The structure of the cut locus in dimension less than or equal to six
Compositio Mathematica, Tome 37 (1978) no. 1, pp. 103-119.
@article{CM_1978__37_1_103_0,
     author = {Buchner, Michael A.},
     title = {The structure of the cut locus in dimension less than or equal to six},
     journal = {Compositio Mathematica},
     pages = {103--119},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {37},
     number = {1},
     year = {1978},
     mrnumber = {501100},
     zbl = {0407.58008},
     language = {en},
     url = {http://www.numdam.org/item/CM_1978__37_1_103_0/}
}
TY  - JOUR
AU  - Buchner, Michael A.
TI  - The structure of the cut locus in dimension less than or equal to six
JO  - Compositio Mathematica
PY  - 1978
SP  - 103
EP  - 119
VL  - 37
IS  - 1
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://www.numdam.org/item/CM_1978__37_1_103_0/
LA  - en
ID  - CM_1978__37_1_103_0
ER  - 
%0 Journal Article
%A Buchner, Michael A.
%T The structure of the cut locus in dimension less than or equal to six
%J Compositio Mathematica
%D 1978
%P 103-119
%V 37
%N 1
%I Sijthoff et Noordhoff International Publishers
%U http://www.numdam.org/item/CM_1978__37_1_103_0/
%G en
%F CM_1978__37_1_103_0
Buchner, Michael A. The structure of the cut locus in dimension less than or equal to six. Compositio Mathematica, Tome 37 (1978) no. 1, pp. 103-119. http://www.numdam.org/item/CM_1978__37_1_103_0/

[1] M. Buchner: Stability of the cut locus in dimensions less than or equal to six. Inventiones Math., 43 (1977) 199-231. | MR | Zbl

[2] M. Buchner: Triangulation of the Real Analytic Cut Locus. Proc. of the A.M.S. Vol. 64, No. 1, May 1977. | MR

[3] J.J. Duistermaat: Oscillatory integrals, Lagrange immersions and unfoldings of singularities. Comm. Pure Appl. Math., vol. XXVII (1974) 207-281. | MR | Zbl

[4] J.N. Mather: Stability of C∞ mappings II. Infinitesimal stability implies stability. Ann. of Math. vol. 89 (1969) 254-291. | Zbl

[5] J.N. Mather: Stability of C∞ mappings, IV; Classification of stable germs by R-algebras. IHES No. 37 (1969) 223-248. | Numdam | Zbl

[6] J.N. Mather: Stability of C∞ mappings, V, transversality. Advances in Mathematics, 4 (1970) 301-336. | Zbl

[7] S.B. Myers: Connections between differential geometry and topology: I. Simply connected surfaces. Duke Math. J., 1 (1935) 376-391. | JFM | MR | Zbl

[8] S.B. Myers: Connections between differential geometry and topology: II. Closed surfaces. Duke Math. J., 2 (1936) 95-102. | JFM | MR | Zbl

[9] V. Ozols: Cut loci in Riemannian manifolds. Tohoku Math. J. Second Series 26 (1974) 219-227. | MR | Zbl

[10] H. Poincaré: Trans. Amer. Math. Soc., 6 (1905) 243. | JFM

[11] D. Schaeffer: A regularity theorem for conservation laws. Advances in Mathematics 11 (1973) 368-386. | MR | Zbl

[12] R. Thom: Temporal evolution of catastrophes in Topology and its Applications, edited by S. Thomeier. Marcel Dekker, Inc. N.Y. | MR | Zbl

[13] G. Wasserman: Stability of unfoldings. Lecture Notes in Mathematics 393 (1974). | MR | Zbl

[14] A. Weinstein: The cut locus and conjugate locus of a Riemannian manifold. Ann. of Math., 87 (1968) 29-41. | MR | Zbl

[15] J.H.C. Whitehead: On the covering of a complete space by the geodesics through a point. Ann. of Math., 36 (1935) 679-704. | MR | Zbl

[16] Dubois, Dufour and Stanek: La théorie des catastrophes iv. Déploiments universels et leurs catastrophes. Ann. Inst. Henri Poincaré, Vol. XXIV, No. 3 (1976) 261-300. | Numdam | MR | Zbl

[17] D. Singer, H. Gluck: The existence of nontriangulable cut loci. Bull. Amer. Math. Soc., 82 (1976) 599-602. | MR | Zbl