])=\psi_{\pi}(z) f([x, y, 0]) .
$$

Let K be a (small) open compact subgroup of G such that $\check{\pi}(k) w=w$ for all $k \in K$. Call $V_{K}=\{v \in V: \pi(k) v=v$ for all $k \in K\}$. Then $f=c_{v}$ satisfies

$$
f(k g)=f(g k)=f(g) \quad(g \in G ; k \in K)
$$

for all $v \in V_{K}$.
Write $g=[x, y, 0], k=\left[x^{\prime}, y^{\prime}, 0\right]$. Then

$$
f([x, y, 0])=f\left(\left[x+x^{\prime}, y+y^{\prime}, x y^{\prime}\right]\right)=f\left(\left[x+x^{\prime}, y+y^{\prime}, x^{\prime} y\right]\right) .
$$

Hence

$$
f([x, y, 0])=f\left(\left[x+x^{\prime}, y, 0\right]\right)=f\left(\left[x, y+y^{\prime}, 0\right]\right) .
$$

Therefore $f\left(\left[x+x^{\prime}, y+y^{\prime}, 0\right]\right)=f([x, y, 0])$ for all $x, y \in \Omega$ and x^{\prime}, y^{\prime}
small (only depending on K, not on the particular choice of $v \in V_{K}$). Moreover:

$$
f([x, y, 0])=f([x, y, 0]) \psi_{\pi}\left(x y^{\prime}\right)=f([x, y, 0]) \psi_{\pi}\left(x^{\prime} y\right)
$$

for x^{\prime}, y^{\prime} as above. Since $\psi_{\pi} \neq 1, f([x, y, 0])=0$ for x or y large enough (only depending on K, not on the particular choice of $v \in V_{K}$). Since $f([x, y, z])=\psi_{\pi}(z) f([x, y, 0]), f$ is completely determined by the values $f([x, y, 0]), \quad(x, y \in \Omega)$. Consequently, $\operatorname{dim} V_{K}=\operatorname{dim}\left\{c_{v}: v \in V_{K}\right\}<\infty$. Part (1) of the theorem is now evident. To prove part (2) it suffices to take the following scalar product on V :

$$
\left(v, v^{\prime}\right)=\int_{\Omega} \int_{\Omega} c_{v}([x, y, 0]) \overline{c_{v^{\prime}}([x, y, 0])} \mathrm{d} x \mathrm{~d} y \quad\left(v, v^{\prime} \in V\right)
$$

REmARK: It is clear that the same observations remain true for the higher dimensional p-adic Heisenberg groups.

§4. Supercuspidal representations

G is a t.d. group and π a smooth representation of G on V. By a matrix coefficient of π, we mean a function on G of the form

$$
x \mapsto\langle\pi(x) v, \check{v}\rangle \quad(x \in G)
$$

where v and \check{v} are fixed elements in V and \check{V} respectively. Let Z denote the center of G. We call π a supercuspidal representation if each matrix coefficient of π has compact support modulo Z. The proof of Theorem 1 emphasizes the significance of this kind of representations. Actually, one has the following lemma.

Lemma 2: Let π be a smooth representation of H_{3} such that $\pi([0,0, z])=\psi_{\pi}(z) I(z \in \Omega)$ for some non-trivial additive character ψ_{π} of Ω. Then π is a supercuspidal representation.

Assume, from now on, G to satisfy the second axiom of countability. Let π be an irreducible smooth representation of G on V. Then by Lemma 1 , there is a character λ_{π} of Z such that $\pi(z)=\lambda_{\pi}(z) I(z \in Z)$.

Lemma 3: Let π be an irreducible, admissible and supercuspidal representation of G on V. Assume λ_{π} unitary. Then π is pre-unitary
and one has the following orthogonality relations: There exists a positive constant d_{π} (the formal degree of π), only depending on the choice of Haar measure $\mathrm{d} \dot{g}$ on G / Z such that

$$
\int_{G I Z}\langle\pi(g) u, \check{u}\rangle\left\langle\pi\left(g^{-1}\right) v, \check{v}\right\rangle \mathrm{d} \dot{g}=d_{\pi}^{-1}\langle u, \check{v}\rangle\langle v, \check{u}\rangle
$$

for all $u, v \in V, \check{u}, \check{v} \in \check{V}$.
To make π pre-unitary, choose any $w \in \mathscr{V}, w \neq 0$ and define the following G-invariant scalar product on V :

$$
\left(v, v^{\prime}\right)=\int_{G \mid Z}\langle\pi(g) v, w\rangle \overline{\left\langle\pi(g) v^{\prime}, w\right\rangle} \mathrm{d} \dot{g} .
$$

π extends to an irreducible unitary representation on the completion \mathscr{H} of V such that $\mathscr{H}_{\infty}=V$. The orthogonality relations now follow easily from those for irreducible unitary supercuspidal representations ([5], Theorem 1).

The following theorem is due to Casselman ([3], Theorem 1.6).

Theorem 2: Let ρ be an irreducible, admissible and supercuspidal representation of G on W such that $\rho(z)=\lambda(z) I(z \in Z)$, where λ is a unitary character of Z. Let π be any smooth representation of G on V such that $\pi(z)=\lambda(z) I(z \in Z)$. Given a G-morphism $f \neq 0$ from π to ρ, there exists a G-morphism splitting f.

Proof: Let $S_{\lambda}(G)$ denote the space of smooth functions h on G with compact support $\bmod Z$ such that $h(x z)=h(x) \lambda\left(z^{-1}\right)(x \in G$, $z \in Z) . S_{\lambda}(G)$ is a G-module, G acting by left translation. Fix $\check{w}_{0} \in \check{W}$, $\check{w}_{0} \neq 0$. The mapping $F: W \rightarrow S_{\lambda}(G)$, defined by

$$
F(w)(x)=\left\langle\rho\left(x^{-1}\right) w, \check{w}_{0}\right\rangle \quad(w \in W, x \in G)
$$

is a G-morphism. Choose $w_{0} \in W$ and $v_{0} \in V$ such that $\left\langle w_{0}, \check{w}_{0}\right\rangle=d_{\rho}$, $f\left(v_{0}\right)=w_{0}$. By P we denote the G-morphism from $S_{\lambda}(G)$ to V given by

$$
P(h)=\int_{G / Z} h(x) \pi(x) v_{0} \mathrm{~d} \dot{x} \quad\left(h \in S_{\lambda}(G)\right)
$$

Then $P \circ F$ is the G-morphism, splitting f :

$$
\begin{aligned}
\langle f \circ P \circ F(w), \check{w}\rangle & =\int_{G / Z}\left\langle\rho\left(x^{-1}\right) w, \check{w}_{0}\right\rangle\left\langle f\left(\pi(x) v_{0}\right), \check{w}\right\rangle \mathrm{d} \dot{x} \\
& =\int_{G / Z}\left\langle\rho\left(x^{-1}\right) w, \check{w}_{0}\right\rangle\left\langle\rho(x) w_{0}, \check{w}\right\rangle \mathrm{d} \dot{x} \\
& =d_{\rho}^{-1}\left\langle w_{0}, \check{w}_{0}\right\rangle\langle w, \check{w}\rangle \quad \text { (by Lemma 3) } \\
& =\langle w, \check{w}\rangle \text { for all } \check{w} \in \check{W} .
\end{aligned}
$$

Hence $f \circ P \circ F(w)=w$ for all $w \in W$.
Let us now turn back to H_{3}. The irreducible unitary representations of H_{3} are well-known (cf. [11]). Their restrictions to the space of smooth vectors are admissible. Keeping in mind Theorem 1, we have therefore the following list of irreducible admissible representations of H_{3}. Let χ_{0} denote any non-trivial additive character of Ω. Then:
(a) One-dimensional representations $\rho_{\mu, \nu}(\mu, \nu \in \Omega)$, trivial on Z; $\rho_{\mu, \nu}([x, y, z])=\chi_{0}(\mu x+\nu y)$.
(b) Supercuspidal representations $\rho_{\lambda}\left(\lambda \in \Omega^{*}\right)$, non-trivial on Z, on the space $C_{c}^{\infty}(\Omega)$;

$$
\rho_{\lambda}([x, y, z]) f(t)=\chi_{0}(\lambda(z+t y)) f(t+x) \quad\left(f \in C_{c}^{\infty}(\Omega)\right) .
$$

We have the following analogue of the famous theorem of von Neumann for H_{3} ([11], Ch. 2).

Theorem 3: Let π be a smooth representation of H_{3} such that $\pi([0,0, z])=\chi_{0}(\lambda z) I(z \in \Omega)$ for some $\lambda \neq 0$. Then π is the (algebraic) direct sum of irreducible representations equivalent to ρ_{λ}.

Proof: Let V be the space of π. Due to Theorem 1 , every irreducible subrepresentation of π is equivalent to ρ_{λ}. By Lemma $2, \pi$ is a supercuspidal representation. We shall prove the following: Given any G-invariant subspace W of $V, W \neq V$, there exists an irreducible subspace U of V such that $U \cap W=(0)$. An easy application of Zorn's Lemma then yields the theorem.

Let W be a proper G-invariant subspace of V. Put $\bar{V}=V / W$. \bar{V} is a G-module; the action of G is a smooth and supercuspidal representation of G. Let $\bar{v}_{0} \in \bar{V}, \bar{v}_{0} \neq 0$. The G-module \bar{V}_{0} generated by \bar{v}_{0} contains a maximal proper G-module. Therefore \bar{V}_{0} has an irreducible quotient, which is also supercuspidal, and admissible by Theorem 1. By Theorem 2, \bar{V}_{0} and hence \bar{V}, even has an irreducible subspace, say \bar{V}_{1}, on which G acts as an admissible, supercuspidal representation. Let $V_{1}+W$ be its pre-image in V. Then $V_{1}+W$ is a G-invariant subspace of V and the canonical map from V to \bar{V} induces a
non-zero G-morphism from $V_{1}+W$ to \bar{V}_{1}. Again Theorem 2 implies the existence of an irreducible subspace U of V such that $U \cap W=$ (0), $U+W=V_{1}+W$. This concludes the proof of Theorem 3.

§5. Smooth and admissible representations of unipotent \boldsymbol{p}-adic groups

Let Ω be a p-adic field of characteristic zero. By \boldsymbol{G} we mean a connected algebraic group, defined over Ω, consisting of unipotent elements, with Lie algebra \mathscr{G}. Let G, \mathscr{G} be the sets of Ω-points of $\boldsymbol{G}, \mathscr{G}$ respectively. We have the Ω-isomorphism of algebraic varieties $\exp : \mathscr{G} \rightarrow \boldsymbol{G}$, which map \mathscr{G} onto G. Let ' ${ }^{\prime}{ }^{\prime}$ ' denote its inverse. We shall call G a unipotent p-adic group and say that \mathscr{G} is its Lie algebra.

Let Z be the center of G, its Lie algebra \mathscr{Z}. One has $\exp \mathscr{Z}=Z$. More generally: the exponential of a subalgebra of \mathscr{G} is a unipotent p-adic subgroup of G, the exponential of an ideal in \mathscr{G} is a normal subgroup of G.

Let G be a unipotent p-adic group.
Theorem 4: Each irreducible smooth representation π of G is admissible and pre-unitary.

Proof: We use induction on $\operatorname{dim} G$. Lemma 1 is the main source to prove the theorem in case $\operatorname{dim} G=1$. Assume $\operatorname{dim} G>1$. Fix any non-trivial character χ_{0} of Ω. By Lemma 1 there exists a (unitary) character λ_{π} of Z such that $\pi(z)=\lambda_{\pi}(z) I$ for all $z \in Z . \lambda_{\pi} \circ \exp$ is an additive character of \mathscr{Z}, hence $\lambda_{\pi}{ }^{\circ} \exp =\chi_{0}{ }^{\circ} f$ for some $f \in \mathscr{Z}$ '. $\operatorname{Ker}(f)$ is a subalgebra of $\mathscr{Z}, \exp (\operatorname{Ker} f)=\operatorname{Ker}\left(\lambda_{\pi}\right)$ therefore a unipotent p-adic subgroup of Z of codimension at most one. If $\operatorname{dim} Z>1$ or $\operatorname{dim} Z=1$ and $\lambda_{\pi}=1, \pi$ actually reduces to an irreducible representation π_{0} of $G_{0}=G / \operatorname{Ker} \lambda_{\pi}$. But $\operatorname{dim} G_{0}<\operatorname{dim} G$. The theorem follows from the induction hypotheses.

It remains to consider the case: $\operatorname{dim} Z=1$ and $\lambda_{\pi} \neq 1$. We will first show the existence of a unipotent p-adic subgroup G_{1} of codimension one in G and an irreducible smooth representation π_{1} of G_{1} such that π is equivalent to $\operatorname{ind}_{G_{1} \uparrow G} \pi_{1}$.

Let $Y_{0} \in \mathscr{G}$ be such that, $\left[Y_{0}, \mathscr{G}\right] \subset \mathscr{Z}, \quad Y_{0} \notin \mathscr{Z}$. Put $\mathscr{G}_{1}=$ $\left\{\mathrm{U}:\left[U, Y_{0}\right]=0\right\} . \mathscr{G}_{1}$ is an ideal in \mathscr{G} of codimension 1. Choose $X_{0} \notin \mathscr{G}_{1}$ and define $Z_{0}=\left[X_{0}, Y_{0}\right]$. Observe $Z_{0} \in \mathscr{Z}, Z_{0} \neq 0$. Then $\left\{X_{0}, Y_{0}, Z_{0}\right\}$ is a basis for a 3-dimensional subalgebra of \mathscr{G} isomorphic to the Lie algebra of H_{3}. Let S denote the subgroup of G corresponding to this subalgebra and write, as usual,

$$
[x, y, z]=\exp y Y_{0} \cdot \exp x X_{0} \cdot \exp z Z_{0} \quad(x, y, z \in \Omega)
$$

We can choose $\lambda \in \Omega, \lambda \neq 0$ with the following property:

$$
\lambda_{\pi}([0,0, z])=\chi_{0}(\lambda z) \quad(z \in \Omega)
$$

Let us assume, for the moment, that π is an irreducible smooth representation of G on V. By Theorem 3, the restriction of π to S is a direct sum of irreducible representations of S, all equivalent to the representation ρ_{λ} of S in $C_{c}^{\infty}(\Omega)$ given by

$$
\rho_{\lambda}([x, y, z]) f(t)=\chi_{0}(\lambda(z+t y)) f(t+x) \quad\left(f \in C_{c}^{\infty}(\Omega)\right)
$$

So $V=\bigoplus_{i \in I} V_{i}^{\lambda}$ for some index-set I, each V_{i}^{λ} being isomorphic to $C_{c}^{\infty}(\Omega)$. We may regard I as a t.d. space in the obvious way. Then we have

$$
V \simeq C_{c}^{\infty}\left(I, C_{c}^{\infty}(\Omega)\right) \simeq C_{c}^{\infty}(I) \otimes C_{c}^{\infty}(\Omega) \simeq C_{c}^{\infty}(\Omega, W)
$$

where $W=C_{c}^{\infty}(I)$. Moreover, with these identifications,

$$
\pi([x, y, z]) f(t)=\chi_{0}(\lambda(z+t y)) f(t+x) \quad\left(f \in C_{c}^{\infty}(\Omega, W)\right)
$$

Let G_{1} denote the unipotent p-adic subgroup of G with Lie algebra $\mathscr{G}_{1} . G_{1}$ is a closed normal subgroup of G and $G=G_{1} .\left(\exp t X_{0}\right)_{t \in \Omega}$ (semi-direct product). Since Y_{0} is in the center of $\mathscr{G}_{1}, \pi\left(G_{1}\right)$ and $\pi\left(\exp y Y_{0}\right)(y \in \Omega)$ commute. Recall

$$
\pi\left(\exp y Y_{0}\right) f(t)=\chi_{0}(\lambda t y) f(t) \quad\left(y, t \in \Omega ; f \in C_{c}^{\infty}(\Omega, W)\right)
$$

Our aim now is to prove the following lemma.

Lemma 4: For each $t \in \Omega$, there exists a smooth representation $g_{1} \mapsto \pi\left(g_{1}, t\right)$ of G_{1} on W such that
(a) $\left(\pi\left(g_{1}\right) f\right)(t)=\pi\left(g_{1}, t\right) \cdot f(t)$ for all $f \in C_{c}^{\infty}(\Omega, W), g_{1} \in G_{1}$ and $t \in$ Ω;
(b) $\pi\left(g_{1}, t+t_{0}\right)=\pi\left(\exp t_{0} X_{0} \cdot g_{1} \cdot \exp \left(-t_{0} X_{0}\right), t\right)$ for all $t, t_{0} \in \Omega$, $g_{1} \in G_{1}$.

Obviously, this lemma implies $\pi \simeq \operatorname{ind}_{G_{1} \uparrow G} \pi_{1}$ where π_{1} is given by $\pi_{1}\left(g_{1}\right)=\pi\left(g_{1}, 0\right) \quad\left(g_{1} \in G_{1}\right)$. The irreducibility of π yields the irreducibility of π_{1}.

To prove the lemma, we start with a linear map $A: C_{c}^{\infty}(\Omega, W) \rightarrow$
$C_{c}^{\infty}(\Omega, W)$, commuting with all operators $\pi\left(\exp y Y_{0}\right)(y \in \Omega)$. Thus:

$$
\left\{A\left(\chi_{0}(y \cdot) f(\cdot)\right\}(t)=\chi_{0}(t y)(A f)(t)\right.
$$

for all $t, y \in \Omega$ and $f \in C_{c}^{\infty}(\Omega, W)$.
Since $C_{c}^{\infty}(\Omega)$ is closed under Fourier transformation, we can easily establish the following: Given $\phi \in C^{\infty}(\Omega)$ and an open compact subset K of Ω, there exists an integer $m>0, \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{C}$ and $y_{1}, \ldots, y_{m} \in \Omega$ such that

$$
\phi(t)=\sum_{i=1}^{m} \lambda_{i} \chi_{0}\left(y_{i} t\right) \quad(t \in K) .
$$

For $\phi \in C^{\infty}(\Omega)$ let L_{ϕ} denote the linear map $C_{c}^{\infty}(\Omega, W) \rightarrow C_{c}^{\infty}(\Omega, W)$ given by $L_{\phi} f(t)=\phi(t) f(t) \quad\left(f \in C_{c}^{\infty}(\Omega, W)\right)$. Then, putting $K=$ $\operatorname{Supp} f \cup \operatorname{Supp} A f$, we obtain:

$$
\begin{aligned}
\left\{A\left(L_{\phi} f\right)\right\}(t) & =A\left(\sum_{i=1}^{m} \lambda_{i} \chi_{0}\left(y_{i} \cdot\right) f(\cdot)\right)(t) \\
& =\sum_{i=1}^{m} \lambda_{i} \chi_{0}\left(y_{i} t\right) A f(t)=\left\{L_{\phi}(A f)\right\}(t)
\end{aligned}
$$

$\left(t \in \Omega, f \in C_{c}^{\infty}(\Omega, W)\right)$. Hence $A L_{\phi}=L_{\phi} A$ for every $\phi \in C^{\infty}(\Omega)$. In particular we have: $\pi\left(g_{1}\right) L_{\phi}=L_{\phi} \pi\left(g_{1}\right)$ for all $g_{1} \in G_{1}, \phi \in C^{\infty}(\Omega)$. Let ψ_{n} denote the characteristic function of P^{n}. In addition, put $L_{t} \phi(s)=$ $\phi(s-t)(s, t \in \Omega, \phi$ any function on $\Omega)$. Define:

$$
\pi\left(g_{1}, t\right) w=\pi\left(g_{1}\right)\left(L_{t} \psi_{n} \otimes w\right)(t) \quad\left(g_{1} \in G_{1}, t \in \Omega, w \in W\right)
$$

Here, as usual, $L_{t} \psi_{n} \otimes w$ is identified with the function $s \mapsto L_{t} \psi_{n}(s) \cdot w(s \in \Omega) . \pi\left(g_{1}, t\right)$ is well-defined: assuming $n^{\prime} \leq n$, we obtain

$$
\pi\left(g_{1}\right)\left(L_{t} \psi_{n} \otimes w\right)(t)=\pi\left(g_{1}\right)\left(L_{t} \psi_{n^{\prime}} \cdot L_{t} \psi_{n} \otimes w\right)(t)
$$

But this equals, by the above result,

$$
L_{t} \psi_{n}(t) \pi\left(g_{1}\right)\left(L_{t} \psi_{n^{\prime}} \otimes w\right)(t)=\pi\left(g_{1}\right)\left(L_{t} \psi_{n^{\prime}} \otimes w\right)(t)
$$

Let us show now that $\pi\left(g_{1}, t\right)$ satisfies condition (a) of Lemma 4. Fix $f \in C_{c}^{\infty}(\Omega, W)$ and determine integers $m, n>0, t_{1}, \ldots, t_{m} \in \Omega$ and
$w_{1}, \ldots, w_{m} \in W$ such that

$$
f=\sum_{i=1}^{m} L_{t_{i}} \psi_{n} \otimes w_{i}
$$

Then

$$
\begin{aligned}
\pi\left(g_{1}\right) f(t) & =\pi\left(g_{1}\right)\left(\sum_{i=1}^{m} L_{t_{i}} \psi_{n} \otimes w_{i}\right)(t) \\
& =\sum_{i=1}^{m} \pi\left(g_{1}\right)\left(L_{t_{i}} \psi_{n} \otimes w_{i}\right)(t) \\
& =\sum_{i=1}^{m}\left\{L_{t} \psi_{n} \cdot \pi\left(g_{1}\right)\left(L_{t_{i}} \psi_{n} \otimes w_{i}\right)\right\}(t) \\
& =\sum_{i=1}^{m} \pi\left(g_{1}\right)\left(L_{t} \psi_{n} \cdot L_{t_{i}} \psi_{n} \otimes w_{i}\right)(t) \\
& =\sum_{i=1}^{m}\left\{L_{t_{i}} \psi_{n} \cdot \pi\left(g_{1}\right)\left(L_{t} \psi_{n} \otimes w_{i}\right)\right\}(t) \\
& =\sum_{i=1}^{m} L_{t_{i}} \psi_{n}(t) \cdot \pi\left(g_{1}, t\right) w_{i} \\
& =\pi\left(g_{1}, t\right) \cdot f(t) \quad\left(t \in \Omega, g_{1} \in G_{1}\right) .
\end{aligned}
$$

Condition (b) is also fulfilled. Indeed,

$$
\begin{aligned}
& \pi\left(\exp t_{0} X_{0} \cdot g_{1} \cdot \exp -t_{0} X_{0}, t\right) w \\
= & \pi\left(\exp t_{0} X_{0}\right) \pi\left(g_{1}\right) \pi\left(\exp -t_{0} X_{0}\right)\left(L_{t} \psi_{n} \otimes w\right)(t) \\
= & \pi\left(g_{1}\right) \pi\left(\exp -t_{0} X_{0}\right)\left(L_{t} \psi_{n} \otimes w\right)\left(t+t_{0}\right)
\end{aligned}
$$

Furthermore,

$$
\begin{gathered}
\pi\left(\exp -t_{0} X_{0}\right)\left(L_{t} \psi_{n} \otimes w\right)(u)=L_{t} \psi_{n} \otimes w\left(u-t_{0}\right) \\
=L_{t+t_{0}} \psi_{n} \otimes w(u) \quad(u \in \Omega)
\end{gathered}
$$

Hence,

$$
\begin{gathered}
\pi\left(\exp t_{0} X \cdot g_{1} \cdot \exp -t_{0} X_{0}, t\right) w \\
=\pi\left(g_{1}\right)\left(L_{t+t_{0}} \psi_{n} \otimes w\right)\left(t+t_{0}\right)=\pi\left(g_{1}, t+t_{0}\right) w .
\end{gathered}
$$

Finally, it is easily checked, that condition (a) forces $g_{1} \mapsto \pi\left(g_{1}, t\right)$ $\left(g_{1} \in G_{1}\right)$ to be a smooth representation of G_{1} for each $t \in \Omega$. This concludes the proof of Lemma 4.

Corollary: Each irreducible smooth representation of G is monomial.

Let us continue the proof of Theorem 4. By induction we assume that π_{1} is admissible and pre-unitary. Hence $\pi=\operatorname{ind}_{G_{1} \uparrow G} \pi_{1}$ is pre-unitary. Let K be an open subgroup of G and let V_{K} denote the space of all $f \in C_{c}^{\infty}(\Omega)$ such that $\pi(g) f=f$ for all $g \in K$. Let $f \in V_{K}$. Since

$$
\pi\left(\exp x X_{0}\right) f(t)=f(x+t) \quad(x, t \in \Omega)
$$

there exists an integer $n>0$, only depending on K, such that f is constant on cosets of P^{n}.

The relation

$$
\pi\left(\exp y Y_{0}\right) f(t)=\chi_{0}(\lambda y t) f(t) \quad(y, t \in \Omega)
$$

implies that $\operatorname{Supp} f \subset P^{m}$ for some integer $m>0$, only depending on K. Assume $m<n$. Then $P^{m}=\bigcup_{i=1}^{k}\left(t_{1}+P^{n}\right)$ for some $t_{1}, \ldots, t_{k} \in \Omega$. Now consider the mapping

$$
f \mapsto\left(f\left(t_{1}\right), \ldots, f\left(t_{k}\right)\right)
$$

of V_{K} into W^{k}. This mapping is linear and injective. Since

$$
\left(\pi\left(g_{1}\right) f(t)=\pi_{1}\left(\exp t X_{0} \cdot g_{1} \cdot \exp -t X_{0}\right) f(t) \quad\left(g_{1} \in G_{1}, t \in \Omega\right)\right.
$$

we obtain that $f\left(t_{i}\right)$ is fixed by $\exp t_{i} X_{0} \cdot\left(K \cap G_{1}\right) \exp \left(-t_{i} X_{0}\right)$, being an open subgroup of $G_{1}(i=1,2, \ldots, k)$. Therefore, each $f\left(t_{i}\right)$ stays in a finite-dimensional subspace of W. Consequently $\operatorname{dim} V_{K}<\infty$.

We have shown that π is admissible. This concludes the proof of Theorem 4.

Remark: Similar to the proof of Theorem 4 one can easily show that the restriction of an irreducible unitary representation of G to its subspace of smooth vectors is an admissible representation of G.

§6. Kirillov's theory

Let G be as in $\S 5$. What remains is to describe the irreducible unitary representations of G. This is done by Kirillov [8] for the real groups G and, as observed by Moore [9], the whole machinery works
in the p-adic case as well. For completeness and for later purposes, we give the result.

Given $f \in \mathscr{G}^{\prime}$, put $B_{f}(X, Y)=f([X, Y])(X, Y \in \mathscr{G}) . B_{f}$ is an alternating bilinear form on \mathscr{G}. A subalgebra \mathscr{S} of \mathscr{G} which is at the same time a maximal totally isotropic subspace for B_{f} is called a polarization at f. Polarizations at f exist ([4], 1.12.10). They coincide with the subalgebra's $\mathscr{S}_{2} \subset \mathscr{G}$ which are maximal with respect to the property that \mathfrak{S} is a totally isotropic subspace for B_{f} (cf. [8], Lemma 5.2, which carries over to the p-adic case with absolutely no change). Let \mathfrak{F} be any subalgebra of \mathscr{G} which is a totally isotropic subspace for $B_{f}: f\left[\mathfrak{S}, \mathfrak{F}_{2}\right]=0$. Put $H=\exp \mathfrak{S}$. We may define a character χ_{f} of H by the formula:

$$
\chi_{f}(\exp X)=\chi_{0}(f(X))^{1} \quad(X \in \mathfrak{S})
$$

Let $\rho(f, \mathscr{F}, G)$ denote the unitary representation of G induced by χ_{f}.
Theorem 5 ([8], [9]):
(i) $\rho(f, \mathfrak{S}, G)$ is irreducible if and only if \mathfrak{S} is a polarization at f,
(ii) each irreducible unitary representation of G is of the form $\rho(f, \mathfrak{F}, G)$,
(iii) $\rho\left(f_{1}, \mathfrak{S}_{1}, G\right)$ and $\rho\left(f_{2}, \mathfrak{S}_{2}, G\right)$ are unitarily equivalent if and only if f_{1} and f_{2} are in the same G-orbit in \mathscr{G}^{\prime}.

§7. The character formula

The main reference for this section is [12]. G acts on \mathscr{G} by $A d$ and hence on \mathscr{G}^{\prime} by the contragredient representation. It is well-known (and can be proved similar to the real case) that all G-orbits in \mathscr{G}^{\prime} are closed.

Let us fix a non-trivial (unitary) character χ_{0} of the additive group of Ω.

We shall choose a Haar measure $\mathrm{d} g$ on G and a translation invariant measure $\mathrm{d} X$ on \mathscr{G} such that $\mathrm{d} g=\exp (\mathrm{d} X)$.

Let $f \in \mathscr{G}^{\prime}, \mathfrak{F}$ a polarization at f and O the orbit of f in \mathscr{G}^{\prime}. Put $\pi=\rho(f, \mathfrak{N}, G)$. Given $\psi \in C_{c}^{\infty}(G)$, we know that $\pi(\psi)$ is an operator of finite rank (§5, Remark). Put $\psi_{1}(X)=\psi(\exp X)(X \in \mathscr{G})$. Then $\psi_{1} \in$ $C_{c}^{\infty}(\mathscr{G})$. The Fourier transform of ψ_{1} is defined by:

[^0]$$
\hat{\psi}_{1}\left(X^{\prime}\right)=\int_{\mathscr{G}} \psi_{1}(X) \chi_{0}\left(\left\langle X, X^{\prime}\right\rangle\right) \mathrm{d} X \quad\left(X^{\prime} \in \mathscr{G}^{\prime}\right) .
$$

Observe that $\hat{\psi}_{1} \in C_{c}^{\infty}\left(\mathscr{G}^{\prime}\right)$.

Theorem 6: There exists a unique positive G-invariant measure $\mathrm{d} v$ on O such that for all $\psi \in C_{c}^{\infty}(G)$:

$$
\operatorname{tr} \pi(\psi)=\int_{O} \hat{\psi}_{1}(v) \mathrm{d} v
$$

Note that the right-hand side is finite, because $\mathrm{d} v$ is also a measure on \mathscr{G}^{\prime}, since O is closed in \mathscr{G}^{\prime}.

Pukanszky's proof of ([12], Lemma 2), ${ }^{2}$ goes over to our situation with no substantial change. Observe that each $\psi \in C_{c}^{\infty}(G)$ is a linear combination of functions of the form $\phi * \tilde{\phi}\left(\phi \in C_{c}^{\infty}(G)\right)$ where $\tilde{\phi}$ is given by $\tilde{\phi}(g)=\overline{\phi\left(g^{-1}\right)}(g \in G)$. The algorithm to determine $\mathrm{d} v$ (given $\mathrm{d} g$ and $\mathrm{d} X$ such that $\mathrm{d} g=\exp (\mathrm{d} X)$) is similar to that given by Pukanszky:
(i) Put $K=\exp \mathfrak{S}, \Gamma=K \backslash G$. Choose invariant measures $\mathrm{d} k$ and $\mathrm{d} \gamma$ on K and Γ respectively such that $\mathrm{d} g=\mathrm{d} k \mathrm{~d} \gamma$.
(ii) Choose a translation invariant measure $\mathrm{d} H$ on \mathscr{S}_{2} such that $\mathrm{d} k=\exp (\mathrm{d} H)$.
(iii) Let $\mathrm{d} X^{\prime}$ and $\mathrm{d} H^{\prime}$ denote the dual measures of $\mathrm{d} X$ and $\mathrm{d} H$ respectively.
(iv) Let $\mathfrak{S}^{\perp}=\left\{X^{\prime} \in \mathscr{G}^{\prime}:\left\langle\mathfrak{K}, X^{\prime}\right\rangle=0\right\}$. Take $\mathrm{d} H^{\perp}$ on \mathfrak{S}^{\perp} such that $\mathrm{d} X^{\prime}=\mathrm{d} H^{\prime} \mathrm{d} H^{\perp}$.
(v) Let S be the stabilizer of f in G. Then $S \subset K$. Choose $\mathrm{d} \lambda$ on $S \backslash K$ such that $\mathrm{d} \lambda$ is the inverse-image of $\mathrm{d} H^{\perp}$ under the bijection

$$
S k \mapsto k^{-1} \cdot f \quad(k \in K)
$$

of $S \backslash K$ onto $f+H^{\perp}$.
(vi) Finally, put $\mathrm{d} v=$ image of $\mathrm{d} \lambda \mathrm{d} \gamma$ under the bijective mapping $S g \mapsto g^{-1} \cdot f(g \in G)$ of $S \backslash G$ onto O.

The invariant measure $\mathrm{d} v$ depends on the choice of the character χ_{0}. Taking instead of χ_{0} the character $x \mapsto \chi_{0}(t x)$ for some $t \in \Omega, t \neq 0$, we obtain, by applying the above algorithm, the following homogeneity

[^1]property for $\mathrm{d} v$:

Corollary: Let O be a G-orbit in \mathscr{G}^{\prime} of dimension $2 m$. Then

$$
\int_{O} \phi(t v) \mathrm{d} v=|t|^{-m} \int_{O} \phi(v) \mathrm{d} v
$$

for all $\phi \in C_{c}^{\infty}\left(\mathscr{G}^{\prime}\right)$ and all $t \in \Omega, t \neq 0$.

Observe that we may choose in the corollary $\mathrm{d} v$ to be any G-invariant positive measure on O.

Let O be as above. O carries a canonical measure μ, which is constructed as follows. For any $p \in O$, define $\alpha_{p}: G \rightarrow O$ by $\alpha_{p}(a)=$ $a \cdot p(a \in G)$. The kernel of the differential β_{p} of $\alpha_{p}, \beta_{p}: \mathscr{G} \rightarrow T_{p}$ ($T_{p}=$ tangent space to O in p) coincides with the radical of the alternating bilinear form B_{p} on \mathscr{G}. Let $\operatorname{Stab}_{G}(p)$ be the stabilizer of p in G. Then also, $\operatorname{Ker} \boldsymbol{\beta}_{p}=$ Lie algebra of $\operatorname{Stab}_{G}(p)$. Hence B_{p} induces a non-degenerate alternating bilinear form ω_{p} on T_{p}. In this way a 2 -form ω is defined on O. One easily checks that ω is G-invariant (cf. [12] for the real case). Let $d=2 m$ be the dimension of O. Assume $d>0$. Then μ is given by $\mu=\left|\left(1 / 2^{m} m!\right) \Lambda^{m} \omega\right|$.

Theorem 7: Let us fix the character χ_{0} of Ω in such a way that $\chi_{0}=1$ on $\mathcal{O}, \chi_{0} \neq 1$ on P^{-1}. Let O be any G-orbit in \mathscr{G}^{\prime} of positive dimension. Then the invariant measure $\mathrm{d} v$ and the canonical measure μ on O coincide.

The proof is essentially the same as in the real case ([12], Theorem).

§8. Square-integrable representations $\bmod \boldsymbol{Z}$

Let G and Z be as in $\S 5$. An irreducible unitary representation π of G on \mathscr{H} is called square-integrable mod Z if there exist $\xi, \eta \in \mathscr{H}-(0)$ such that

$$
\int_{G / Z}|\langle\pi(x) \xi, \eta\rangle|^{2} \mathrm{~d} \dot{x}<\infty .
$$

Such representations are extensively discussed by C.C. Moore and J. Wolf for real unipotent groups [10]. For p-adic unipotent groups, see [13]: the restriction of π to the space \mathscr{H}_{∞} of π-smooth vectors is a
supercuspidal representation. Our main goal is to find a closed formula for the multiplicity of the trivial representation of wellchosen open and compact subgroups K of G in the restriction of π to K.

Let $f \in \mathscr{G}^{\prime}$. By O_{f} we denote the G-orbit of f in \mathscr{G}^{\prime} and by π_{f} an irreducible unitary representation of G, corresponding to f (more precisely: to O_{f}) by Kirillov’s theory (§6). Let \mathscr{H}_{f} denote the space of π_{f}. Then we have, similar to ([10], Theorem 1):

Theorem 8: The following four statements are equivalent:
(i) π_{f} is square-integrable $\bmod Z$,
(ii) $\operatorname{dim} O_{f}=\operatorname{dim} G / Z$,
(iii) $O_{f}=f+\mathscr{Z}^{\perp}$,
(iv) B_{f} is a non-degenerate bilinear form on $\mathscr{G} \mid \mathscr{Z}$.

Here $\mathscr{Z}^{\perp}=\left\{X^{\prime} \in \mathscr{G}^{\prime}:\left\langle X^{\prime}, \mathscr{Z}\right\rangle=0\right\}$.

Now assume π_{f} to be square-integrable $\bmod Z$. The orbit O_{f} carries the canonical measure μ. We shall define another G-invariant measure ν on O_{f}. Let us fix a G-invariant differential form ω on $\mathscr{G} \mid \mathscr{Z}$ of maximal degree. Let σ denote the adjoint representation of G on \mathscr{G} and let ρ be the representation of G contragredient to σ. Fix $p \in O_{f}$. We have $\operatorname{Stab}_{G}(p)=Z$ and $g \mapsto \rho(g) h$ is an isomorphism ${ }^{3}$ of G / Z onto O_{f}. Call β_{p} the differential of this map at $e ; \beta_{p}: \mathscr{G} \mid \mathscr{Z} \rightarrow T_{h}$. Define

$$
\begin{gathered}
\omega_{p}\left(\beta_{p}\left(X_{1}\right), \ldots, \beta_{p}\left(X_{n}\right)\right)=\omega\left(X_{1}, \ldots, X_{n}\right) \\
\quad\left(n=\operatorname{dim} \mathscr{G}\left|\mathscr{Z} ; X_{1}, \ldots, X_{n} \in \mathscr{G}\right| \mathscr{Z}\right) .
\end{gathered}
$$

In this way we get a n-form ω^{\prime} on O_{f}. We claim that ω^{\prime} is G-invariant:

$$
\omega_{p}\left(\beta_{p}\left(X_{1}\right), \ldots, \beta_{p}\left(X_{n}\right)\right)=\omega_{q}\left(\mathrm{~d} \rho_{p}(a) \beta_{p}\left(X_{1}\right), \ldots, \mathrm{d} \rho_{p}(a) \beta_{p}\left(X_{n}\right)\right)
$$

if $p, q \in O_{f}, q=\rho(a) p\left(X_{1}, \ldots, X_{n} \in \mathscr{G} \mid \mathscr{Z}\right)$. This is a simple exercise:

$$
\begin{aligned}
& \omega_{q}\left(\mathrm{~d} \rho_{p}(a) \beta_{p}\left(X_{1}\right), \ldots, \mathrm{d} \rho_{p}(a) \beta_{p}\left(X_{n}\right)\right)=\omega_{q}\left(\beta_{q}\left(\sigma(a) X_{1}\right), \ldots, \beta_{q}\left(\sigma(a) X_{n}\right)\right) \\
& \quad=\omega\left(\sigma(a) X_{1}, \ldots, \sigma(a) X_{n}\right)=\omega\left(X_{1}, \ldots, X_{n}\right)=\omega_{p}\left(\beta_{p}\left(X_{1}\right), \ldots, \beta_{p}\left(X_{n}\right)\right) .
\end{aligned}
$$

Call ν the measure on O_{f} corresponding to $\omega^{\prime} ; \nu$ is uniquely determined by the choice of the volume form ω on $\mathscr{G} \mid \mathscr{Z}$. Let $|P(f)|$ denote

[^2]the constant relating μ and $\nu: \mu=|P(f)| \nu .{ }^{4}$ The volume form ω fixes, on the other hand, a Haar measure $\mathrm{d} \dot{g}$ on G / Z. It is obvious that ν is the image of $\mathrm{d} \dot{g}$ under the mapping $g \mapsto \rho(g) f$ of G / Z onto O_{f}. From the definition of ν we see that the same is true for the mapping $g \mapsto \rho(g) h$ of G / Z onto O_{f}, for any $h \in O_{f}$.

Let us denote by $d\left(\pi_{f}\right)$ the formal degree of π_{f} :

$$
\int_{G I Z}\left|\left\langle\pi_{f}(g) \xi, \xi\right\rangle\right|^{2} \mathrm{~d} \dot{g}=d\left(\pi_{f}\right)^{-1}\langle\xi, \xi\rangle \quad\left(\xi \in \mathscr{H}_{f}\right) .
$$

Theorem 9: $d\left(\pi_{f}\right)$ is a positive real number, which satisfies the following identity: $d\left(\pi_{f}\right)=|P(f)|$.

This is proved exactly the same way as in the real case ([10], Theorem 4).

§9. Multiplicities

Let G be as usual, $f \in \mathscr{G}^{\prime}$ such that π_{f} is square-integrable $\bmod Z$. Let K be an open and compact subgroup of G. We shall call K a lattice subgroup if $L=\log K$ is a lattice in \mathscr{G}, i.e. an open and compact, \mathcal{O}-submodule of \mathscr{G}.

Theorem 10: Let K be a lattice subgroup of $G, L=\log K$. Normalize Haar measures $\mathrm{d} g$ on G and $\mathrm{d} z$ on Z such that $\int_{K} \mathrm{~d} g=$ $\int_{K \cap Z} \mathrm{~d} z=1$. Choose a Haar measure $\mathrm{d} \dot{g}$ on G / Z such that $\mathrm{d} g=\mathrm{d} z \mathrm{~d} \dot{g}$. Then the trivial representation of K occurs in the restriction of π_{f} to K if and only if $f(L \cap \mathscr{Z}) \subset \mathcal{O}$; moreover, its multiplicity $m\left(\pi_{f}, 1\right)$ is $1 / d\left(\pi_{f}\right)$.

The proof of Theorem 10 is rather long and proceeds by a careful induction on $\operatorname{dim} G$. The theorem is obvious if $\operatorname{dim} G=1$. So assume $\operatorname{dim} G=n>1$. Put $\mathscr{Z}^{0}=\operatorname{Ker} f \cap \mathscr{Z}$ and $Z^{0}=\exp \mathscr{Z}^{0}$. We have two cases:

1. $\operatorname{dim} \mathscr{Z}^{0} \neq 0$. Replace \mathscr{G} by $\mathscr{G} \mid \mathscr{Z}^{0}$ and G by G / Z^{0}. The center of G / Z^{0} is Z / Z^{0} (cf [13], proof of Theorem, (i)). Replace also K by $K^{0}=K Z^{0} / Z^{0} . K^{0}$ is a lattice subgroup of $G / Z^{0}: \log K^{0}=L / L \cap \mathscr{Z}^{0}$. Let f^{0}, π_{f}^{0} be the pull down of f, π_{f} to $\mathscr{G} \mid \mathscr{Z}^{0}$ and G / Z^{0} respectively. It is well-known that π_{f}^{0} is equivalent to $\pi_{f^{0}}$. Hence $m\left(\pi_{f}, 1\right)=m\left(\pi_{f^{0}}, 1\right)$.
[^3]Furthermore, $\quad f(L \cap \mathscr{Z})=f^{0}\left(L^{0} \cap \mathscr{Z} \mid \mathscr{Z}^{0}\right)$. Normalizing the Haar measures on $G / Z^{0}, Z \mid Z^{0}$ and $G / Z^{0} / Z \mid Z^{0}$ as prescribed in the theorem, one obtains $d\left(\pi_{f}\right)=d\left(\pi_{f^{0}}\right)$. The assertion for G now follows immediately from the result for G / Z^{0}, which is of smaller dimension.
2. $\operatorname{dim} \mathscr{Z}=1$ and $f \neq 0$ on $\mathscr{Z} . L \cap \mathscr{Z}$ is a lattice of rank one. Let \underline{Z} be a generator of $L \cap \mathscr{Z}$. Choose $\underline{X} \notin \mathscr{Z}$ such that $[\underline{X}, \mathscr{G}] \subset \mathscr{Z}$. Put $\mathscr{G}_{0}=$ $\{U:[U, \underline{X}]=0\} . \mathscr{G}_{0}$ is an ideal in \mathscr{G} of codimension one with center $\mathscr{Z}_{0}=\mathscr{Z}+(\underline{X})$ (cf [13], p. 149). $\mathscr{Z}_{0} \cap L$ is a lattice of rank two; $\mathscr{Z}_{0} \cap$ $L / \mathscr{Z} \cap L$ is a lattice of rank one. We may assume that $X \underline{X}$ is chosen in such a way that $\underline{X} \bmod (\mathscr{Z} \cap L)$ generates $\mathscr{Z}_{0} \cap L / \mathscr{Z} \cap L$. Then obviously,

$$
\mathscr{Z}_{0} \cap L=\mathscr{O} \underline{X}+\mathscr{Z} \cap L=\mathscr{O} \underline{X}+\mathscr{O} \underline{Z} .
$$

Since $L / L \cap \mathscr{G}_{0}$ is a lattice of rank one, we can choose $\underline{Y} \in L, \underline{Y} \notin \mathscr{G}_{0}$ such that $L=\mathcal{O} \underline{Y}+L \cap \mathscr{G}_{0}$. Put $G_{0}=\exp \mathscr{G}_{0}, G_{1}=(\exp s \underline{Y})_{s \in \Omega}$. Then $G=G_{0} \cdot G_{1}$ and $G_{0} \cap G_{1}=\{e\}$.

Now choose a basis $\underline{Z}, \underline{X}, e_{1}, \ldots, e_{n-3}$ of \mathscr{G}_{0} such that $L \cap \mathscr{G}_{0}=$ $\mathscr{O} \underline{Z}+\mathscr{O} \underline{X}+\mathscr{O} e_{1}+\cdots+\mathscr{O} e_{n-3}$ and such that e_{1}, \ldots, e_{n-3} is a supplementary basis of \mathscr{Z}_{0} in the sense of Pukanszky ([12], section 3). One easily checks that this is possible. Given $X_{0} \in \mathscr{G}_{0}$, write

$$
X_{0}=z \underline{Z}+t \underline{X}+t_{1} e_{1}+\cdots+t_{n-3} e_{n-3}
$$

and choose $\left(z, t, t_{1}, \ldots, t_{n-3}\right)$ as coordinates of the second kind on G_{0}. Then $\mathrm{d} g_{0}=\mathrm{d} z \mathrm{~d} t \mathrm{~d} t_{1} \ldots \mathrm{~d} t_{n-3}$ is a Haar measure on G_{0} and $\mathrm{d} s \mathrm{~d} g_{0}$ is a Haar measure on G. Moreover, if $Z_{0}=\exp \mathscr{Z}_{0}, K_{0}=K \cap G_{0}$, we now have:

$$
\operatorname{vol}(K)=\operatorname{vol}\left(K_{0}\right)=\operatorname{vol}(K \cap Z)=\operatorname{vol}\left(K_{0} \cap Z_{0}\right)=1^{5}
$$

Let f_{0} denote the restriction of f to \mathscr{G}_{0}. It is part of the Kirillov theory that π_{f} is equivalent to ind $G_{G_{0} \uparrow G} \pi_{f_{0}}$. Moreover, $\pi_{f_{0}}$ is square-integrable $\bmod Z_{0}([13], \mathrm{p} .149)$. We need a relation between $d\left(\pi_{f}\right)$ and $d\left(\pi_{f_{0}}\right)$. The Haar measures on G / Z and G_{0} / Z_{0} should be chosen as prescribed in the theorem. The following lemma is proved by computations, similar to those given in ([13], Section 5).

Lemma 5: Let $r=f[\underline{X}, \underline{Y}]$. Furthermore, put for any $s \in \Omega$, $f_{s}\left(X_{0}\right)=f\left(\operatorname{Ad}(\exp -s \underline{Y}) X_{0}\right)\left(X_{0} \in \mathscr{G}_{0}\right)$ and $\pi_{s}=\pi_{f_{s}}$. Then π_{s} is square-

[^4]integrable $\bmod Z_{0}$ and
$$
d\left(\pi_{s}\right)=\frac{1}{|r|} d\left(\pi_{f}\right)
$$
for all $s \in \Omega$.

Proof: The space \mathscr{H}_{f} of π_{f} may be identified with $L^{2}\left(\Omega, \mathscr{H}_{f_{0}}\right)$. Fix a smooth vector $v \in \mathscr{H}_{f_{0}}, v \neq 0$. Choose $\psi \in C_{c}^{\infty}(\Omega), \psi \neq 0$ and put $\psi_{v}(x)=\psi(x) v(x \in \Omega)$.

Then $\psi_{v} \in \mathscr{H}_{f}$. Furthermore, the computations in ([13], Section 5), show

$$
\begin{gathered}
\int_{G / Z}\left|\left\langle\pi_{f}(g) \psi_{v}, \psi_{v}\right\rangle\right|^{2} \mathrm{~d} \dot{g} \\
\frac{1}{|r|} \int_{\Omega} \int_{\Omega}\left|\psi\left(s+s_{1}\right) \bar{\psi}(s)\right|^{2}\left\{\int_{G_{0} / Z_{0}}\left|\left\langle\pi_{s}\left(g_{0}\right) v, v\right\rangle\right|^{2} \mathrm{~d} \dot{g}_{0}\right\} \mathrm{d} s \mathrm{~d} s_{1} .
\end{gathered}
$$

Moreover,

$$
\begin{aligned}
& \int_{G_{0} / Z_{0}}\left|\left\langle\pi_{s}\left(g_{0}\right) v, v\right\rangle\right|^{2} \mathrm{~d} \dot{g}_{0} \\
= & \int_{G_{0} / Z_{0}}\left|\left\langle\pi_{0}\left(\exp s \underline{Y} \cdot g_{0} \cdot \exp -s \underline{Y}\right) v, v\right\rangle\right|^{2} \mathrm{~d} \dot{g}_{0} \\
= & \int_{G_{0} / Z_{0}}\left|\left\langle\pi_{0}\left(g_{0}\right) v_{1} v\right\rangle\right|^{2}\left|\operatorname{det}_{s_{0} \mid x_{0}} A d(\exp -s \underline{Y})\right| \operatorname{d} \dot{g}_{0} \\
= & \int_{G_{0} / Z_{0}}\left|\left\langle\pi_{0}\left(g_{0}\right) v, v\right\rangle\right|^{2} \mathrm{~d} \dot{g}_{0} \quad \text { for all } s \in \Omega .
\end{aligned}
$$

Hence, π_{s} is square-integrable $\bmod Z_{0}$ and $d\left(\pi_{s}\right)=d\left(\pi_{0}\right)$ for all $s \in \Omega$. In addition:

$$
\begin{gathered}
\left\langle\psi_{v}, \psi_{v}\right\rangle d\left(\pi_{f}\right)^{-1}=\frac{1}{|r|}\langle v, v\rangle\langle\psi, \psi\rangle d\left(\pi_{0}\right)^{-1} \\
\text { or } d\left(\pi_{0}\right)=\frac{1}{|r|} d\left(\pi_{f}\right)
\end{gathered}
$$

This completes the proof of the lemma.
Let ϕ, ϕ_{0} denote the characteristic functions of K, K_{0} respectively. Given $\psi \in L^{2}\left(\Omega, \mathscr{H}_{f_{0}}\right)$, we have

$$
\begin{aligned}
& \pi_{f}(\phi) \psi(\xi)=\int_{G} \pi_{f}(g) \phi(g) \psi(\xi) \mathrm{d} g \\
&= \int_{\Omega} \int_{G_{0}} \phi\left(g_{0} \cdot \exp s \underline{Y}\right) \pi_{f_{0}}\left(\exp \xi \underline{Y} \cdot g_{0} \cdot \exp -\xi \underline{Y}\right) \psi(s+\xi) \mathrm{d} g_{0} \mathrm{~d} s \\
&= \int_{\Omega}\left\{\int_{G_{0}} \phi\left(g_{0} \cdot \exp (s-\xi) \underline{Y}\right) \pi_{f_{0}}\left(\exp \xi \underline{Y} \cdot g_{0} \cdot \exp -\xi \underline{Y}\right) \mathrm{d} g_{0}\right\} \psi(s) \mathrm{d} s \\
&(\xi \in \Omega)
\end{aligned}
$$

Hence, by a p-adic analogue of Mercer's theorem,

$$
\operatorname{tr} \pi_{f}(\phi)=\int_{\Omega} \operatorname{tr}\left\{\int_{G_{0}} \phi\left(g_{0}\right) \pi_{f_{0}}\left(\exp s \underline{Y} \cdot g_{0} \cdot \exp -s \underline{Y}\right) \mathrm{d} g_{0}\right\} \mathrm{d} s
$$

So, we obtain the following relation:

$$
\operatorname{tr} \pi_{f}(\phi)=\int_{\Omega} \operatorname{tr} \pi_{s}\left(\phi_{0}\right) \mathrm{d} s
$$

Equivalently:

Lemma 6: $m\left(\pi_{f}, 1\right)=\int_{\Omega} m\left(\pi_{s}, 1\right) \mathrm{d} s$.
Now assume $m\left(\pi_{f}, 1\right)>0$. Then $m\left(\pi_{s}, 1\right)>0$ for some $s \in \Omega$. By induction, $f_{s}\left(L_{0} \cap \mathscr{Z}_{0}\right) \subset \mathcal{O}$, where $L_{0}=L \cap \mathscr{G}_{0}$. Hence

$$
f(L \cap \mathscr{Z})=f_{s}(L \cap \mathscr{Z}) \subset f_{s}\left(L_{0} \cap \mathscr{Z} \mathscr{Z}_{0}\right) \subset \mathscr{O} .
$$

Conversily, assume $f(L \cap \mathscr{Z}) \subset \mathcal{O}$. Let $s \in \Omega$. Then $f_{s}\left(L_{0} \cap \mathscr{Z}_{0}\right) \subset \mathcal{O}$ if and only if $f_{s}(\underline{X}) \subset \mathcal{O}$. We have:

$$
f_{s}(\underline{X})=f(\underline{X})+s f[\underline{X}, \underline{Y}]=f(\underline{X})+s r .
$$

Hence, by induction, $m\left(\pi_{s}, 1\right)>0$ if and only if $s \in(1 / r)(-f(\underline{X})+\mathscr{O})$. Moreover, again by induction, applying Lemma 5 and 6,

$$
\begin{aligned}
m\left(\pi_{f}, 1\right)=\int_{(1 / r)(-f(\underline{X})+O)} \frac{1}{d\left(\pi_{s}\right)} \mathrm{d} s & =\frac{|r|}{d\left(\pi_{f}\right)} \operatorname{vol}\left(\frac{1}{r}(-f(\underline{X})+\mathcal{O})\right) \\
& =\frac{|r|}{d\left(\pi_{f}\right)} \cdot \frac{1}{|r|}=\frac{1}{d\left(\pi_{f}\right)} .
\end{aligned}
$$

This completes the proof of Theorem 10.

§10. Multiplicities and \boldsymbol{K}-orbits

Let K be a lattice subgroup of $G, L=\log K$. Choose a basis e_{1}, \ldots, e_{p} of \mathscr{Z} and let e_{p+1}, \ldots, e_{n} be a supplementary basis of \mathscr{Z} such that $L=\sum_{i=1}^{n} \mathscr{O} e_{i}(n=\operatorname{dim} \mathscr{G})$. Choose $\left(t_{1}, \ldots, t_{n}\right)$ as coordinates on \mathscr{G}. Then $\left(t_{1}, \ldots, t_{n}\right)$ can also be used as coordinates of the second kind on G. Similarly $\left(t_{1}, \ldots, t_{p}\right)$ will denote coordinates on Z. Choose corresponding Haar measures on G and Z, as usual. Then $\operatorname{vol}(K)=$ $\operatorname{vol}(K \cap Z)=1$. Moreover, fix a volume form ω on $\mathscr{G} \mid \mathscr{Z}$ by $\omega=\mathrm{d} t_{p+1} \wedge$ $\cdots \wedge \mathrm{d} t_{n}$.

Let ϕ denote the characteristic function of K. Fix $f \in \mathscr{G}^{\prime}$. To compute $m\left(\pi_{f}, 1\right)$ we can apply the character formula (§7). We obtain:

$$
m\left(\pi_{f}, 1\right)=\operatorname{tr} \pi_{f}(\phi)=\int_{O_{f}} \hat{\phi}_{1}(v) \mathrm{d} \mu_{f}(v)
$$

where μ_{f} is the canonical measure on O_{f}.
Observe that $\hat{\phi}_{1}$ is the characteristic function of the lattice L^{\prime}, dual to $L ; L^{\prime}=\left\{l \in \mathscr{G}^{\prime}: l(L) \subset \mathcal{O}\right\}$. Hence $m\left(\pi_{f}, 1\right)=\mu_{f}$-measure of $L^{\prime} \cap O_{f}$. K acts on $L^{\prime} \cap O_{f} ; L^{\prime} \cap O_{f}$ is a disjoint union of finitely many, say l_{f}, K-orbits.

Now assume π_{f} to be square-integrable $\bmod Z$. Then we have the measure ν, relative to ω, (§8) on O_{f}. It follows from its construction, that all K-orbits in $L^{\prime} \cap O_{f}$ have the same ν-measure, namely, one. Since $\mu_{f}=d\left(\pi_{f}\right) \nu(\S 8)$, we get:

$$
m\left(\pi_{f}, 1\right)=l_{f} \cdot d\left(\pi_{f}\right)
$$

On the other hand, $m\left(\pi_{f}, 1\right)=1 / d\left(\pi_{f}\right)$, provided $m\left(\pi_{f}, 1\right)>0$ (Theorem 10). So we have the following result:

Theorem 11: Let K be a lattice subgroup of $G, L=\log K$ and $L^{\prime}=\left\{l \in \mathscr{G}^{\prime}: l(L) \subset \mathcal{O}\right\}$. Fix $f \in \mathscr{G}^{\prime}$ and let O_{f} denote the G-orbit of f. Let l_{f} be the number of K-orbits in L^{\prime}. Then $m\left(\pi_{f}, 1\right)>0$ if and only if $l_{f}>0$. Moreover, if π_{f} is square-integrable $\bmod Z$, then $m\left(\pi_{f}, 1\right)=\sqrt{l_{f}}$.

This theorem is related to work of C.C. Moore [9]. Actually, Moore proves the inequality:

$$
m\left(\pi_{f}, 1\right) \leq l_{f}
$$

for all $f \in \mathscr{G}^{\prime}$.

§11. An example

We consider the p-adic Heisenberg group H_{3}, consisting of matrices of the form

$$
\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

where $x, y, z \in \mathbb{Q}_{p}, p \neq 2$. Put

$$
K=\left\{\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{Z}_{p}\right\}
$$

K is easily seen to be a lattice subgroup of H_{3} and

$$
\log K=L=\left\{\left(\begin{array}{lll}
0 & x & z \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right): x, y, z \in \mathbb{Z}_{p}\right\}
$$

Choosing Haar measures $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ on G and $\mathrm{d} z$ on the center Z of H_{3},

$$
Z=\left\{\left(\begin{array}{lll}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): z \in \mathbf{Q}_{p}\right\}
$$

we have $\operatorname{vol}(K)=\operatorname{vol}(K \cap Z)=1$. Normalize the Haar measures on G / Z and $\mathscr{G} / \mathscr{Z}$ in the usual way.

Given $f \in \mathscr{G}^{\prime}$, we shall write $f=\{\alpha, \beta, \gamma\}$ if

$$
f\left(\begin{array}{lll}
0 & x & z \\
0 & 0 & y \\
0 & 0 & 0
\end{array}\right)=\alpha x+\beta y+\gamma z \quad\left(x, y, z, \alpha, \beta, \gamma \in \mathbb{Q}_{p}\right) \text {. }
$$

Similar to the real case, we have $|P(f)|=|\gamma|([10])$. Put $f_{0}=\{0,0, \lambda\}$, $\lambda \neq 0$. Then $\pi_{f_{0}}$ is square-integrable $\bmod Z$ and $d\left(\pi_{f_{0}}\right)=|\lambda|$. The G orbit of f_{0} consists of all triples

$$
\{y \lambda,-x \lambda, \lambda\} \quad\left(x, y \in \mathbb{Q}_{p}\right\} .
$$

Assume $|\lambda| \leq 1 . L^{\prime}=\left\{\{\alpha, \beta, \gamma\}: \alpha, \beta, \gamma \in \mathbb{Z}_{p}\right\}$ and

$$
L^{\prime} \cap O_{f_{0}}=\left\{\{y \lambda,-x \lambda, \lambda\}: x, y \in \frac{1}{\lambda} Z_{p}\right\} .
$$

K acts on $L^{\prime} \cap O_{f_{0}}$; if

$$
k=\left(\begin{array}{lll}
1 & u & w \\
0 & 1 & v \\
0 & 0 & 1
\end{array}\right)
$$

then

$$
k \cdot\{y \lambda,-x \lambda, \lambda\}=\{y \lambda+u \lambda,-x \lambda-v \lambda, \lambda\}
$$

therefore $l_{f_{0}}=1 /|\lambda|^{2}$.
On the other hand, $\pi_{f_{0}}$ is given on $L^{2}\left(\mathbb{Q}_{p}\right)$ by:

$$
\pi_{f_{0}}\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \phi(t)=\chi_{0}(\lambda(z+t y)) \phi(t+x)
$$

We have

$$
m\left(\pi_{f_{0}}, 1\right)=\operatorname{dim}\left\{\phi \in C_{c}^{\infty}\left(\mathbb{Q}_{p}\right): \chi_{0}(\lambda t y) \phi(t+x)=\phi(t)\right.
$$

for $\left.t \in \mathbb{Q}_{p} ; x, y \in \mathbb{Z}_{p}\right\}=\operatorname{dim}\left\{\phi \in C_{c}^{\infty}\left(\mathbb{Q}_{p}\right): \operatorname{Supp} \phi \subset(1 / \lambda) \mathbb{Z}_{p}, \phi \mathbb{Z}_{p}-\right.$ periodic $\}=1 /|\lambda|$.

Similar computations can be done for the higher dimensional Heisenberg groups.

REFERENCES

[1] N. Bourbaki: Eléments de mathématique, Algèbre, Ch. 9: Formes sesquilinéaires et formes quadratiques, Hermann, Paris (1959).
[2] P. Cartier: Les représentations des groupes réductifs p-adiques et leurs caractères, Séminaire Bourbaki 1975/76, exposé 471.
[3] W. Casselman e.a.: Modular functions of one variable II. Lecture Notes in Mathematics 349. Springer-Verlag, Berlin etc. (1973).
[4] J. Dixmier: Algèbres Enveloppantes. Gauthier-Villars, Paris (1974).
[5] Harish-Chandra: Harmonic analysis on reductive p-adic groups. Lecture Notes in Mathematics 162. Springer-Verlag, Berlin etc. (1970).
[6] Harish-Chandra: Harmonic analysis on reductive p-adic groups, in Harmonic Analysis on Homogeneous Spaces, 167-192, Amer. Math. Soc., Providence (1973).
[7] H. Jacquet: Sur les représentations des groupes réductifs p-adiques, C.R. Acad. Sc. Paris, t. 280 (1975) Série A, 1271-1272.
[8] A.A. Kirillov: Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk, vol. 17 (1962) 57-110.
[9] C.C. Moore: Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math., 82 (1965) 146-182.
[10] C.C. Moore and J. Wolf: Square integrable representations of nilpotent groups. Trans. Amer. Math. Soc. 185 (1973) 445-462.
[11] L. Pukanszky: Leçons sur les représentations des groupes, Dunod, Paris (1967).
[12] L. Pukanszky: On the characters and the Plancherel formula of nilpotent groups. J. Functional Analysis 1 (1967) 255-280.
[13] G. VAN DIJK: Square-integrable representations $\bmod Z$ of unipotent groups, Compositio Mathematica 29 (1974) 141-150.
(Oblatum 28-IX-1976 \& 18-III-1977)
Mathematisch Instituut
Wassenaarseweg 80
Leiden, The Netherlands

[^0]: ${ }^{1}$ Here χ_{0} is (as usual) a fixed non-trivial additive character of Ω.

[^1]: ${ }^{2}$ Part (d) of his proof has to be omitted here.

[^2]: ${ }^{3}$ Here isomorphism is meant in the sense of algebraic geometry.

[^3]: ${ }^{4} P(f)$ actually is the Pfaffian of the canonical differential form, defining μ, relative to ω ([1], §5, no. 2).

[^4]: ${ }^{5}$ We take $\mathrm{d} z$ and $\mathrm{d} z \mathrm{~d} t$ as Haar measures on Z and Z_{0} respectively.

