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§ 1. Introduction

A representation 1T of a totally disconnected group G on a complex
vector space V is said to be smooth if for each v E V the mapping

is locally constant. 1T is called admissible if in addition the following
condition is satisfied: For any open subgroup K of G, the space of
vectors v E V left fixed by 7r(K) is finite-dimensional. An admissible
representation is said to be pre-unitary if V carries a 1T (G )-invariant
scalar product.
These representations play an important role in the harmonic

analysis on reductive p-adic groups [6]. The aim of this paper is to

emphasize their importance in harmonic analysis on unipotent p-adic
groups. Let ,f2 be a p-adic field of characteristic zero. G will denote a
connected unipotent algebraic group, defined over f2 and G its

subgroup of J1-rational points. Let W be the Lie algebra of G and W
its subalgebra of Q-points. G is a totally disconnected group. We
show:

(i) any irreducible smooth representation of G is admissible,
(ii) any irreducible admissible representation of G is pre-unitary.

Jacquet [7] has shown that (i) holds for reductive p-adic groups G.
Actually, we make use of a remarkable lemma from [7]. The main tool
for the proof of (i) and (ii) is the interference of so-called super-

cuspidal representations, which are known to play a decisive role in
the representation theory of reductive groups [6]. We apply some
results of Casselman concerning these representations [3], which

originally were only stated for GL(2). For the proof, which is by
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induction on dim G, one has to go to the three-dimensional p-adic
Heisenberg group. A new version of von Neumann’s theorem ([11],
Ch. 2) is needed to complete the induction. All this is to be found in
sections 2, 3, 4 and 5.

Section 6 is concerned with the Kirillov construction of irreducible

unitary representations of G, which is standard now. In the next

section we discuss the character formula, following Pukanszky [12].
As a byproduct we obtain a homogeneity property for the dis-

tribution, defined by a G-orbit 0 in W’: if dim 0 = 2m, then

for all t E a, t:,-é 0. Similar results are true for nilpotent orbits of
reductive G in W [2]; there they form a substantial help in proving
that the formai degrees of supercuspidal representations are integers,
provided Haar measures are suitably normalized. Let Z denote the
center of G.

Section 8 deals with square-integrable representations mod Z of G.
Moore and Wolf [10] have discussed them for real unipotent groups.
The main results still hold for p-adic groups.

Let 1T be an irreducible square-integrable representation mod Z of
G. For any open compact subgroup K of G, let m (1T, 1) denote the

multiplicity of the trivial representation of K in the restriction of 1T to
K. Normalize Haar measures on G and Z in such a way that

vol(K) = vol(K nZ) = 1. Choose Haar measure on G/Z accordingly.
Then, according to a general theorem ([5], Theorem 2) one has:

where d (1T) is the formal degree of 1T.

Now assume in addition K to be a lattice subgroup of G : L = log K is
a lattice in G. Moreover, let m (ir, 1) &#x3E; 0. Then we have equality:

This is proved in section 9.
In section 10 we relate our results to earlier work of C.C. Moore [9]

on these multiplicities, involving numbers of K-orbits. We conclude
with an example in section 11.
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§2. Smooth representations

We call a Hausdorff space X a totally disconnected (t.d.) space if it
satisfies the following condition: Given a point x E X and a neigh-
borhood U of x in X, there exists an open and compact subset to of X
such that x OE w C U. Clearly a t.d. space is locally compact.

Let X be a t.d. space and S a set. A mapping f: X - S is said to be
smooth if it is locally constant. Let V be a complex vector space. We
write C°°(X, V) for the space of all smooth functions f : X-&#x3E; V and

C’ (X, V) for the subspace of those f which have compact support. If
V = C we simply write COO(X) and C’ (X) respectively. One can
identify C’ (X, V) with C’ (X) (&#x26; V by means of the mapping
i : C-,(X) Q9 V ---&#x3E; C’ (X, V) defined as follows: If f E C’ (X) and v E V,
then i ( f Q9 v ) is the f unctio n x - f(x)v (x E X ) from X to V.

Let G be a t.d. group, i.e. a topological group whose underlying
space is a t.d. space. It is known that G has arbitrarily small open
compact subgroups. By a representation of G on V, we mean a map
1T: G --&#x3E; End(V) such that 7r(l)= 1 and 1T(XY) = 1T(X)1T(Y) (x, y E G). A
vector v E V is called 1T-smooth if the mapping x H -&#x3E;r (x ) v of G into
V is smooth.

Let V 00 be the subspace of all 1T-smooth vectors. Then V 00 is

n(G)-stable. Let 1T 00 denote the restriction of 7r on V 00. 1T is said to be

a smooth representation if V = Voe. Of course n00 is always smooth.
We call a smooth representation 1T on V irreducible if V has no

non-trivial ir(G)-invariant subspaces.
Let 1T be a representation of G on the complex vector space V. 7r is

called admissible if

(i) 7r is smooth,

(ii) for any open subgroup K of G, the space of vectors v E V

which are left fixed by ir(K), is finite-dimensional.

An admissible representation 7r of G on V is called pre-unitary if V

carries a 7r(G)-invariant scalar product. Let Y be the completion of V
with respect to the norm, defined by the scalar product. Then 7r

extends to a continuous unitary representation p of G on Y such that
V = Y. and 7r = poc. It is well-known that 7r is irreducible if and only
if p is topologically irreducible. Note that V is dense in H. 

Let 1T be a smooth representation of G on V and V’ the (algebraic)
dual of V. Then the dual representation 7r’ of G on V’ is given by
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Put V = (V’). and if = (1Tf)oo. Then if is a smooth representation which
is called contragredient to 7r. It is easily checked that 1T is admissible
if and only if if is.

Let H be a closed subgroup of G and a a smooth representation of
H on W. Then we define a smooth representation 1T = ind H tG u as
follows: Let V denote the space of all smooth functions f : G ---&#x3E; W

such that

(2) Supp f is compact mod H.

Then 1T is the representation of G on V given by

Let 1T¡, lr2 be two smooth representations of G on VI and V2

respectively. We say that 7ri is equivalent to 7r2 if there is a linear

bijection T : VI ---&#x3E; V2 such that 1T2(x)T = T1T1(X) for all x E G.

§3. Smooth and admissible représentations of the three-dimensional

p-adic Heisenberg group

Let a be a p-adic field, i.e. a locally compact non-discrete field with
a discrete valuation. There is an absolute value on il, denoted 1-1,
which we assume to be normalized in the following way. Let dx be an
additive Haar measure on a. Then d(ax) = lai dx (a E f2*). Let 6 be
the ring of integers: 6 = lx El f2: lx 1::; 1}; (9 is a local ring with unique
maximal ideal P, given by P = {je E J1 : Ixl  1}. The residue-class field
CIP has finitely many, say q, elements. P is a principal ideal with
generator w. So P = mû, lwl = q-1. Put P n = ’ü1ney (n E Z).

Since P n is a compact subgroup of the additive group of f2 and
a = Un P n, any additive character of f2 is unitary. Let G = H3 be the
3-dimensional Heisenberg group over f?:

G is a t.d. group. The group multiplication is given by:
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THEOREM 1: (1) Each irreducible smooth representation 7T of H3 is
admissible; (2) Each irreducible admissible representation 1T of H3 is
pre-unitary.

We make use of the following result of Jacquet [7].

LEMMA 1: Let H be a group and p an (algebraically) irreducible
representation of H on a complex vector space V of at most

denumerable dimensions. Then every operator A which commutes with

p(H) is a scalar.

Let V be the space of 7T. Let v E V, v # 0 and K = {g E G: 1T(g)V = v}.
Then K is open and G/K is denumerable. Since V =

spanl7r(g)v: g E GIK}, the lemma applies. Z = 1[0, 0, z] : z E a} is the
center of G. Therefore, there exists an additive (unitary) character «P7T
of D such that 1T([0, 0, z]) = t/!7T(z)1 (z E f2), where I is the identity in
End(V). We have two cases:

(a) «P7T = 1. Then 7r actually is a representation of GIZ = a2 which
is (again by the lemma) one-dimensional and, as observed above,
unitary.

(b) «P7T# 1. Fix w E V, w # 0. For any v E V, put cv(g) = (1T(g)V, w)
(g E G). The mapping v H c, is a linear injection of V into the space
of smooth functions f on G, satisfying

Let K be a (small) open compact subgroup of G such that if(k)w = w
for all k E K. Call VK = Iv E V : ir(k)v = v for all k E K}. Then f = cv
satisfies

for all v E VK.
Write g = [x, y, 0], k = [x’, y’, 0]. Then

Hence

Therefore for all x, y (E f2 and x’, y’
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small (only depending on K, not on the particular choice of v E VK).
Moreover:

for x’, y’ as above. Since t/17T =1- 1, f ([x, y, 0]) = 0 for x or y large enough
(only depending on K, not on the particular choice of v E VK). Since
f ([x, y, z]) = t/17T(Z )f([x, y, 0]), f is completely determined by the values
f([x,y,01), (x,yEf2). Consequently, dim VK = dim(cv : v OE VK)  OJ.
Part (1) of the theorem is now evident. To prove part (2) it suffices to take
the following scalar product on V:

REMARK: It is clear that the same observations remain true for the

higher dimensional p-adic Heisenberg groups.

§4. Supercuspidal representations

G is a t.d. group and 7r a smooth representation of G on V. By a
matrix coefficient of 7r, we mean a function on G of the form

where v and 15 are fixed elements in V and V respectively. Let Z
denote the center of G. We call 1T a supercuspidal representation if
each matrix coefficient of 1T has compact support modulo Z. The

proof of Theorem 1 emphasizes the significance of this kind of

representations. Actually, one has the following lemma.

LEMMA 2: Let 1T be a smooth representation of H3 such that

71’([0,0, zl) = «/J’TT(z)I (z E f2) for some non-trivial additive character «/J’TT
of J1. Then 1T is a supercuspidal representation.

Assume, from now on, G to satisfy the second axiom of countability.
Let 1T be an irreducible smooth representation of G on V. Then by
Lemma 1, there is a character An, of Z such that 1T(Z) = À’TT(z)I (z E Z).

LEMMA 3: Let 71’ be an irreducible, admissible and supercuspidal
representation of G on V. Assume À’TT unitary. Then 7r is pre-unitary
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and one has the following orthogonality relations: There exists a

positive constant d7T (the formal degree of 1T), only depending on the
choice of Haar measure dg on G/Z such that

f or all

To make 1T pre-unitary, choose any w E V, w # 0 and define the

following G-invariant scalar product on V:

1T extends to an irreducible unitary representation on the completion
H of V such that H00. = V. The orthogonality relations now follow
easily from those for irreducible unitary supercuspidal represen-

tations ([5], Theorem 1).
The following theorem is due to Casselman ([3], Theorem 1.6).

THEOREM 2: Let p be an irreducible, admissible and supercuspidal
representation of G on W such that p(z) = À (z)I (z E Z), where À is a

unitary character of Z. Let 1T be any smooth representation of G on V
such that zr(z) = À (z)I (z E Z). Given a G-morphism f:54-’ 0 from 1T to p,
there exists a G-morphism splitting f.

PROOF: Let S"(G) denote the space of smooth functions h on G
with compact support mod Z such that h (xz) = h (x)À (z-’) (x E G,
z E Z). S,(G) is a G-module, G acting by left translation. Fix Wo E W,
WO # 0. The mapping F: W ---&#x3E; S, (G), defined by

is a G-morphism. Choose Wo E W and vo Cz V such that (wo, wo) = dp,
f(vo) = wo. By P we denote the G-morphism from SA(G) to V given
by

Then pop is the G-morphism, splitting f:
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Hence f o p 0 F(w) = w for all w E W.
Let us now turn back to H3. The irreducible unitary representations

of H3 are well-known (cf. [ 11 ]). Their restrictions to the space of

smooth vectors are admissible. Keeping in mind Theorem 1, we have

therefore the following list of irreducible admissible representations
of H3. Let xo denote any non-trivial additive character of a. Then:

(a) One-dimensional representations PJL,V (IL, v E a), trivial on Z;

PJL,V ([X, y, Z]) = x0(&#x3E;X + vy).
(b) Supercuspidal representations pA (À E J1 *), non-trivial on Z, on

the space C;(a);

We have the following analogue of the famous theorem of von

Neumann for H3 ([11], Ch. 2).

THEOREM 3: Let 1T be a smooth representation of H3 such that
ir([O, 0, z]) = Xo(Àz)I (z e f2) for some À # 0. Then 7r is the (algebraic)
direct sum of irreducible representations equivalent to p,.

PROOF: Let V be the space of ir. Due to Theorem 1, every
irreducible subrepresentation of 1T is equivalent to pA. By Lemma 2, n 
is a supercuspidal representation. We shall prove the following: Given
any G-invariant subspace W of V, W # V, there exists an irreducible
subspace U of V such that U n W = (0). An easy application of
Zorn’s Lemma then yields the theorem.
Let W be a proper G-invariant subspace of V. Put V = V/ W. V is a

G-module; the action of G is a smooth and supercuspidal represen-
tation of G. Let uo E V, Xo # 0. The G-module Vo generated by uo
contains a maximal proper G-module. Therefore Vo has an irreducible

quotient, which is also supercuspidal, and admissible by Theorem 1.

By Theorem 2, Vo and hence V, even has an irreducible subspace, say
VI, on which G acts as an admissible, supercuspidal representation.
Let V + W be its pre-image in V. Then Vi + W is a G-invariant

subspace of V and the canonical map from V to V induces a
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non-zero G-morphism from VI + W to VI. Again Theorem 2 implies
the existence of an irreducible subspace U of V such that U n W =

(0), U + W = VI + W. This concludes the proof of Theorem 3.

§5. Smooth and admissible représentations of unipotent p-adic groups

Let f2 be a p-adic field of characteristic zero. By G we mean a
connected algebraic group, defined over f2, consisting of unipotent
elements, with Lie algebra 19. Let G, % be the sets of fi-points of G, W
respectively. We have the f2-isomorphism of algebraic varieties

exp: % - G, which map Cf} onto G. Let ’log’ denote its inverse. We shall
call G a unipotent p-adic group and say that (9 is its Lie algebra.

Let Z be the center of G, its Lie algebra #. One has exp = Z.
More generally: the exponential of a subalgebra of 19 is a unipotent
p-adic subgroup of G, the exponential of an ideal in W is a normal
subgroup of G.

Let G be a unipotent p-adic group.

THEOREM 4: Each irreducible smooth representation 1T of G is

admissible and pre-unitary.

PROOF: We use induction on dim G. Lemma 1 is the main source to

prove the theorem in case dim G = 1. Assume dim G &#x3E; 1. Fix any
non-trivial character yo of f2. By Lemma 1 there exists a (unitary)
character A, of Z such that 1T(Z) = À7T(z)I for all z E Z. A, - exp is an
additive character of 1, hence À7T 0 exp = Xo - f for some f E #’. Ker(f ) is
a subalgebra of #, exp(Ker f ) = Ker(,k,) therefore a unipotent p-adic
subgroup of Z of codimension at most one. If dim Z &#x3E; 1 or dim Z = 1
and À7T = 1, -r actually reduces to an irreducible representation iro of
Go = G/Ker À,. But dim Go  dim G. The theorem follows from the

induction hypotheses.
It remains to consider the case: dim Z = 1 and A, 0 1. We will first

show the existence of a unipotent p-adic subgroup Gi of codimension
one in G and an irreducible smooth representation 1TI of Gi such that
1T is equivalent to indg, i G 1TI.

Let YDEW be such that, [Yo,WICI, Yo§Éit. Put Cf}l =

(U : [ U, Yo] = 01. Cfjl is an ideal in 19 of codimension 1. Choose Xo §É %i
and define Zo = [Xo, Yo]. Observe Zo G #, Zo --,-é 0. Then {Xo, Yo, Zo} is a
basis for a 3-dimensional subalgebra of W isomorphic to the Lie

algebra of H3. Let S denote the subgroup of G corresponding to this
subalgebra and write, as usual,
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We can choose A E ,fl, À =1 0 with the following property:

Let us assume, for the moment, that 1T is an irreducible smooth

representation of G on V. By Theorem 3, the restriction of 1T to S is a
direct sum of irreducible representations of S, all equivalent to the
representation pA of S in C;(a) given by

So V = (D i,,Ej VA for some index-set I, each Vf being isomorphic to
C;(a). We may regard I as a t.d. space in the obvious way. Then we
have

where W = C’ (I). Moreover, with these identifications,

Let G1 denote the unipotent p-adic subgroup of G with Lie algebra
G1,. G, is a closed normal subgroup of G and G = G1. (exp tXo)tEn
(semi-direct product). Since Yo is in the center of Wi, 7r(GI) and

-rr(exp yYo) (y E n) commute. Recall

Our aim now is to prove the following lemma.

LEMMA 4: For each t E f2, there exists a smooth representation
gl H 7T(gl, t) of G, on W such that

Obviously, this lemma implies -7r--indG,JG’7ri where 1T1 is given by
1T1(gl) = 1T(g, 0) (g, E G,). The irreducibility of 1T yields the ir-

reducibility of n1, .

To prove the lemma, we start with a linear map A : C;(J1, W) --&#x3E;
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C’ (f2, W), commuting with all operators 7r(exp y Yo) (y E ,fl ). Thus:

for all t, y E Q and f E C’ (n, W).
Since C’ (f2) is closed under Fourier transformation, we can easily

establish the following: Given 0 E C’(f2) and an open compact subset
K of fi, there exists an integer m &#x3E; 0, À 1, ..., Àm E C and y 1, ..., ym Ei f2
such that

For cP E COO(J1) let Lb denote the linear map C’ (É2, W) --.&#x3E; C-,(n, W)
given by Let&#x3E;f(t) = f&#x3E;(t)f(t) (f E C;(J1, W». Then, putting K =

Supp f U Supp A f, we obtain:

(t E a, f E C;(J1, W )). Hence ALb = Lq,A for every 0 E Coo(J1). In

particular we have: 1T(gl)L/&#x3E; = L/&#x3E;1T(gl) for all 91 E GI, 0 E C’(f?). Let
I/1n denote the characteristic function of P n. In addition, put L,O(s) =
0(s - t) (s, t E J1, cP any function on f2). Define:

Here, as usual, LigIn Q9 w is identified with the function

s - L,tp, (s) - w (s E !1). 7r (g 1, t) is well-defined : assuming n’:5 n, we
obtain

But this equals, by the above result,

Let us show now that ir(gl, t) satisfies condition (a) of Lemma 4. Fix

f E C;(fl, W) and determine integers m, n &#x3E; 0, tl,..., tm E a and
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W1, ..., Wm E W such that

Then

Condition (b) is also fulfilled. Indeed,

Furthermore,

Hence,

Finally, it is easily checked, that condition (a) forces gi H n(gi, t)
(g 1 E G ) to be a smooth representation of G 1 for each t E D. This

concludes the proof of Lemma 4.
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COROLLARY: Each irreducible smooth representation of G is

monomial.

Let us continue the proof of Theorem 4. By induction we assume that
1T1 is admissible and pre-unitary. Hence 1T = indal ta 1T1 is pre-unitary.
Let K be an open subgroup of G and let VK denote the space of all
f E Cc(f2) such that 7r (g)f = f for all g E K. Let f E VK. Since

there exists an integer n &#x3E; 0, only depending on K, such that f is

constant on cosets of P n.

The relation

implies that Supp f C Pm for some integer m &#x3E; 0, only depending on
K. Assume m  n. Then P m = lÙ/=i (t, + P n ) for some th..., tk E f2-
Now consider the mapping

of VK into W k. This mapping is linear and injective. Since

we obtain that f (ti) is fixed by exp t;Xo - (K n G 1) exp(-t;Xo), being an
open subgroup of G ( = 1, 2,..., k). Therefore, each f (ti) stays in a
finite-dimensional subspace of W. Consequently dim VK  00.

We have shown that 7r is admissible. This concludes the proof of
Theorem 4.

REMARK: Similar to the proof of Theorem 4 one can easily show
that the restriction of an irreducible unitary representation of G to its
subspace of smooth vectors is an admissible representation of G.

§6. Kirillov’s theory

Let G be as in §5. What remains is to describe the irreducible

unitary representations of G. This is done by Kirillov [8] for the real
groups G and, as observed by Moore [9], the whole machinery works
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in the p-adic case as well. For completeness and for later purposes,
we give the result.

Given f E (9’, put Bf(X, Y) = f ([X, Y]) (X, Y El (9). Bf is an alter-

nating bilinear form on G. A subalgebra J of W which is at the same
time a maximal totally isotropic subspace for B f is called a polariza-
tion at f. Polarizations at f exist ([4], 1.12.10). They coincide with the
subalgebra’s J C CO which are maximal with respect to the property
that J is a totally isotropic subspace for B f (cf. [8], Lemma 5.2, which
carries over to the p-adic case with absolutely no change). Let J be
any subalgebra of W which is a totally isotropic subspace for

Bf : f e,] = 0. Put H = exp Sj. We may define a character Xf of H by
the formula:

Let p(f, Sj, G) denote the unitary representation of G induced by Xf.

THEOREM 5 ([8], [9]):
(i) p(f, J, G) is irreducible if and only if Sj is a polarization at f,
(ii) each irreducible unitary representation of G is of the form

p (f, f), G),
(iii) ?(/!, t. G) and p(f2, f)2, G) are unitarily equivalent if and only

if fj and /2 are in the same G-orbit in G.

§7. The character formula

The main reference for this section is [12]. G acts on W by Ad and
hence on %’ by the contragredient representation. It is well-known

(and can be proved similar to the real case) that all G-orbits in G’ are
closed.

Let us fix a non-trivial (unitary) character yo of the additive group
of n.

We shall choose a Haar measure dg on G and a translation

invariant measure dX on W such that dg = exp(dX).
Let f E fjf, f) a polarization at f and 0 the orbit of f in G’. Put

1T = p(f, Sj, G). Given gi E C?(G), we know that 1T( «f) is an operator of
finite rank (§5, Remark). Put t/J1(X) = t/J (exp X) (X E G). Then ip, E

C?(%). The Fourier transform of t/J1 is defined by:

’ Here Xo is (as usual) a fixed non-trivial additive character of n.
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Observe that «fr1 E C?(%’).

THEOREM 6: There exists a unique positive G-invariant measure dv
on 0 such that for all tP E C?(G):

Note that the right-hand side is finite, because dv is also a measure on
Cfjf, since 0 is closed in G’.

Pukanszky’s proof of ([12], Lemma 2),2 goes over to our situation
with no substantial change. Observe that each tp E C’ (G) is a linear
combination of functions of the form 0 * P (0 E C-,(G» where Ô is
given by (g) =,O(g-’) (g E G). The algorithm to determine du (given
dg and dX such that dg = exp(dX)) is similar to that given by
Pukanszky:

(i) Put K = exp;j, r = KBG. Choose invariant measures dk and
dy on K and r respectively such that dg = dk dy.

(ii) Choose a translation invariant measure dH on J such that
dk = exp(dH).

(iii) Let dX’ and dH’ denote the dual measures of dX and dH
respectively.

(iv) Let = {Xf E %’:(§,X’)= 01. Take dH’ on ;j1- such that

dX’ = dHf dH1-.

(v) Let S be the stabilizer of f in G. Then S C K. Choose dÀ on
SBK such that dÀ is the inverse-image of dH 1- under the

bijection

of SBK onto f + H1-.
(vi) Finally, put dv = image of dk dy under the bijective mapping

Sg - g-l . f (g E G ) of S B G onto O.

The invariant measure dv depends on the choice of the character Xo.
Taking instead of xo the character x -&#x3E; Xo(tx) for some t E n, t # 0, we
obtain, by applying the above algorithm, the following homogeneity

2 Part (d) of his proof has to be omitted here.
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property for d v :

COROLLARY: Let 0 be a G-orbit in G’ of dimension 2m. Then

for all -0 E C?(%’) and all t E J1, t # 0.

Observe that we may choose in the corollary dv to be any G-invariant

positive measure on O.
Let 0 be as above. 0 carries a canonical measure IL, which is

constructed as follows. For any p E 0, define ap : G ---&#x3E; 0 by ap(a) =
a . p (a E G). The kernel of the differential Bp of ap, {3p: G-&#x3E; Tp
( Tp = tangent space to 0 in p ) coincides with the radical of the

alternating bilinear form Bp on G. Let StabG(p) be the stabilizer of p
in G. Then also, Ker (3p = Lie algebra of StabG(p). Hence Bp induces
a non-degenerate alternating bilinear form wp on Tp. In this way a
2-form w is defined on 0. One easily checks that w is G-invariant (cf.
[12] for the real case). Let d = 2m be the dimension of 0. Assume
d &#x3E; 0. Then li is given by IL = 1(1/2mm !)A mwl.

THEOREM 7: Let us fix the character yo of f2 in such a way that
xo = 1 on 0, yo 0 1 on P-1. Let 0 be any G-orbit in G’ of positive
dimension. Then the invariant measure dv and the canonical measure

IL on 0 coincide.

The proof is essentially the same as in the real case ([12], Theorem).

§8. Square-integrable représentations mod Z

Let G and Z be as in §5. An irreducible unitary representation 1T of
G on Y is called square-integrable mod Z if there exist Ei X - (0)
such that

Such representations are extensively discussed by C.C. Moore and J.
Wolf for real unipotent groups [10]. For p-adic unipotent groups, see
[13]: the restriction of 1T to the space Y. of ir-smooth vectors is a
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supercuspidal representation. Our main goal is to find a closed

formula for the multiplicity of the trivial representation of well-

chosen open and compact subgroups K of G in the restriction of 1T to
K.

Let f E G’. By O f we denote the G-orbit of f in Cfjf and by irf an
irreducible unitary representation of G, corresponding to f (more
precisely: to Of) by Kirillov’s theory (§6). Let lltf denote the space of
1Tf. Then we have, similar to ([10], Theorem 1):

THEOREM 8: The following four statements are equivalent:
(i) irf is square-integrable mod Z,

(ii) dim Of = dim G/Z,

(iv) Bf is a non-degenerate bilinear form on

Now assume 1Tf to be square-integrable mod Z. The orbit Of carries
the canonical measure tt. We shall define another G-invariant

measure v on Of. Let us fix a G-invariant differential form W on %1#
of maximal degree. Let cr denote the adjoint representation of G on 19
and let p be the representation of G contragredient to a. Fix p E Of.
We have StabG (p ) = Z and g - p(g)h is an isomorphism3 of G/Z onto
Of. Call I3p the differential of this map at e; 8p: %/# - Th. Define

In this way we get a n-form w’ on Of. We claim that w’ is G-invariant:

Call v the measure on Of corresponding to w’; v is uniquely deter-
mined by the choice of the volume form w on G/L. Let IP(f)1 denote

3 Here isomorphism is meant in the sense of algebraic geometry.
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the constant relating IL and P: li = /P (f)/V.4 The volume form w fixes,
on the other hand, a Haar measure dg on G/Z. It is obvious that v is
the image of dg under the mapping g F--&#x3E; p(g)f of G/Z onto Of. From
the definition of v we see that the same is true for the mapping
g -&#x3E; p(g)h of G/Z onto Of, for any h E Of.

Let us denote by d( 1Tf) the formal degree of 1Tf:

THEOREM 9: d(wf) is a positive real number, which satisfies the
following identity : d(wf) = (P (f)[ .

This is proved exactly the same way as in the real case ([10], Theorem
4).

§9. Multiplicities

Let G be as usual, f E %’ such that 1Tf is square-integrable mod Z.
Let K be an open and compact subgroup of G. We shall call K a
lattice subgr-oup if L = log K is a lattice in CfJ, i.e. an open and

compact, O-submodule of G.

THEOREM 10: Let K be a lattice subgroup of G, L = log K.
Normalize Haar measures dg on G and dz on Z such that f K dg =

fKnzdz = 1. Choose a Haar measure dg on G/Z such that dg = dz dg.
Then the trivial representation of K occurs in the restriction of 1Tf to K
if and only if f(L n#)c 6; moreover, its multiplicity m(wf, 1) is
l/d(1Tf).

The proof of Theorem 10 is rather long and proceeds by a careful
induction on dim G. The theorem is obvious if dim G = 1. So assume

dim G = n &#x3E; 1. Put iÉ° = Ker f n# and Z° = exp #°. We have two
cases :

1. dim #° # 0. Replace % by %liX° and G by G/Z°. The center of
G/Z° is Z/Z° (cf [13], proof of Theorem, (i)). Replace also K by
K° = KZ°/Z°. K° is a lattice subgroup of G/Z°: log K° = L/L n #°. Let

f°, w) be the pull down of f, 1Tf to %/#° and G/Z° respectively. It is
well-known that w) is equivalent to wp. Hence m(wf, 1) = m(wp, 1).
4 
P(f ) actually is the Pfaffian of the canonical differential form, defining IL, relative to CJ)

([ 1 ], §5, no. 2).
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Furthermore, f (Lnz)=fo(LOnell-îo). Normalizing the Haar

measures on G/Zo, ZIZO and G/Z°/Z/Z° as prescribed in the theorem,
one obtains d(irf) = d(irfo). The assertion for G now follows im-

mediately from the result for G/Z°, which is of smaller dimension.
2. dim 1 = 1 and f# 0 on 1. L ni is a lattice of rank one. Let Z be

a generator of L ne. Choose X e 1 such that [X, G C L. Put ego =
{U: [ U, Y] = 01. ego is an ideal in W of codimension one with center

Io = 1 + (-Y) (cf [13], p. 149). -,to n L is a lattice of rank two; zo n
Lli n L is a lattice of rank one. We may assume that X is chosen in
such a way that X mod(e n L) generates io n Lli n L. Then ob-

viously,

Since L/L fl %o is a lattice of rank one, we can choose Y E L, Y e Go
such that L = 6y + L n ego. Put Go = exp ego, G, = (exp s Y)sEn. Then
G = Go- G1 and Go n Gi = {e}.
Now choose a basis Z, X, e,, ..., en-3 of ego such that L n ego =

6z + 0% + 6ei +....... + Oen-3 and such that e,, ..., e,,-3 is a supplemen-
tary basis of Lo in the sense of Pukanszky ([12], section 3). One easily
checks that this is possible. Given Xo E ego, write

and choose (z, t, tl, ..., tn-3) as coordinates of the second kind on Go.
Then dgo = dz dt dt, ... dtn-3 is a Haar measure on Go and ds dgo is a
Haar measure on G. Moreover, if Zo = exp Io, Ko = K n Go, we now
have:

Let fo denote the restriction of f to Go. It is part of the Kirillov theory
that 1Tf is equivalent to indexe 1Tfo. Moreover, 1Tfo is square-integrable
mod Zo ([13], p. 149). We need a relation between d( 1Tf) and d( 1Tfo).
The Haar measures on G/Z and Go/Zo should be chosen as prescribed
in the theorem. The following lemma is proved by computations,
similar to those given in ([13], Section 5).

LEMMA 5: Let r = f [X, Y]. Furthermore, put for any s E a,
fs (Xo) = f (Ad (exp - s Y)Xo) (Xo E Go) and 1Ts = 7Tf!&#x3E;. Then ns is square-

5 We take dz and dz dt as Haar measures on Z and Zo respectively.
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integrable mod Zo and

for all s E a.

PROOF: The space Hf of n f may be identified with L2(a, Hf,,). Fix a
smooth vector v E Hf0 v # o. Choose «/1 E CllJ(Q), ##0 and put
glv(x) = #(x)v (x E n).
Then tp, E ¡¡et. Furthermore, the computations in ([13], Section 5),

show

Moreover,

Hence, w, is square-integrable mod Zo and d( 1Ts) = d( 1To) for all s E J1.
In addition:

This completes the proof of the lemma.
Let cP, CPo denote the characteristic functions of K, Ko respectively.

Given «/J E L 2(l2, ’Jefo)’ we have
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Hence, by a p-adic analogue of Mercer’s theorem,

So, we obtain the following relation:

Equivalently:

LEMMA 6: m (1Tf, 1) = fil m (1Ts, 1) ds.

Now assume m(1Tf, 1) &#x3E; 0. Then m(1Ts, 1) &#x3E; 0 for some s E il. By
induction, fs (Lo nL0.) C fJ, where Lo = L n Cfjo. Hence

Conversily, assume f (L ni) c C. Let s e f2. Then fs(Lo n c 6 if

and only if f, (,Y) C 6. We have:

Hence, by induction, m(1Ts, 1) &#x3E; 0 if and only if s E (1 / r)(-f (,Y) + 0).
Moreover, again by induction, applying Lemma 5 and 6,

This completes the proof of Theorem 10.
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§ 10. Multiplicities and K-orbits

Let K be a lattice subgroup of G, L = log K. Choose a basis

eh ..., ep of Z and let ep+1, ..., en be a supplementary basis of Z such
that L = 3i?=i Ce; (n = dim g). Choose (t1, ..., tn) as coordinates on g.
Then (t1, ..., tn) can also be used as coordinates of the second kind on
G. Similarly (tl, ..., tp) will denote coordinates on Z. Choose cor-

responding Haar measures on G and Z, as usual. Then vol(K) =
vol(K rl Z) = 1. Moreover, fix a volume form (1J on G/L by w = dtp+1 A
... A dtn.
Let 0 denote the characteristic function of K. Fix f E ’g’. To

compute m( 1Tb 1) we can apply the character formula (§7). We obtain:

where ILf is the canonical measure on Of.
Observe that 4&#x3E;1 is the characteristic function of the lattice L’, dual

to L; L’ = Il E W’: l(L) c 6). Hence m (irf, 1) = uf -measure of L, rl Of.
K acts on L, n Of; L’ n of is a disjoint union of finitely many, say lf,
K-orbits.

Now assume 1Tf to be square-integrable mod Z. Then we have the
measure v, relative to (o, (§8) on Of. It follows from its construction,
that all K-orbits in L’ f1 Of have the same v-measure, namely, one.
Since I£f = d( 1Tf)v (§8), we get:

On the other hand, m(irf, 1) = 1/d(wf), provided m(wf, 1) &#x3E; 0

(Theorem 10). So we have the following result:

THEOREM 11: Let K be a lattice subgroup of G, L = log K and
L’= fl E G’ : l (L) C CI. Fix f E G’ and let Of denote the G-orbit of f.
Let If be the number of K-orbits in L’. Then m(1T¡’ 1) &#x3E; 0 if and only if
lf &#x3E; 0. Moreover, if 1Tf is square-integrable mod Z, then m (1Tf, 1) = vi If.

This theorem is related to work of C.C. Moore [9]. Actually, Moore

proves the inequality:

for all
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§ 11. An example

We consider the p-adic Heisenberg group H3, consisting of matrices
of the form

where x, y, z E Qp, p # 2. Put

K is easily seen to be a lattice subgroup of H3 and

Choosing Haar measures dx dy dz on G and dz on the center Z of
H3,

we have vol(K) = vol(K n z) = 1. Normalize the Haar measures on
G/Z and W/1 in the usual way.
Given f E G’, we shall write f = {a,,8, y} if

Similar to the real case, we have IP(f)l = 1-yl ([10]). Put fo = {O, 0, À},
À # o. Then 1T/o is square-integrable mod Z and d (1T/o) = jk 1. The G-
orbit of f o consists of all triples

Assume and
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K acts on L’ n 0/0; if

then

therefore lfo = l"À 12.
On the other hand, 7Tfo is given on L 2(a@ ) by:

We have

for t E Op; x, y E Zp} = dim{cP E C’ (0,): Supp 0 C (1/,k)Zpl cP Zp-
periodic} = 1/IÀI.

Similar computations can be done for the higher dimensional

Heisenberg groups.
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