COMPOSITIO MATHEMATICA

G. VAN DIJK

Smooth and admissible representations of *p*-adic unipotent groups

Compositio Mathematica, tome 37, nº 1 (1978), p. 77-101 <http://www.numdam.org/item?id=CM_1978_37_1_77_0>

© Foundation Compositio Mathematica, 1978, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 37, Fasc. 1, 1978, pag. 77–101. Sijthoff & Noordhoff International Publishers-Alphen aan den Rijn Printed in the Netherlands

SMOOTH AND ADMISSIBLE REPRESENTATIONS OF *P*-ADIC UNIPOTENT GROUPS

G. van Dijk

§1. Introduction

A representation π of a totally disconnected group G on a complex vector space V is said to be smooth if for each $v \in V$ the mapping

$$x \mapsto \pi(x)v$$
 $(x \in G)$

is locally constant. π is called admissible if in addition the following condition is satisfied: For any open subgroup K of G, the space of vectors $v \in V$ left fixed by $\pi(K)$ is finite-dimensional. An admissible representation is said to be pre-unitary if V carries a $\pi(G)$ -invariant scalar product.

These representations play an important role in the harmonic analysis on reductive *p*-adic groups [6]. The aim of this paper is to emphasize their importance in harmonic analysis on unipotent *p*-adic groups. Let Ω be a *p*-adic field of characteristic zero. *G* will denote a connected unipotent algebraic group, defined over Ω and *G* its subgroup of Ω -rational points. Let \mathcal{G} be the Lie algebra of *G* and \mathcal{G} its subalgebra of Ω -points. *G* is a totally disconnected group. We show:

- (i) any irreducible smooth representation of G is admissible,
- (ii) any irreducible admissible representation of G is pre-unitary.

Jacquet [7] has shown that (i) holds for reductive *p*-adic groups *G*. Actually, we make use of a remarkable lemma from [7]. The main tool for the proof of (i) and (ii) is the interference of so-called supercuspidal representations, which are known to play a decisive role in the representation theory of reductive groups [6]. We apply some results of Casselman concerning these representations [3], which originally were only stated for GL(2). For the proof, which is by induction on dim G, one has to go to the three-dimensional p-adic Heisenberg group. A new version of von Neumann's theorem ([11], Ch. 2) is needed to complete the induction. All this is to be found in sections 2, 3, 4 and 5.

Section 6 is concerned with the Kirillov construction of irreducible unitary representations of G, which is standard now. In the next section we discuss the character formula, following Pukanszky [12]. As a byproduct we obtain a homogeneity property for the distribution, defined by a G-orbit O in \mathscr{G}' : if dim O = 2m, then

$$\int_{O} \phi(tv) \, \mathrm{d}v = |t|^{-m} \int_{O} \phi(v) \, \mathrm{d}v \qquad (\phi \in C^{\infty}_{c}(\mathscr{G}'))$$

for all $t \in \Omega$, $t \neq 0$. Similar results are true for nilpotent orbits of reductive G in G [2]; there they form a substantial help in proving that the formal degrees of supercuspidal representations are integers, provided Haar measures are suitably normalized. Let Z denote the center of G.

Section 8 deals with square-integrable representations mod Z of G. Moore and Wolf [10] have discussed them for real unipotent groups. The main results still hold for p-adic groups.

Let π be an irreducible square-integrable representation mod Z of G. For any open compact subgroup K of G, let $m(\pi, 1)$ denote the multiplicity of the trivial representation of K in the restriction of π to K. Normalize Haar measures on G and Z in such a way that $vol(K) = vol(K \cap Z) = 1$. Choose Haar measure on G/Z accordingly. Then, according to a general theorem ([5], Theorem 2) one has:

$$m(\pi, 1) \leq \frac{1}{d(\pi)}$$
, where $d(\pi)$ is the formal degree of π .

Now assume in addition K to be a lattice subgroup of $G: L = \log K$ is a lattice in G. Moreover, let $m(\pi, 1) > 0$. Then we have equality:

$$m(\pi,1) = \frac{1}{d(\pi)}$$

This is proved in section 9.

In section 10 we relate our results to earlier work of C.C. Moore [9] on these multiplicities, involving numbers of K-orbits. We conclude with an example in section 11.

[2]

§2. Smooth representations

We call a Hausdorff space X a totally disconnected (t.d.) space if it satisfies the following condition: Given a point $x \in X$ and a neighborhood U of x in X, there exists an open and compact subset ω of X such that $x \in \omega \subset U$. Clearly a t.d. space is locally compact.

Let X be a t.d. space and S a set. A mapping $f: X \to S$ is said to be smooth if it is locally constant. Let V be a complex vector space. We write $C^{\infty}(X, V)$ for the space of all smooth functions $f: X \to V$ and $C^{\infty}_{c}(X, V)$ for the subspace of those f which have compact support. If $V = \mathbb{C}$ we simply write $C^{\infty}(X)$ and $C^{\infty}_{c}(X)$ respectively. One can identify $C^{\infty}_{c}(X, V)$ with $C^{\infty}_{c}(X) \otimes V$ by means of the mapping $i: C^{\infty}_{c}(X) \otimes V \to C^{\infty}_{c}(X, V)$ defined as follows: If $f \in C^{\infty}_{c}(X)$ and $v \in V$, then $i(f \otimes v)$ is the function $x \mapsto f(x)v$ ($x \in X$) from X to V.

Let G be a t.d. group, i.e. a topological group whose underlying space is a t.d. space. It is known that G has arbitrarily small open compact subgroups. By a representation of G on V, we mean a map $\pi: G \to \text{End}(V)$ such that $\pi(1) = 1$ and $\pi(xy) = \pi(x)\pi(y)$ $(x, y \in G)$. A vector $v \in V$ is called π -smooth if the mapping $x \mapsto \pi(x)v$ of G into V is smooth.

Let V_{∞} be the subspace of all π -smooth vectors. Then V_{∞} is $\pi(G)$ -stable. Let π_{∞} denote the restriction of π on V_{∞} . π is said to be a *smooth representation* if $V = V_{\infty}$. Of course π_{∞} is always smooth.

We call a smooth representation π on V irreducible if V has no non-trivial $\pi(G)$ -invariant subspaces.

Let π be a representation of G on the complex vector space V. π is called *admissible* if

- (i) π is smooth,
- (ii) for any open subgroup K of G, the space of vectors $v \in V$ which are left fixed by $\pi(K)$, is finite-dimensional.

An admissible representation π of G on V is called *pre-unitary* if V carries a $\pi(G)$ -invariant scalar product. Let \mathcal{H} be the completion of V with respect to the norm, defined by the scalar product. Then π extends to a continuous unitary representation ρ of G on \mathcal{H} such that $V = \mathcal{H}_{\infty}$ and $\pi = \rho_{\infty}$. It is well-known that π is irreducible if and only if ρ is topologically irreducible. Note that V is dense in \mathcal{H} .

Let π be a smooth representation of G on V and V' the (algebraic) dual of V. Then the dual representation π' of G on V' is given by

$$\langle v, \pi'(x)\lambda \rangle = \langle \pi(x^{-1})v, \lambda \rangle$$
 $(x \in G, \lambda \in V', v \in V).$

Put $\check{V} = (V')_{\infty}$ and $\check{\pi} = (\pi')_{\infty}$. Then $\check{\pi}$ is a smooth representation which is called contragredient to π . It is easily checked that π is admissible if and only if $\check{\pi}$ is.

Let *H* be a closed subgroup of *G* and σ a smooth representation of *H* on *W*. Then we define a smooth representation $\pi = \operatorname{ind}_{H \uparrow G} \sigma$ as follows: Let *V* denote the space of all smooth functions $f: G \to W$ such that

(1)
$$f(hx) = \sigma(h)f(x)$$
 $(h \in H, x \in G),$

(2) Supp f is compact mod H.

Then π is the representation of G on V given by

$$\pi(y)f(x) = f(xy) \qquad (x, y \in G, f \in V).$$

Let π_1 , π_2 be two smooth representations of G on V_1 and V_2 respectively. We say that π_1 is equivalent to π_2 if there is a linear bijection $T: V_1 \rightarrow V_2$ such that $\pi_2(x)T = T\pi_1(x)$ for all $x \in G$.

§3. Smooth and admissible representations of the three-dimensional p-adic Heisenberg group

Let Ω be a *p*-adic field, i.e. a locally compact non-discrete field with a discrete valuation. There is an absolute value on Ω , denoted $|\cdot|$, which we assume to be normalized in the following way. Let dx be an additive Haar measure on Ω . Then d(ax) = |a| dx ($a \in \Omega^*$). Let \mathcal{O} be the ring of integers: $\mathcal{O} = \{x \in \Omega : |x| \le 1\}$; \mathcal{O} is a local ring with unique maximal ideal *P*, given by $P = \{x \in \Omega : |x| < 1\}$. The residue-class field \mathcal{O}/P has finitely many, say *q*, elements. *P* is a principal ideal with generator ϖ . So $P = \varpi \mathcal{O}$, $|\varpi| = q^{-1}$. Put $P^n = \varpi^n \mathcal{O}$ ($n \in \mathbb{Z}$).

Since P^n is a compact subgroup of the additive group of Ω and $\Omega = \bigcup_n P^n$, any additive character of Ω is unitary. Let $G = H_3$ be the 3-dimensional Heisenberg group over Ω :

$$G = \left\{ [x, y, z] = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}; \quad x, y, z \in \Omega \right\}.$$

G is a t.d. group. The group multiplication is given by:

$$[x, y, z][x', y', z'] = [x + x', y + y', z + z' + xy'].$$

THEOREM 1: (1) Each irreducible smooth representation π of H_3 is admissible; (2) Each irreducible admissible representation π of H_3 is pre-unitary.

We make use of the following result of Jacquet [7].

LEMMA 1: Let H be a group and ρ an (algebraically) irreducible representation of H on a complex vector space V of at most denumerable dimensions. Then every operator A which commutes with $\rho(H)$ is a scalar.

Let V be the space of π . Let $v \in V$, $v \neq 0$ and $K = \{g \in G : \pi(g)v = v\}$. Then K is open and G/K is denumerable. Since $V = \text{span}\{\pi(g)v : g \in G/K\}$, the lemma applies. $Z = \{[0, 0, z] : z \in \Omega\}$ is the center of G. Therefore, there exists an additive (unitary) character ψ_{π} of Ω such that $\pi([0, 0, z]) = \psi_{\pi}(z)I$ ($z \in \Omega$), where I is the identity in End(V). We have two cases:

(a) $\psi_{\pi} = 1$. Then π actually is a representation of $G/Z \simeq \Omega^2$ which is (again by the lemma) one-dimensional and, as observed above, unitary.

(b) $\psi_{\pi} \neq 1$. Fix $w \in \check{V}$, $w \neq 0$. For any $v \in V$, put $c_v(g) = \langle \pi(g)v, w \rangle$ $(g \in G)$. The mapping $v \mapsto c_v$ is a linear injection of V into the space of smooth functions f on G, satisfying

$$f([x, y, z]) = \psi_{\pi}(z)f([x, y, 0]).$$

Let K be a (small) open compact subgroup of G such that $\check{\pi}(k)w = w$ for all $k \in K$. Call $V_K = \{v \in V : \pi(k)v = v \text{ for all } k \in K\}$. Then $f = c_v$ satisfies

$$f(kg) = f(gk) = f(g) \qquad (g \in G; k \in K)$$

for all $v \in V_K$.

Write g = [x, y, 0], k = [x', y', 0]. Then

$$f([x, y, 0]) = f([x + x', y + y', xy']) = f([x + x', y + y', x'y]).$$

Hence

$$f([x, y, 0]) = f([x + x', y, 0]) = f([x, y + y', 0]).$$

Therefore f([x + x', y + y', 0]) = f([x, y, 0]) for all $x, y \in \Omega$ and x', y'

small (only depending on K, not on the particular choice of $v \in V_K$). Moreover:

$$f([x, y, 0]) = f([x, y, 0])\psi_{\pi}(xy') = f([x, y, 0])\psi_{\pi}(x'y)$$

for x', y' as above. Since $\psi_{\pi} \neq 1$, f([x, y, 0]) = 0 for x or y large enough (only depending on K, not on the particular choice of $v \in V_K$). Since $f([x, y, z]) = \psi_{\pi}(z)f([x, y, 0])$, f is completely determined by the values f([x, y, 0]), $(x, y \in \Omega)$. Consequently, dim $V_K = \dim\{c_v : v \in V_K\} < \infty$. Part (1) of the theorem is now evident. To prove part (2) it suffices to take the following scalar product on V:

$$(v, v') = \int_{\Omega} \int_{\Omega} c_v([x, y, 0]) \overline{c_v([x, y, 0])} \, \mathrm{d}x \, \mathrm{d}y \qquad (v, v' \in V).$$

REMARK: It is clear that the same observations remain true for the higher dimensional p-adic Heisenberg groups.

§4. Supercuspidal representations

G is a t.d. group and π a smooth representation of G on V. By a matrix coefficient of π , we mean a function on G of the form

$$x \mapsto \langle \pi(x)v, \check{v} \rangle \qquad (x \in G)$$

where v and \check{v} are fixed elements in V and \check{V} respectively. Let Z denote the center of G. We call π a supercuspidal representation if each matrix coefficient of π has compact support modulo Z. The proof of Theorem 1 emphasizes the significance of this kind of representations. Actually, one has the following lemma.

LEMMA 2: Let π be a smooth representation of H_3 such that $\pi([0, 0, z]) = \psi_{\pi}(z)I$ ($z \in \Omega$) for some non-trivial additive character ψ_{π} of Ω . Then π is a supercuspidal representation.

Assume, from now on, G to satisfy the second axiom of countability. Let π be an irreducible smooth representation of G on V. Then by Lemma 1, there is a character λ_{π} of Z such that $\pi(z) = \lambda_{\pi}(z)I$ ($z \in Z$).

LEMMA 3: Let π be an irreducible, admissible and supercuspidal representation of G on V. Assume λ_{π} unitary. Then π is pre-unitary and one has the following orthogonality relations: There exists a positive constant d_{π} (the formal degree of π), only depending on the choice of Haar measure dg on G/Z such that

$$\int_{G/Z} \langle \pi(g)u, \check{u} \rangle \langle \pi(g^{-1})v, \check{v} \rangle \,\mathrm{d}\dot{g} = d_{\pi}^{-1} \langle u, \check{v} \rangle \langle v, \check{u} \rangle$$

for all $u, v \in V$, $\check{u}, \check{v} \in \check{V}$.

To make π pre-unitary, choose any $w \in \check{V}$, $w \neq 0$ and define the following G-invariant scalar product on V:

$$(v, v') = \int_{G/Z} \langle \pi(g)v, w \rangle \overline{\langle \pi(g)v', w \rangle} \, \mathrm{d} \dot{g}.$$

 π extends to an irreducible unitary representation on the completion \mathscr{H} of V such that $\mathscr{H}_{\infty} = V$. The orthogonality relations now follow easily from those for irreducible unitary supercuspidal representations ([5], Theorem 1).

The following theorem is due to Casselman ([3], Theorem 1.6).

THEOREM 2: Let ρ be an irreducible, admissible and supercuspidal representation of G on W such that $\rho(z) = \lambda(z)I$ ($z \in Z$), where λ is a unitary character of Z. Let π be any smooth representation of G on V such that $\pi(z) = \lambda(z)I$ ($z \in Z$). Given a G-morphism $f \neq 0$ from π to ρ , there exists a G-morphism splitting f.

PROOF: Let $S_{\lambda}(G)$ denote the space of smooth functions h on Gwith compact support mod Z such that $h(xz) = h(x)\lambda(z^{-1})$ ($x \in G$, $z \in Z$). $S_{\lambda}(G)$ is a G-module, G acting by left translation. Fix $\check{w}_0 \in \check{W}$, $\check{w}_0 \neq 0$. The mapping $F: W \to S_{\lambda}(G)$, defined by

$$F(w)(x) = \langle \rho(x^{-1})w, \check{w}_0 \rangle \qquad (w \in W, x \in G)$$

is a G-morphism. Choose $w_0 \in W$ and $v_0 \in V$ such that $\langle w_0, \check{w}_0 \rangle = d_{\rho}$, $f(v_0) = w_0$. By P we denote the G-morphism from $S_{\lambda}(G)$ to V given by

$$P(h) = \int_{G/Z} h(x)\pi(x)v_0 \,\mathrm{d} \dot{x} \qquad (h \in S_\lambda(G)).$$

Then $P \circ F$ is the G-morphism, splitting f:

G. van Dijk

$$\langle f \circ P \circ F(w), \check{w} \rangle = \int_{G/Z} \langle \rho(x^{-1})w, \check{w}_0 \rangle \langle f(\pi(x)v_0), \check{w} \rangle d\dot{x}$$

$$= \int_{G/Z} \langle \rho(x^{-1})w, \check{w}_0 \rangle \langle \rho(x)w_0, \check{w} \rangle d\dot{x}$$

$$= d_{\rho}^{-1} \langle w_0, \check{w}_0 \rangle \langle w, \check{w} \rangle$$
 (by Lemma 3)
$$= \langle w, \check{w} \rangle \text{ for all } \check{w} \in \check{W}.$$

Hence $f \circ P \circ F(w) = w$ for all $w \in W$.

Let us now turn back to H_3 . The irreducible unitary representations of H_3 are well-known (cf. [11]). Their restrictions to the space of smooth vectors are admissible. Keeping in mind Theorem 1, we have therefore the following list of irreducible admissible representations of H_3 . Let χ_0 denote any non-trivial additive character of Ω . Then:

(a) One-dimensional representations $\rho_{\mu,\nu}$ ($\mu, \nu \in \Omega$), trivial on Z; $\rho_{\mu,\nu}$ ([x, y, z]) = $\chi_0(\mu x + \nu y)$.

(b) Supercuspidal representations ρ_{λ} ($\lambda \in \Omega^*$), non-trivial on Z, on the space $C_c^{\infty}(\Omega)$;

$$\rho_{\lambda}([x, y, z])f(t) = \chi_0(\lambda(z + ty))f(t + x) \qquad (f \in C_c^{\infty}(\Omega)).$$

We have the following analogue of the famous theorem of von Neumann for H_3 ([11], Ch. 2).

THEOREM 3: Let π be a smooth representation of H_3 such that $\pi([0, 0, z]) = \chi_0(\lambda z)I$ ($z \in \Omega$) for some $\lambda \neq 0$. Then π is the (algebraic) direct sum of irreducible representations equivalent to ρ_{λ} .

PROOF: Let V be the space of π . Due to Theorem 1, every irreducible subrepresentation of π is equivalent to ρ_{λ} . By Lemma 2, π is a supercuspidal representation. We shall prove the following: Given any G-invariant subspace W of V, $W \neq V$, there exists an irreducible subspace U of V such that $U \cap W = (0)$. An easy application of Zorn's Lemma then yields the theorem.

Let W be a proper G-invariant subspace of V. Put $\overline{V} = V/W$. \overline{V} is a G-module; the action of G is a smooth and supercuspidal representation of G. Let $\overline{v}_0 \in \overline{V}$, $\overline{v}_0 \neq 0$. The G-module \overline{V}_0 generated by \overline{v}_0 contains a maximal proper G-module. Therefore \overline{V}_0 has an irreducible quotient, which is also supercuspidal, and admissible by Theorem 1. By Theorem 2, \overline{V}_0 and hence \overline{V} , even has an irreducible subspace, say \overline{V}_1 , on which G acts as an admissible, supercuspidal representation. Let $V_1 + W$ be its pre-image in V. Then $V_1 + W$ is a G-invariant subspace of V and the canonical map from V to \overline{V} induces a

non-zero G-morphism from $V_1 + W$ to \overline{V}_1 . Again Theorem 2 implies the existence of an irreducible subspace U of V such that $U \cap W =$ (0), $U + W = V_1 + W$. This concludes the proof of Theorem 3.

§5. Smooth and admissible representations of unipotent *p*-adic groups

Let Ω be a *p*-adic field of characteristic zero. By *G* we mean a connected algebraic group, defined over Ω , consisting of unipotent elements, with Lie algebra \mathcal{G} . Let *G*, \mathcal{G} be the sets of Ω -points of *G*, \mathcal{G} respectively. We have the Ω -isomorphism of algebraic varieties exp: $\mathcal{G} \to G$, which map \mathcal{G} onto *G*. Let 'log' denote its inverse. We shall call *G* a unipotent *p*-adic group and say that \mathcal{G} is its Lie algebra.

Let Z be the center of G, its Lie algebra \mathscr{Z} . One has $\exp \mathscr{Z} = Z$. More generally: the exponential of a subalgebra of \mathscr{G} is a unipotent p-adic subgroup of G, the exponential of an ideal in \mathscr{G} is a normal subgroup of G.

Let G be a unipotent p-adic group.

THEOREM 4: Each irreducible smooth representation π of G is admissible and pre-unitary.

PROOF: We use induction on dim G. Lemma 1 is the main source to prove the theorem in case dim G = 1. Assume dim G > 1. Fix any non-trivial character χ_0 of Ω . By Lemma 1 there exists a (unitary) character λ_{π} of Z such that $\pi(z) = \lambda_{\pi}(z)I$ for all $z \in Z$. $\lambda_{\pi} \circ \exp$ is an additive character of \mathscr{X} , hence $\lambda_{\pi} \circ \exp = \chi_0 \circ f$ for some $f \in \mathscr{X}'$. Ker(f) is a subalgebra of \mathscr{X} , $\exp(\text{Ker } f) = \text{Ker}(\lambda_{\pi})$ therefore a unipotent p-adic subgroup of Z of codimension at most one. If dim Z > 1 or dim Z = 1and $\lambda_{\pi} = 1$, π actually reduces to an irreducible representation π_0 of $G_0 = G/\text{Ker } \lambda_{\pi}$. But dim $G_0 < \dim G$. The theorem follows from the induction hypotheses.

It remains to consider the case: dim Z = 1 and $\lambda_{\pi} \neq 1$. We will first show the existence of a unipotent *p*-adic subgroup G_1 of codimension one in *G* and an irreducible smooth representation π_1 of G_1 such that π is equivalent to ind $_{G_1 \uparrow G} \pi_1$.

Let $Y_0 \in \mathcal{G}$ be such that, $[Y_0, \mathcal{G}] \subset \mathcal{X}$, $Y_0 \notin \mathcal{X}$. Put $\mathcal{G}_1 = \{U: [U, Y_0] = 0\}$. \mathcal{G}_1 is an ideal in \mathcal{G} of codimension 1. Choose $X_0 \notin \mathcal{G}_1$ and define $Z_0 = [X_0, Y_0]$. Observe $Z_0 \in \mathcal{X}, Z_0 \neq 0$. Then $\{X_0, Y_0, Z_0\}$ is a basis for a 3-dimensional subalgebra of \mathcal{G} isomorphic to the Lie algebra of H_3 . Let S denote the subgroup of G corresponding to this subalgebra and write, as usual,

$$[x, y, z] = \exp y Y_0 \cdot \exp x X_0 \cdot \exp z Z_0 \qquad (x, y, z \in \Omega).$$

We can choose $\lambda \in \Omega$, $\lambda \neq 0$ with the following property:

$$\lambda_{\pi}([0,0,z]) = \chi_0(\lambda z) \qquad (z \in \Omega).$$

Let us assume, for the moment, that π is an irreducible smooth representation of G on V. By Theorem 3, the restriction of π to S is a direct sum of irreducible representations of S, all equivalent to the representation ρ_{λ} of S in $C_c^{\infty}(\Omega)$ given by

$$\rho_{\lambda}([x, y, z])f(t) = \chi_0(\lambda(z + ty))f(t + x) \qquad (f \in C_c^{\infty}(\Omega)).$$

So $V = \bigoplus_{i \in I} V_i^{\lambda}$ for some index-set *I*, each V_i^{λ} being isomorphic to $C_c^{\infty}(\Omega)$. We may regard *I* as a t.d. space in the obvious way. Then we have

$$V \simeq C^{\infty}_{c}(I, C^{\infty}_{c}(\Omega)) \simeq C^{\infty}_{c}(I) \bigotimes C^{\infty}_{c}(\Omega) \simeq C^{\infty}_{c}(\Omega, W),$$

where $W = C_c^{\infty}(I)$. Moreover, with these identifications,

 $\pi([x, y, z])f(t) = \chi_0(\lambda(z+ty))f(t+x) \qquad (f \in C_c^{\infty}(\Omega, W)).$

Let G_1 denote the unipotent *p*-adic subgroup of *G* with Lie algebra \mathscr{G}_1 . G_1 is a closed normal subgroup of *G* and $G = G_1$. $(\exp tX_0)_{t \in \Omega}$ (semi-direct product). Since Y_0 is in the center of \mathscr{G}_1 , $\pi(G_1)$ and $\pi(\exp yY_0)$ ($y \in \Omega$) commute. Recall

$$\pi(\exp yY_0)f(t) = \chi_0(\lambda ty)f(t) \qquad (y, t \in \Omega; f \in C^{\infty}_c(\Omega, W)).$$

Our aim now is to prove the following lemma.

LEMMA 4: For each $t \in \Omega$, there exists a smooth representation $g_1 \mapsto \pi(g_1, t)$ of G_1 on W such that

(a) $(\pi(g_1)f)(t) = \pi(g_1, t) \cdot f(t)$ for all $f \in C_c^{\infty}(\Omega, W)$, $g_1 \in G_1$ and $t \in \Omega$;

(b) $\pi(g_1, t + t_0) = \pi(\exp t_0 X_0 \cdot g_1 \cdot \exp(-t_0 X_0), t)$ for all $t, t_0 \in \Omega$, $g_1 \in G_1$.

Obviously, this lemma implies $\pi \simeq \operatorname{ind}_{G_1 \uparrow G} \pi_1$ where π_1 is given by $\pi_1(g_1) = \pi(g_1, 0)$ $(g_1 \in G_1)$. The irreducibility of π yields the irreducibility of π_1 .

To prove the lemma, we start with a linear map $A: C_c^{\infty}(\Omega, W) \rightarrow C_c^{\infty}(\Omega, W)$

 $C_c^{\infty}(\Omega, W)$, commuting with all operators $\pi(\exp yY_0)$ ($y \in \Omega$). Thus:

$$\{A(\boldsymbol{\chi}_0(\boldsymbol{y} \ \cdot)\boldsymbol{f}(\cdot)\}(t) = \boldsymbol{\chi}_0(t\boldsymbol{y})(A\boldsymbol{f})(t)$$

for all $t, y \in \Omega$ and $f \in C^{\infty}_{c}(\Omega, W)$.

Since $C_c^{\infty}(\Omega)$ is closed under Fourier transformation, we can easily establish the following: Given $\phi \in C^{\infty}(\Omega)$ and an open compact subset K of Ω , there exists an integer $m > 0, \lambda_1, \ldots, \lambda_m \in \mathbb{C}$ and $y_1, \ldots, y_m \in \Omega$ such that

$$\phi(t) = \sum_{i=1}^m \lambda_i \chi_0(y_i t) \qquad (t \in K).$$

For $\phi \in C^{\infty}(\Omega)$ let L_{ϕ} denote the linear map $C^{\infty}_{c}(\Omega, W) \to C^{\infty}_{c}(\Omega, W)$ given by $L_{\phi}f(t) = \phi(t)f(t)$ $(f \in C^{\infty}_{c}(\Omega, W))$. Then, putting K =Supp $f \cup$ Supp Af, we obtain:

$$\{A(L_{\phi}f)\}(t) = A\left(\sum_{i=1}^{m} \lambda_{i}\chi_{0}(y_{i}\cdot)f(\cdot)\right)(t)$$
$$= \sum_{i=1}^{m} \lambda_{i}\chi_{0}(y_{i}t)Af(t) = \{L_{\phi}(Af)\}(t)$$

 $(t \in \Omega, f \in C_c^{\infty}(\Omega, W))$. Hence $AL_{\phi} = L_{\phi}A$ for every $\phi \in C^{\infty}(\Omega)$. In particular we have: $\pi(g_1)L_{\phi} = L_{\phi}\pi(g_1)$ for all $g_1 \in G_1, \phi \in C^{\infty}(\Omega)$. Let ψ_n denote the characteristic function of P^n . In addition, put $L_t\phi(s) = \phi(s-t)$ (s, $t \in \Omega, \phi$ any function on Ω). Define:

$$\pi(g_1, t)w = \pi(g_1)(L_t\psi_n \otimes w)(t) \qquad (g_1 \in G_1, t \in \Omega, w \in W).$$

Here, as usual, $L_t\psi_n \otimes w$ is identified with the function $s \mapsto L_t\psi_n(s) \cdot w$ ($s \in \Omega$). $\pi(g_1, t)$ is well-defined: assuming $n' \leq n$, we obtain

$$\pi(g_1)(L_t\psi_n\otimes w)(t)=\pi(g_1)(L_t\psi_{n'}\cdot L_t\psi_n\otimes w)(t).$$

But this equals, by the above result,

$$L_t \psi_n(t) \pi(g_1) (L_t \psi_{n'} \otimes w)(t) = \pi(g_1) (L_t \psi_{n'} \otimes w)(t).$$

Let us show now that $\pi(g_1, t)$ satisfies condition (a) of Lemma 4. Fix $f \in C_c^{\infty}(\Omega, W)$ and determine integers $m, n > 0, t_1, \ldots, t_m \in \Omega$ and

 $w_1, \ldots, w_m \in W$ such that

$$f=\sum_{i=1}^m L_{t_i}\psi_n\otimes w_i.$$

Then

$$\pi(g_1)f(t) = \pi(g_1) \left(\sum_{i=1}^m L_{t_i} \psi_n \otimes w_i \right)(t)$$

$$= \sum_{i=1}^m \pi(g_1) (L_{t_i} \psi_n \otimes w_i)(t)$$

$$= \sum_{i=1}^m \{L_t \psi_n \cdot \pi(g_1) (L_{t_i} \psi_n \otimes w_i)\}(t)$$

$$= \sum_{i=1}^m \pi(g_1) (L_t \psi_n \cdot L_{t_i} \psi_n \otimes w_i)(t)$$

$$= \sum_{i=1}^m \{L_{t_i} \psi_n \cdot \pi(g_1) (L_t \psi_n \otimes w_i)\}(t)$$

$$= \sum_{i=1}^m L_{t_i} \psi_n(t) \cdot \pi(g_1, t) w_i$$

$$= \pi(g_1, t) \cdot f(t) \qquad (t \in \Omega, g_1 \in G_1).$$

Condition (b) is also fulfilled. Indeed,

$$\pi(\exp t_0 X_0 \cdot g_1 \cdot \exp - t_0 X_0, t) w$$

= $\pi(\exp t_0 X_0) \pi(g_1) \pi(\exp - t_0 X_0) (L_t \psi_n \otimes w)(t)$
= $\pi(g_1) \pi(\exp - t_0 X_0) (L_t \psi_n \otimes w)(t + t_0).$

Furthermore,

$$\pi(\exp - t_0 X_0)(L_t \psi_n \otimes w)(u) = L_t \psi_n \otimes w(u - t_0)$$
$$= L_{t+t_0} \psi_n \otimes w(u) \qquad (u \in \Omega).$$

Hence,

$$\pi(\exp t_0 X \cdot g_1 \cdot \exp - t_0 X_0, t) w$$

= $\pi(g_1)(L_{t+t_0}\psi_n \otimes w)(t+t_0) = \pi(g_1, t+t_0) w.$

Finally, it is easily checked, that condition (a) forces $g_1 \mapsto \pi(g_1, t)$ $(g_1 \in G_1)$ to be a smooth representation of G_1 for each $t \in \Omega$. This concludes the proof of Lemma 4.

COROLLARY: Each irreducible smooth representation of G is monomial.

Let us continue the proof of Theorem 4. By induction we assume that π_1 is admissible and pre-unitary. Hence $\pi = \operatorname{ind}_{G_1 \uparrow G} \pi_1$ is pre-unitary. Let K be an open subgroup of G and let V_K denote the space of all $f \in C_c^{\infty}(\Omega)$ such that $\pi(g)f = f$ for all $g \in K$. Let $f \in V_K$. Since

$$\pi(\exp xX_0)f(t) = f(x+t) \qquad (x, t \in \Omega),$$

there exists an integer n > 0, only depending on K, such that f is constant on cosets of P^n .

The relation

$$\pi(\exp y Y_0)f(t) = \chi_0(\lambda y t)f(t) \qquad (y, t \in \Omega)$$

implies that Supp $f \subset P^m$ for some integer m > 0, only depending on K. Assume m < n. Then $P^m = \bigcup_{i=1}^k (t_i + P^n)$ for some $t_1, \ldots, t_k \in \Omega$. Now consider the mapping

$$f \mapsto (f(t_1), \ldots, f(t_k))$$

of V_K into W^k . This mapping is linear and injective. Since

$$(\pi(g_1)f(t) = \pi_1(\exp tX_0 \cdot g_1 \cdot \exp - tX_0)f(t) \qquad (g_1 \in G_1, t \in \Omega)$$

we obtain that $f(t_i)$ is fixed by $\exp t_i X_0 \cdot (K \cap G_1) \exp(-t_i X_0)$, being an open subgroup of G_1 (i = 1, 2, ..., k). Therefore, each $f(t_i)$ stays in a finite-dimensional subspace of W. Consequently dim $V_K < \infty$.

We have shown that π is admissible. This concludes the proof of Theorem 4.

REMARK: Similar to the proof of Theorem 4 one can easily show that the restriction of an irreducible unitary representation of G to its subspace of smooth vectors is an admissible representation of G.

§6. Kirillov's theory

Let G be as in §5. What remains is to describe the irreducible unitary representations of G. This is done by Kirillov [8] for the real groups G and, as observed by Moore [9], the whole machinery works

in the p-adic case as well. For completeness and for later purposes, we give the result.

Given $f \in \mathcal{G}'$, put $B_f(X, Y) = f([X, Y])$ $(X, Y \in \mathcal{G})$. B_f is an alternating bilinear form on \mathcal{G} . A subalgebra \mathfrak{H} of \mathcal{G} which is at the same time a maximal totally isotropic subspace for B_f is called a *polarization* at f. Polarizations at f exist ([4], 1.12.10). They coincide with the subalgebra's $\mathfrak{H} \subset \mathcal{G}$ which are maximal with respect to the property that \mathfrak{H} is a totally isotropic subspace for B_f (cf. [8], Lemma 5.2, which carries over to the *p*-adic case with absolutely no change). Let \mathfrak{H} be any subalgebra of \mathcal{G} which is a totally isotropic subspace for B_f (isotropic subspace for B_f (formula:

$$\chi_f(\exp X) = \chi_0(f(X))^{-1} \qquad (X \in \mathfrak{H}).$$

Let $\rho(f, \mathfrak{H}, G)$ denote the unitary representation of G induced by χ_f .

Тнеокем 5 ([8], [9]):

- (i) $\rho(f, \mathfrak{H}, G)$ is irreducible if and only if \mathfrak{H} is a polarization at f,
- (ii) each irreducible unitary representation of G is of the form ρ(f, 𝔅, G),
- (iii) $\rho(f_1, \mathfrak{F}_1, G)$ and $\rho(f_2, \mathfrak{F}_2, G)$ are unitarily equivalent if and only if f_1 and f_2 are in the same G-orbit in \mathcal{G}' .

§7. The character formula

The main reference for this section is [12]. G acts on \mathscr{G} by Ad and hence on \mathscr{G}' by the contragredient representation. It is well-known (and can be proved similar to the real case) that all G-orbits in \mathscr{G}' are closed.

Let us fix a non-trivial (unitary) character χ_0 of the additive group of Ω .

We shall choose a Haar measure dg on G and a translation invariant measure dX on \mathscr{G} such that dg = exp(dX).

Let $f \in \mathscr{G}'$, \mathfrak{F} a polarization at f and O the orbit of f in \mathscr{G}' . Put $\pi = \rho(f, \mathfrak{F}, G)$. Given $\psi \in C_c^{\infty}(G)$, we know that $\pi(\psi)$ is an operator of finite rank (§5, Remark). Put $\psi_1(X) = \psi(\exp X)$ ($X \in \mathscr{G}$). Then $\psi_1 \in C_c^{\infty}(\mathscr{G})$. The Fourier transform of ψ_1 is defined by:

¹ Here χ_0 is (as usual) a fixed non-trivial additive character of Ω .

[15] Smooth and admissible representations of *p*-adic unipotent groups

$$\hat{\psi}_1(X') = \int_{\mathscr{G}} \psi_1(X) \chi_0(\langle X, X' \rangle) \, \mathrm{d}X \qquad (X' \in \mathscr{G}').$$

Observe that $\hat{\psi}_1 \in C^{\infty}_c(\mathscr{G}')$.

THEOREM 6: There exists a unique positive G-invariant measure dv on O such that for all $\psi \in C_c^{\infty}(G)$:

$$\operatorname{tr} \boldsymbol{\pi}(\boldsymbol{\psi}) = \int_O \hat{\boldsymbol{\psi}}_1(v) \, \mathrm{d} v.$$

Note that the right-hand side is finite, because dv is also a measure on \mathscr{G}' , since O is closed in \mathscr{G}' .

Pukanszky's proof of ([12], Lemma 2),² goes over to our situation with no substantial change. Observe that each $\psi \in C_c^{\infty}(G)$ is a linear combination of functions of the form $\phi * \tilde{\phi}$ ($\phi \in C_c^{\infty}(G)$) where $\tilde{\phi}$ is given by $\tilde{\phi}(g) = \overline{\phi(g^{-1})}$ ($g \in G$). The algorithm to determine dv (given dg and dX such that dg = exp(dX)) is similar to that given by Pukanszky:

- (i) Put $K = \exp \mathfrak{H}$, $\Gamma = K \setminus G$. Choose invariant measures dk and $d\gamma$ on K and Γ respectively such that $dg = dk d\gamma$.
- (ii) Choose a translation invariant measure dH on \mathcal{G} such that $dk = \exp(dH)$.
- (iii) Let dX' and dH' denote the dual measures of dX and dH respectively.
- (iv) Let $\mathfrak{H}^{\perp} = \{X' \in \mathfrak{G}' : \langle \mathfrak{H}, X' \rangle = 0\}$. Take dH^{\perp} on \mathfrak{H}^{\perp} such that $dX' = dH' dH^{\perp}$.
- (v) Let S be the stabilizer of f in G. Then $S \subset K$. Choose $d\lambda$ on $S \setminus K$ such that $d\lambda$ is the inverse-image of dH^{\perp} under the bijection

$$Sk \mapsto k^{-1} \cdot f \qquad (k \in K)$$

of $S \setminus K$ onto $f + H^{\perp}$.

(vi) Finally, put $dv = \text{image of } d\lambda \ d\gamma$ under the bijective mapping $Sg \mapsto g^{-1} \cdot f \ (g \in G)$ of $S \setminus G$ onto O.

The invariant measure dv depends on the choice of the character χ_0 . Taking instead of χ_0 the character $x \mapsto \chi_0(tx)$ for some $t \in \Omega$, $t \neq 0$, we obtain, by applying the above algorithm, the following homogeneity

² Part (d) of his proof has to be omitted here.

property for dv:

92

COROLLARY: Let O be a G-orbit in \mathcal{G}' of dimension 2m. Then

$$\int_O \phi(tv) \, \mathrm{d}v = |t|^{-m} \int_O \phi(v) \, \mathrm{d}v$$

for all $\phi \in C^{\infty}_{c}(\mathscr{G}')$ and all $t \in \Omega$, $t \neq 0$.

Observe that we may choose in the corollary dv to be any G-invariant positive measure on O.

Let O be as above. O carries a canonical measure μ , which is constructed as follows. For any $p \in O$, define $\alpha_p: G \to O$ by $\alpha_p(a) = a \cdot p$ $(a \in G)$. The kernel of the differential β_p of α_p , $\beta_p: \mathcal{G} \to T_p$ $(T_p = \text{tangent space to } O \text{ in } p)$ coincides with the radical of the alternating bilinear form B_p on \mathcal{G} . Let $\text{Stab}_G(p)$ be the stabilizer of pin G. Then also, Ker $\beta_p = \text{Lie}$ algebra of $\text{Stab}_G(p)$. Hence B_p induces a non-degenerate alternating bilinear form ω_p on T_p . In this way a 2-form ω is defined on O. One easily checks that ω is G-invariant (cf. [12] for the real case). Let d = 2m be the dimension of O. Assume d > 0. Then μ is given by $\mu = |(1/2^m m!)A^m\omega|$.

THEOREM 7: Let us fix the character χ_0 of Ω in such a way that $\chi_0 = 1$ on $\mathcal{O}, \ \chi_0 \neq 1$ on P^{-1} . Let O be any G-orbit in \mathcal{G}' of positive dimension. Then the invariant measure dv and the canonical measure μ on O coincide.

The proof is essentially the same as in the real case ([12], Theorem).

§8. Square-integrable representations mod Z

Let G and Z be as in §5. An irreducible unitary representation π of G on \mathcal{H} is called *square-integrable mod* Z if there exist ξ , $\eta \in \mathcal{H} - (0)$ such that

$$\int_{G/Z} |\langle \pi(x)\xi, \eta\rangle|^2 \,\mathrm{d} x < \infty.$$

Such representations are extensively discussed by C.C. Moore and J. Wolf for real unipotent groups [10]. For *p*-adic unipotent groups, see [13]: the restriction of π to the space \mathscr{H}_{∞} of π -smooth vectors is a

supercuspidal representation. Our main goal is to find a closed formula for the multiplicity of the trivial representation of wellchosen open and compact subgroups K of G in the restriction of π to K.

Let $f \in \mathscr{G}'$. By O_f we denote the *G*-orbit of *f* in \mathscr{G}' and by π_f an irreducible unitary representation of *G*, corresponding to *f* (more precisely: to O_f) by Kirillov's theory (§6). Let \mathscr{H}_f denote the space of π_f . Then we have, similar to ([10], Theorem 1):

THEOREM 8: The following four statements are equivalent:

- (i) π_f is square-integrable mod Z,
- (ii) dim $O_f = \dim G/Z$,
- (iii) $O_f = f + \mathscr{Z}^{\perp}$,
- (iv) B_f is a non-degenerate bilinear form on \mathscr{G}/\mathscr{Z} .

Here $\mathscr{Z}^{\perp} = \{ X' \in \mathscr{G}' : \langle X', \mathscr{Z} \rangle = 0 \}.$

Now assume π_f to be square-integrable mod Z. The orbit O_f carries the canonical measure μ . We shall define another G-invariant measure ν on O_f . Let us fix a G-invariant differential form ω on \mathscr{G}/\mathscr{Z} of maximal degree. Let σ denote the adjoint representation of G on \mathscr{G} and let ρ be the representation of G contragredient to σ . Fix $p \in O_f$. We have $\operatorname{Stab}_G(p) = Z$ and $g \mapsto \rho(g)h$ is an isomorphism³ of G/Z onto O_f . Call β_p the differential of this map at e; $\beta_p: \mathscr{G}/\mathscr{Z} \to T_h$. Define

$$\omega_p(\beta_p(X_1),\ldots,\beta_p(X_n)) = \omega(X_1,\ldots,X_n)$$

(n = dim G/X; X_1,\ldots,X_n \in G/X).

In this way we get a *n*-form ω' on O_f . We claim that ω' is G-invariant:

$$\omega_p(\beta_p(X_1),\ldots,\beta_p(X_n)) = \omega_q(\mathrm{d}\rho_p(a)\beta_p(X_1),\ldots,\mathrm{d}\rho_p(a)\beta_p(X_n))$$

if $p, q \in O_f$, $q = \rho(a)p(X_1, \ldots, X_n \in \mathscr{G}/\mathscr{Z})$. This is a simple exercise:

$$\omega_q(\mathrm{d}\rho_p(a)\beta_p(X_1),\ldots,\mathrm{d}\rho_p(a)\beta_p(X_n)) = \omega_q(\beta_q(\sigma(a)X_1),\ldots,\beta_q(\sigma(a)X_n))$$
$$= \omega(\sigma(a)X_1,\ldots,\sigma(a)X_n) = \omega(X_1,\ldots,X_n) = \omega_p(\beta_p(X_1),\ldots,\beta_p(X_n))$$

Call ν the measure on O_f corresponding to ω' ; ν is uniquely determined by the choice of the volume form ω on \mathscr{G}/\mathscr{L} . Let |P(f)| denote

³ Here isomorphism is meant in the sense of algebraic geometry.

G. van Dijk

the constant relating μ and ν : $\mu = |P(f)|\nu$.⁴ The volume form ω fixes, on the other hand, a Haar measure $d\dot{g}$ on G/Z. It is obvious that ν is the image of $d\dot{g}$ under the mapping $g \mapsto \rho(g)f$ of G/Z onto O_f . From the definition of ν we see that the same is true for the mapping $g \mapsto \rho(g)h$ of G/Z onto O_f , for any $h \in O_f$.

Let us denote by $d(\pi_f)$ the formal degree of π_f :

$$\int_{G/Z} |\langle \pi_f(g)\xi,\xi\rangle|^2 \,\mathrm{d} \dot{g} = d(\pi_f)^{-1} \langle \xi,\xi\rangle \qquad (\xi\in\mathscr{H}_f).$$

THEOREM 9: $d(\pi_f)$ is a positive real number, which satisfies the following identity: $d(\pi_f) = |P(f)|$.

This is proved exactly the same way as in the real case ([10], Theorem 4).

§9. Multiplicities

Let G be as usual, $f \in \mathscr{G}'$ such that π_f is square-integrable mod Z. Let K be an open and compact subgroup of G. We shall call K a *lattice subgroup* if $L = \log K$ is a lattice in \mathscr{G} , i.e. an open and compact, \mathcal{O} -submodule of \mathscr{G} .

THEOREM 10: Let K be a lattice subgroup of G, $L = \log K$. Normalize Haar measures dg on G and dz on Z such that $\int_K dg = \int_{K\cap Z} dz = 1$. Choose a Haar measure dg on G/Z such that dg = dz dg. Then the trivial representation of K occurs in the restriction of π_f to K if and only if $f(L \cap \mathscr{Z}) \subset 0$; moreover, its multiplicity $m(\pi_f, 1)$ is $1/d(\pi_f)$.

The proof of Theorem 10 is rather long and proceeds by a careful induction on dim G. The theorem is obvious if dim G = 1. So assume dim G = n > 1. Put $\mathscr{Z}^0 = \text{Ker } f \cap \mathscr{Z}$ and $Z^0 = \exp \mathscr{Z}^0$. We have two cases:

1. dim $\mathscr{Z}^0 \neq 0$. Replace \mathscr{G} by $\mathscr{G}/\mathscr{Z}^0$ and G by G/Z^0 . The center of G/Z^0 is Z/Z^0 (cf [13], proof of Theorem, (i)). Replace also K by $K^0 = KZ^0/Z^0$. K^0 is a lattice subgroup of G/Z^0 : log $K^0 = L/L \cap \mathscr{Z}^0$. Let f^0 , π_f^0 be the pull down of f, π_f to $\mathscr{G}/\mathscr{Z}^0$ and G/Z^0 respectively. It is well-known that π_f^0 is equivalent to π_{f^0} . Hence $m(\pi_f, 1) = m(\pi_{f^0}, 1)$.

⁴ P(f) actually is the Pfaffian of the canonical differential form, defining μ , relative to ω ([1], §5, no. 2).

Furthermore, $f(L \cap \mathscr{Z}) = f^0(L^0 \cap \mathscr{Z}/\mathscr{Z}^0)$. Normalizing the Haar measures on G/Z^0 , Z/Z^0 and $G/Z^0/Z/Z^0$ as prescribed in the theorem, one obtains $d(\pi_f) = d(\pi_{f^0})$. The assertion for G now follows immediately from the result for G/Z^0 , which is of smaller dimension.

2. dim $\mathscr{X} = 1$ and $f \neq 0$ on \mathscr{X} . $L \cap \mathscr{X}$ is a lattice of rank one. Let \underline{Z} be a generator of $L \cap \mathscr{X}$. Choose $\underline{X} \notin \mathscr{X}$ such that $[\underline{X}, \mathscr{G}] \subset \mathscr{X}$. Put $\mathscr{G}_0 =$ $\{U: [U, \underline{X}] = 0\}$. \mathscr{G}_0 is an ideal in \mathscr{G} of codimension one with center $\mathscr{X}_0 = \mathscr{X} + (\underline{X})$ (cf [13], p. 149). $\mathscr{X}_0 \cap L$ is a lattice of rank two; $\mathscr{X}_0 \cap$ $L/\mathscr{X} \cap L$ is a lattice of rank one. We may assume that \underline{X} is chosen in such a way that $\underline{X} \mod(\mathscr{X} \cap L)$ generates $\mathscr{X}_0 \cap L/\mathscr{X} \cap L$. Then obviously,

$$\mathscr{Z}_0 \cap L = \mathscr{O}X + \mathscr{Z} \cap L = \mathscr{O}X + \mathscr{O}Z.$$

Since $L/L \cap \mathcal{G}_0$ is a lattice of rank one, we can choose $Y \in L$, $Y \notin \mathcal{G}_0$ such that $L = \mathcal{O}Y + L \cap \mathcal{G}_0$. Put $G_0 = \exp \mathcal{G}_0$, $G_1 = (\exp s Y)_{s \in \Omega}$. Then $G = G_0 \cdot G_1$ and $G_0 \cap G_1 = \{e\}$.

Now choose a basis Z, X, e_1, \ldots, e_{n-3} of \mathscr{G}_0 such that $L \cap \mathscr{G}_0 = \mathscr{O}Z + \mathscr{O}X + \mathscr{O}e_1 + \cdots + \mathscr{O}e_{n-3}$ and such that e_1, \ldots, e_{n-3} is a supplementary basis of \mathscr{Z}_0 in the sense of Pukanszky ([12], section 3). One easily checks that this is possible. Given $X_0 \in \mathscr{G}_0$, write

$$X_0 = z\underline{Z} + t\underline{X} + t_1e_1 + \cdots + t_{n-3}e_{n-3}$$

and choose $(z, t, t_1, \ldots, t_{n-3})$ as coordinates of the second kind on G_0 . Then $dg_0 = dz dt dt_1 \ldots dt_{n-3}$ is a Haar measure on G_0 and $ds dg_0$ is a Haar measure on G. Moreover, if $Z_0 = \exp \mathscr{Z}_0$, $K_0 = K \cap G_0$, we now have:

$$\operatorname{vol}(K) = \operatorname{vol}(K_0) = \operatorname{vol}(K \cap Z) = \operatorname{vol}(K_0 \cap Z_0) = 1^{5}$$

Let f_0 denote the restriction of f to \mathscr{G}_0 . It is part of the Kirillov theory that π_f is equivalent to $\operatorname{ind}_{G_0\uparrow G} \pi_{f_0}$. Moreover, π_{f_0} is square-integrable mod Z_0 ([13], p. 149). We need a relation between $d(\pi_f)$ and $d(\pi_{f_0})$. The Haar measures on G/Z and G_0/Z_0 should be chosen as prescribed in the theorem. The following lemma is proved by computations, similar to those given in ([13], Section 5).

LEMMA 5: Let r = f[X, Y]. Furthermore, put for any $s \in \Omega$, $f_s(X_0) = f(Ad(\exp - sY)X_0) \ (X_0 \in \mathcal{G}_0) \ and \ \pi_s = \pi_{f_s}$. Then π_s is square-

⁵ We take dz and dz dt as Haar measures on Z and Z_0 respectively.

integrable $mod Z_0$ and

$$d(\pi_s) = \frac{1}{|r|} d(\pi_f)$$

for all $s \in \Omega$.

PROOF: The space \mathcal{H}_f of π_f may be identified with $L^2(\Omega, \mathcal{H}_{f_0})$. Fix a smooth vector $v \in \mathcal{H}_{f_0}$, $v \neq 0$. Choose $\psi \in C_c^{\infty}(\Omega)$, $\psi \neq 0$ and put $\psi_v(x) = \psi(x)v$ $(x \in \Omega)$.

Then $\psi_v \in \mathscr{H}_{f}$. Furthermore, the computations in ([13], Section 5), show

$$\int_{G/Z} |\langle \pi_f(g)\psi_v,\psi_v\rangle|^2 \,\mathrm{d}g$$

$$\frac{1}{|r|} \int_{\Omega} \int_{\Omega} |\psi(s+s_1)\overline{\psi}(s)|^2 \{\int_{G_0/Z_0} |\langle \pi_s(g_0)v,v\rangle|^2 \,\mathrm{d}g_0\} \,\mathrm{d}s \,\,\mathrm{d}s_1.$$

Moreover,

$$\int_{G_0/Z_0} |\langle \pi_s(g_0)v, v \rangle|^2 \, \mathrm{d}\dot{g}_0$$

$$= \int_{G_0/Z_0} |\langle \pi_0(\exp s \,\underline{Y} \cdot g_0 \cdot \exp - s \,\underline{Y})v, v \rangle|^2 \, \mathrm{d}\dot{g}_0$$

$$= \int_{G_0/Z_0} |\langle \pi_0(g_0)v_1v \rangle|^2 \, |\mathrm{det}_{\mathscr{G}_0/\mathscr{Z}_0} \, Ad(\exp - s \,\underline{Y})| \, \mathrm{d}\dot{g}_0$$

$$= \int_{G_0/Z_0} |\langle \pi_0(g_0)v, v \rangle|^2 \, \mathrm{d}\dot{g}_0 \quad \text{for all } s \in \Omega.$$

Hence, π_s is square-integrable mod Z_0 and $d(\pi_s) = d(\pi_0)$ for all $s \in \Omega$. In addition:

$$\langle \psi_v, \psi_v \rangle d(\pi_f)^{-1} = \frac{1}{|r|} \langle v, v \rangle \langle \psi, \psi \rangle d(\pi_0)^{-1},$$

or $d(\pi_0) = \frac{1}{|r|} d(\pi_f).$

This completes the proof of the lemma.

Let ϕ , ϕ_0 denote the characteristic functions of K, K_0 respectively. Given $\psi \in L^2(\Omega, \mathscr{H}_{f_0})$, we have

$$\pi_{f}(\phi)\psi(\xi) = \int_{G} \pi_{f}(g)\phi(g)\psi(\xi) dg$$

=
$$\int_{\Omega} \int_{G_{0}} \phi(g_{0} \cdot \exp s\underline{Y})\pi_{f_{0}}(\exp \xi\underline{Y} \cdot g_{0} \cdot \exp - \xi\underline{Y})\psi(s+\xi) dg_{0} ds$$

=
$$\int_{\Omega} \left\{ \int_{G_{0}} \phi(g_{0} \cdot \exp(s-\xi)\underline{Y})\pi_{f_{0}}(\exp \xi\underline{Y} \cdot g_{0} \cdot \exp - \xi\underline{Y}) dg_{0} \right\}\psi(s) ds$$

($\xi \in \Omega$).

Hence, by a *p*-adic analogue of Mercer's theorem,

tr
$$\pi_f(\phi) = \int_{\Omega} \operatorname{tr} \left\{ \int_{G_0} \phi(g_0) \pi_{f_0}(\exp s \underline{Y} \cdot g_0 \cdot \exp - s \underline{Y}) \, \mathrm{d}g_0 \right\} \mathrm{d}s.$$

So, we obtain the following relation:

$$\operatorname{tr} \pi_f(\boldsymbol{\phi}) = \int_{\Omega} \operatorname{tr} \pi_s(\boldsymbol{\phi}_0) \, \mathrm{d}s$$

Equivalently:

LEMMA 6: $m(\pi_f, 1) = \int_{\Omega} m(\pi_s, 1) \, ds.$

Now assume $m(\pi_f, 1) > 0$. Then $m(\pi_s, 1) > 0$ for some $s \in \Omega$. By induction, $f_s(L_0 \cap \mathscr{Z}_0) \subset \mathcal{O}$, where $L_0 = L \cap \mathscr{G}_0$. Hence

$$f(L \cap \mathscr{Z}) = f_s(L \cap \mathscr{Z}) \subset f_s(L_0 \cap \mathscr{Z}_0) \subset \mathcal{O}.$$

Conversily, assume $f(L \cap \mathscr{Z}) \subset \mathscr{O}$. Let $s \in \Omega$. Then $f_s(L_0 \cap \mathscr{Z}_0) \subset \mathscr{O}$ if and only if $f_s(X) \subset \mathscr{O}$. We have:

$$f_s(\underline{X}) = f(\underline{X}) + sf[\underline{X}, \underline{Y}] = f(\underline{X}) + sr.$$

Hence, by induction, $m(\pi_s, 1) > 0$ if and only if $s \in (1/r)(-f(X) + \mathcal{O})$. Moreover, again by induction, applying Lemma 5 and 6,

$$m(\pi_f, 1) = \int_{(1/r)(-f(\underline{X})+\mathcal{O})} \frac{1}{d(\pi_s)} \mathrm{d}s = \frac{|r|}{d(\pi_f)} \operatorname{vol}\left(\frac{1}{r}(-f(\underline{X})+\mathcal{O})\right)$$
$$= \frac{|r|}{d(\pi_f)} \cdot \frac{1}{|r|} = \frac{1}{d(\pi_f)}.$$

This completes the proof of Theorem 10.

§10. Multiplicities and K-orbits

Let K be a lattice subgroup of G, $L = \log K$. Choose a basis e_1, \ldots, e_p of \mathscr{X} and let e_{p+1}, \ldots, e_n be a supplementary basis of \mathscr{X} such that $L = \sum_{i=1}^n \mathscr{O}e_i$ $(n = \dim \mathscr{G})$. Choose (t_1, \ldots, t_n) as coordinates on \mathscr{G} . Then (t_1, \ldots, t_n) can also be used as coordinates of the second kind on G. Similarly (t_1, \ldots, t_p) will denote coordinates on Z. Choose corresponding Haar measures on G and Z, as usual. Then $\operatorname{vol}(K) = \operatorname{vol}(K \cap Z) = 1$. Moreover, fix a volume form ω on \mathscr{G}/\mathscr{X} by $\omega = dt_{p+1} \wedge \cdots \wedge dt_n$.

Let ϕ denote the characteristic function of K. Fix $f \in \mathscr{G}'$. To compute $m(\pi_f, 1)$ we can apply the character formula (§7). We obtain:

$$m(\pi_f, 1) = \operatorname{tr} \pi_f(\phi) = \int_{O_f} \hat{\phi}_1(v) \, \mathrm{d}\mu_f(v),$$

where μ_f is the canonical measure on O_f .

Observe that $\hat{\phi}_1$ is the characteristic function of the lattice L', dual to L; $L' = \{l \in \mathscr{G}' : l(L) \subset \mathcal{O}\}$. Hence $m(\pi_f, 1) = \mu_f$ -measure of $L' \cap O_f$. K acts on $L' \cap O_f$; $L' \cap O_f$ is a disjoint union of finitely many, say l_f , K-orbits.

Now assume π_f to be square-integrable mod Z. Then we have the measure ν , relative to ω , (§8) on O_f . It follows from its construction, that all K-orbits in $L' \cap O_f$ have the same ν -measure, namely, one. Since $\mu_f = d(\pi_f)\nu$ (§8), we get:

$$m(\pi_f, 1) = l_f \cdot d(\pi_f).$$

On the other hand, $m(\pi_f, 1) = 1/d(\pi_f)$, provided $m(\pi_f, 1) > 0$ (Theorem 10). So we have the following result:

THEOREM 11: Let K be a lattice subgroup of G, $L = \log K$ and $L' = \{l \in \mathcal{G}' : l(L) \subset \mathcal{O}\}$. Fix $f \in \mathcal{G}'$ and let O_f denote the G-orbit of f. Let l_f be the number of K-orbits in L'. Then $m(\pi_f, 1) > 0$ if and only if $l_f > 0$. Moreover, if π_f is square-integrable mod Z, then $m(\pi_f, 1) = \sqrt{l_f}$.

This theorem is related to work of C.C. Moore [9]. Actually, Moore proves the inequality:

$$m(\pi_f, 1) \leq l_f$$

for all $f \in \mathscr{G}'$.

§11. An example

We consider the *p*-adic Heisenberg group H_3 , consisting of matrices of the form

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

where x, y, $z \in \mathbb{Q}_p$, $p \neq 2$. Put

$$K = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{Z}_p \right\}.$$

K is easily seen to be a lattice subgroup of H_3 and

$$\log K = L = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix} : x, y, z \in \mathbb{Z}_p \right\}.$$

Choosing Haar measures dx dy dz on G and dz on the center Z of H_3 ,

$$Z = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : z \in \mathbf{Q}_p \right\}$$

we have $vol(K) = vol(K \cap Z) = 1$. Normalize the Haar measures on G/Z and G/\mathcal{Z} in the usual way.

Given $f \in \mathscr{G}'$, we shall write $f = \{\alpha, \beta, \gamma\}$ if

$$f\begin{pmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix} = \alpha x + \beta y + \gamma z \qquad (x, y, z, \alpha, \beta, \gamma \in \mathbb{Q}_p).$$

Similar to the real case, we have $|P(f)| = |\gamma|$ ([10]). Put $f_0 = \{0, 0, \lambda\}$, $\lambda \neq 0$. Then π_{f_0} is square-integrable mod Z and $d(\pi_{f_0}) = |\lambda|$. The G-orbit of f_0 consists of all triples

$$\{y\lambda, -x\lambda, \lambda\}$$
 $(x, y \in \mathbf{Q}_p\}.$

Assume $|\lambda| \le 1$. $L' = \{\{\alpha, \beta, \gamma\}: \alpha, \beta, \gamma \in \mathbb{Z}_p\}$ and

$$L' \cap O_{f_0} = \left\{ \{ y\lambda, -x\lambda, \lambda \} : x, y \in \frac{1}{\lambda} \dot{\mathbb{Z}}_p \right\}.$$

K acts on $L' \cap O_{f_0}$; if

$$k = \begin{pmatrix} 1 & u & w \\ 0 & 1 & v \\ 0 & 0 & 1 \end{pmatrix},$$

then

$$k \cdot \{y\lambda, -x\lambda, \lambda\} = \{y\lambda + u\lambda, -x\lambda - v\lambda, \lambda\};$$

therefore $l_{f_0} = 1/|\lambda|^2$.

On the other hand, π_{f_0} is given on $L^2(\mathbb{Q}_p)$ by:

$$\pi_{f_0} \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \phi(t) = \chi_0(\lambda(z+ty))\phi(t+x).$$

We have

$$m(\pi_{f_0}, 1) = \dim\{\phi \in C^{\infty}_{c}(\mathbb{Q}_p) : \chi_0(\lambda ty)\phi(t+x) = \phi(t)\}$$

for $t \in \mathbb{Q}_p$; $x, y \in \mathbb{Z}_p$ = dim{ $\phi \in C_c^{\infty}(\mathbb{Q}_p)$: Supp $\phi \subset (1/\lambda)\mathbb{Z}_p$, $\phi \mathbb{Z}_p$ - periodic} = $1/|\lambda|$.

Similar computations can be done for the higher dimensional Heisenberg groups.

REFERENCES

- N. BOURBAKI: Eléments de mathématique, Algèbre, Ch. 9: Formes sesquilinéaires et formes quadratiques, Hermann, Paris (1959).
- [2] P. CARTIER: Les représentations des groupes réductifs p-adiques et leurs caractères, Séminaire Bourbaki 1975/76, exposé 471.
- [3] W. CASSELMAN e.a.: Modular functions of one variable II. Lecture Notes in Mathematics 349. Springer-Verlag, Berlin etc. (1973).
- [4] J. DIXMIER: Algèbres Enveloppantes. Gauthier-Villars, Paris (1974).
- [5] HARISH-CHANDRA: Harmonic analysis on reductive p-adic groups. Lecture Notes in Mathematics 162. Springer-Verlag, Berlin etc. (1970).
- [6] HARISH-CHANDRA: Harmonic analysis on reductive p-adic groups, in Harmonic Analysis on Homogeneous Spaces, 167–192, Amer. Math. Soc., Providence (1973).
- [7] H. JACQUET: Sur les représentations des groupes réductifs p-adiques, C.R. Acad. Sc. Paris, t. 280 (1975) Série A, 1271–1272.
- [8] A.A. KIRILLOV: Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk, vol. 17 (1962) 57-110.
- [9] C.C. MOORE: Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math., 82 (1965) 146-182.
- [10] C.C. MOORE and J. WOLF: Square integrable representations of nilpotent groups. Trans. Amer. Math. Soc. 185 (1973) 445-462.

- [11] L. PUKANSZKY: Leçons sur les représentations des groupes, Dunod, Paris (1967).
- [12] L. PUKANSZKY: On the characters and the Plancherel formula of nilpotent groups. J. Functional Analysis 1 (1967) 255-280.
- [13] G. VAN DIJK: Square-integrable representations mod Z of unipotent groups, Compositio Mathematica 29 (1974) 141–150.

(Oblatum 28-IX-1976 & 18-III-1977)

Mathematisch Instituut Wassenaarseweg 80 Leiden, The Netherlands