COMPOSITIO MATHEMATICA

T. A. CHAPMAN STEVE FERRY Fibering Hilbert cube manifolds over ANRs

Compositio Mathematica, tome 36, nº 1 (1978), p. 7-35 <http://www.numdam.org/item?id=CM 1978 36 1 7 0>

© Foundation Compositio Mathematica, 1978, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

FIBERING HILBERT CUBE MANIFOLDS OVER ANRs

T.A. Chapman and Steve Ferry

1. Introduction

By a Q-manifold we will mean a separable metric manifold modeled on the Hilbert cube Q. Let $f: M \rightarrow B$ be a map of a Q-manifold to an ANR. In this paper we will be concerned with the following question: Does f fiber, i.e. is f homotopic to the projection map of a fiber bundle $M \rightarrow B$ with fiber a Q-manifold? In general it is not true that f fibers. For example, a constant map $Q \rightarrow S^1$ does not fiber. In Theorem 1 below we treat the [0, 1)-stable case in which f always fibers, while Theorems 3-7 indicate some of the problems one encounters in the compact cases.

Theorem 1 is not terribly surprising. It is an extension of the well known result that Q manifolds which have the form $M \times [0, 1)$ are homeomorphic if and only if they are homotopy equivalent (see [3, Chapter V]).

THEOREM 1: If $f: M \to B$ is a map of a Q-manifold to a locally compact ANR, then the composition $M \times [0, 1) \xrightarrow{\text{proj}} M \xrightarrow{f} B$ fibers.

Of course, there is an analogue of this result for l_2 -manifolds, where l_2 is separable infinite-dimensional Hilbert space.

THEOREM 2: If $f: M \rightarrow B$ is a map of an l_2 -manifold to a topologically complete separable metric ANR, then f fibers.

In the compact cases below we immediately encounter obstructions to repeating the proofs of Theorems 1 and 2. By making enough connectivity assumptions so that these obstructions vanish, we obtain the following result. See §2 for a review of the undefined terms. THEOREM 3: Let $f: M \to B$ be a map of a compact Q-manifold to a compact, connected ANR B which is simple homotopy equivalent to a finite n-complex. If the homotopy fiber $\mathcal{F}(f)$ of f is homotopy equivalent to a finite n-connected complex K, then there is an obstruction in the Whitehead group Wh $\pi_1(M)$ which vanishes iff f fibers. Moreover, if n = 1 we only need assume that Wh $\pi_1(K) = 0$, and if n = 2 we only need assume that K is 1-connected.

As a special case of Theorem 3 we obtain an infinite-dimensional version of Casson's fibering theorem [2].

COROLLARY: If $M \to S^2$ is a map of a compact Q-manifold to S^2 such that $\mathcal{F}(f)$ is homotopy equivalent to a finite 1-connected complex, then f fibers.

In Theorems 4–7 we specialize to the cases in which the base B is homotopy equivalent to a wedge of 1-spheres. The main tool is given in Theorem 4 and the main result is given in Theorem 5.

THEOREM 4: Let (\mathscr{E}, p, B) be a Hurewicz fibration such that B is a compact ANR homotopy equivalent to a wedge of n 1-spheres and the fiber F is homotopy equivalent to a finite connected complex. Then \mathscr{E} is fiber homotopy equivalent to a compact Q-manifold fiber bundle over B iff an obstruction lying in a quotient of the direct sum of n copies of Wh $\pi_1(F)$ vanishes. Given that this obstruction vanishes, there is a 1-1 correspondence between simple equivalence classes of such bundles and a quotient of a subgroup of Wh $\pi_1(F)$.

For an explanation of the last sentence in the above statement we refer the reader to §5.

THEOREM 5: Let $f: M \to B$ be a map of a compact Q-manifold to a compact ANR which is homotopy equivalent to a wedge of n 1spheres and assume that the homotopy fiber $\mathcal{F}(f)$ is homotopy equivalent to a finite connected complex. There are two obstructions to f fibering. The first one lies in a quotient of the direct sum of n copies of Wh $\pi_1 \mathcal{F}(f)$. If this obstruction vanishes, the second one is defined and lies in a quotient of Wh $\pi_1(M)$.

In Theorem 6 we treat the special case of Theorem 5 in which B is homotopy equivalent to S^1 . Here the situation is considerably simplified and what we obtain is an infinite-dimensional version of Farrell's fibering theorem [10]. THEOREM 6: Let $f: M \to B$ be a map of a compact Q-manifold to a compact ANR which is homotopy equivalent to S^1 and for which the homotopy fiber $\mathcal{F}(f)$ is homotopy equivalent to a finite connected complex. There are two obstructions to f fibering. They are independently defined and both lie in Wh $\pi_1(M)$.

We remark that one of the obstructions obtained here is just Farrell's obstruction for the finite-dimensional case, but the infinitedimensional nature of the problem requires another obstruction.

Finally, in Theorem 7 we classify equivalence classes of Q-manifold fiber bundle projections over nice ANRs.

THEOREM 7: Let $f, f_1: M \to B$ be homotopic compact Q-manifold fiber bundle projections, where B is a compact ANR homotopy equivalent to a wedge of n 1-spheres, and let F be the connected fiber of $f: M \to B$. There are two obstructions to finding a homeomorphism $h: M \to M$ such that $fh = f_1$ and h is homotopic to the identity. The first lies in Wh $\pi_1(F)$, and if it vanishes the second is defined and lies in a quotient of the direct sum of n copies of $\mathcal{P}(F)$.

Here $\mathscr{P}(F)$ is the group of all isotopy classes of homeomorphisms of F to itself which are homotopic to the identity. It is a quotient of π_0 of the concordance group of F, which has been algebraically investigated by [12]. See §2 for further details.

We now say a few words about the organization of the material in this paper. §2 contains some preliminary results and in §3 we prove Theorems 1 and 2. In §§4-8 we prove Theorems 3-7. In §9 we prove a result (Theorem 8) which calculates the kernel of a certain map of Whitehead groups. This generalizes a result of Farrell [9]. Theorem 8 may be paraphrased as follows. Let (\mathcal{C}, p, B) be a Hurewicz fibration, where B is a finite wedge of 1-spheres and the fiber F has the homotopy type of a finite complex. If i is the inclusion map $i: F \hookrightarrow \mathcal{C}$, then Theorem 8 computes the kernel of

$$i_*: \operatorname{Wh} \pi_1(F) \to \operatorname{Wh} \pi_1(\mathscr{C}).$$

The constructions in 9 are made more geometric by replacing \mathscr{C} with a finite "wedge" of mapping tori.

2. Preliminaries

If $p: E \to B$ is a map and $B_1 \subset B$, we use $E \mid B_1$ to denote $p^{-1}(B_1)$ and we let $E_b = p^{-1}(b)$, for each $b \in B$. If $p': E' \to B$ is another map, then $f: E \to E'$ is said to be fiber preserving (f.p.) provided that $f(E_b) = E'_b$, for each $b \in B$. The restriction of f to E_b is denoted by $f_b: E_b \to E'_b$. A f.p. map $f: E \to E'$ is said to be a fiber homotopy equivalence (f.h.e.) if there exists a f.p. map $g: E' \to E$ such that fg and gf are f.p. homotopic to their respective identities. We will abbreviate ordinary homotopy equivalence by h.e.

If $f: E \rightarrow B$ is any map, where B is path connected, then we define

$$\mathscr{E}(f) = \{(e, \omega) \in E \times B^I \mid f(e) = \omega(0)\}$$

 $(B^{I} \text{ is the space of paths in } B.)$ Define $p: \mathscr{C}(f) \to B$ by $p(e, \omega) = \omega(1)$. $p: \mathscr{C}(f) \to B$ is the mapping path fibration of $f: E \to B$. There is a h.e. $g: E \to \mathscr{C}(f)$ such that $pg \simeq f$. For any $b_0 \in B$, the fiber of $\mathscr{C}(f)$ over b_0 is

$$\mathscr{F}(f) = p^{-1}(b_0) = \{(e, \omega) \mid f(e) = \omega(0), \omega(1) = b_0\}.$$

 $\mathcal{F}(f)$ is called the homotopy fiber of $f: E \to B$.

The following result will be used several times in the sequel. For a proof see [8] for the case in which B is a countable complex and see [14] for the general case.

THEOREM 2.1: Let $p: E \to B$, $p': E' \to B$ be Hurewicz fibrations, where B is a connected ANR, and let $h: E \to E'$ be a f.p. map such that $h_{b_0}: E_{b_0} \to E'_{b_0}$ is a h.e., for some $b_0 \in B$. Then h is a f.h.e.

The above result gives us the following useful theorem.

THEOREM 2.2: Let $p: E \to B$, $p': E' \to B$ be Hurewicz fibrations, where E, B and all the fibers have the homotopy types of countable complexes. If $f: E \to E'$ is a h.e. such that $p'f \approx p$, then f is homotopic to a f.h.e.

PROOF: Assume that B is connected and choose $b_0 \in B$, $e_0 \in E_{b_0}$. The condition $p'f \approx p$ gives us a homotopy $H: E \times I \rightarrow B$ such that $H_0 = p$ and $H_1 = p'f$. Lifting H we get a homotopy $\tilde{H}: E \times I \rightarrow E'$ for which $\tilde{H}_1 = f$. Then $g = \tilde{H}_0: E \rightarrow E'$ is homotopic to f and g is f.p. The homotopy exact sequences of the two fibrations give us a commutative diagram,

 $\cdots \to \pi_{n+1}(E, e_0) \to \pi_{n+1}(B, b_0) \to \pi_n(E_{b_0}, e_0) \to \pi_n(E, e_0) \to \pi_n(B, b_0) \to \cdots$ $\downarrow g_* \qquad \downarrow ld \qquad \downarrow g_{b_0} \qquad \downarrow g_* \qquad \downarrow ld$ $\cdots \to \pi_{n+1}(E', e'_0) \to \pi_{n+1}(B, b_0) \to \pi_n(E'_{b_0}, e'_0) \to \pi_n(E', e'_0) \to \pi_n(B, b_0) \to \cdots$

Here $e'_0 = g(e_0)$ and by the five lemma $(g \mid E_{b_0})_*$ is a *h.e.* Then we apply Theorem 2.1.

In the sequel we will need a considerable amount of Q-manifold machinery. Our basic reference for this is [3]. It would be time consuming to give a complete description of the material from [3] which we will need, but here is a list of some of the highlights.

1. Z-sets and Z-set unknotting ([3, Theorem 19.4]).

2. The classification theorem for simple equivalences in terms of homeomorphisms on Q-manifolds ([3, Theorem 38.1]).

3. The triangulation theorem for Q-manifolds ([3, Theorem 36.2]).

4. The ANR theorem, which says that every locally compact ANR times Q is a Q-manifold ([3, Theorem 44.1]).

It will be convenient to know how to change bases in fibering problems.

THEOREM 2.3: Consider $f: M \to B$, where M is a compact Q-manifold, and B is a compact ANR, and let $g: B \to B'$ be a simple equivalence of B to another compact ANR. Then f fibers iff gf fibers.

PROOF: Since $g: B \to B'$ is a simple equivalence we have a homeomorphism $\beta: B \times Q \to B' \times Q$ which is homotopic to $g \times ld$. Choose a homeomorphism $\alpha: M \times Q \to M$ homotopic to the projection map. Assuming that f fibers we have a fiber bundle projection map $p: M \to B$. It is easy to check that the composition

$$M \xrightarrow{\alpha^{-1}} M \times Q \xrightarrow{p \times ld} B \times Q \xrightarrow{\beta} B' \times Q \xrightarrow{proj} B'$$

is a fiber bundle projection homotopic to gf.

In a similar fashion we can establish the following [0, 1)-stable result.

THEOREM 2.4: Consider $f: M \to B$, where M is a Q-manifold and B is a locally compact ANR, and let $g: B \to B'$ be a h.e. of B to another locally compact ANR. Then $M \times [0, 1) \xrightarrow{proj} M \xrightarrow{f} B$ fibers iff $M \times [0, 1) \xrightarrow{proj} M \xrightarrow{f} B \xrightarrow{g} B'$ fibers.

Here is a mild generalization of Anderson's result [1] to fiber bundles over ANRs. The result is also true for ANR Hurewicz fibrations over ANRs.

THEOREM 2.5: Let $p_1: E_1 \rightarrow B$ and $p_2: E_2 \rightarrow B$ be compact Q-mani-

fold fiber bundles such that B is a compact connected ANR and let $f: E_1 \rightarrow E_2$ be a f.h.e. If $b_0 \in B$, then $\tau(f) = i_*\chi(B)\tau(f \mid (E_1)_{b_0})$, where $\chi(B)$ is the Euler characteristic of B and i is the inclusion $(E_2)_{b_0} \hookrightarrow E_2$, and τ denotes Whitehead torsion.

PROOF: For the moment assume that B is a finite complex. Choose any other basepoint $b_1 \in B$. We will first prove that $j_*\tau(f \mid (E_1)_{b_1}) =$ $i_*\tau(f \mid (E_1)_{b_0})$, where $j: (E_2)_{b_1} \hookrightarrow E_2$. Choose a path $\omega: I \to B$ from b_0 to b_1 . Over $\omega(I)$ we have trivial bundles. This induces homeomorphisms $\alpha: (E_1)_{b_0} \to (E_1)_{b_1}$ and $\beta: (E_2)_{b_0} \to (E_2)_{b_1}$ so that α is homotopic to $(E_1)_{b_0} \hookrightarrow E_1$ and β is homotopic to $(E_2)_{b_0} \hookrightarrow E_2$. Thus we have a homotopy commutative diagram,

$$(E_1)_{b_0} \xrightarrow{\alpha} (E_1)_{b_1}$$
$$f \mid \downarrow \qquad \downarrow f \mid$$
$$(E_2)_{b_0} \xrightarrow{\beta} (E_2)_{b_1}$$

Since $\tau(\alpha) = 0$ and $\tau(\beta) = 0$ we have $\tau(f \mid (E_1)_{b_1}) = \beta_* \tau(f \mid (E_1)_{b_0})$. Since $j\beta = i$ we get $j_*\tau(f \mid (E_1)_{b_1}) = i_*\tau(f \mid (E_1)_{b_0})$. Moreover, if Δ is any simplex in B we can also prove that $\tau(f \mid (E_1)_{b_0})$ and $\tau(f \mid (E_1 \mid \Delta))$ have the same image in Wh $\pi_1(E_2)$. This follows because if $b_1 \in \Delta$, then we have a homotopy commutative diagram

$$(E_1)_{b_1} \hookrightarrow E_1 \mid \Delta$$

$$f \mid \downarrow \qquad \downarrow f \mid$$

$$(E_2)_{b_1} \hookrightarrow E_2 \mid \Delta,$$

where the inclusions are simple equivalences.

We now begin the proof. Let dim B = n and let B' be the (n - 1)-skeleton of B, where $b_0 \in B'$. Then we get restricted fiber bundles

$$p_1': E_1 \mid B' \rightarrow B', \quad p_2': E_2 \mid B' \rightarrow B',$$

and a *f.h.e.* $f' = f | (E_1 | B'): E_1 | B' \to E_2 | B'$. We inductively assume that $\tau(f') = (i')_* \chi(B') \tau(f | (E_1)_{b_0})$, where $i': (E_2)_{b_0} \hookrightarrow E_2 | B'$. Let $\{\Delta_i\}_{i=1}^k$ be the *n*-simplexes of *B*. Using the Sum Theorem [6, p. 76] we have

$$\tau(f) = \chi(B')\tau(f \mid (E_1)_{b_0}) + k\tau(f \mid (E_1)_{b_0}) - \left(\sum_{i=1}^k \chi(\partial \Delta_i)\tau(f \mid (E_1)_{b_0})\right),$$

where we have omitted obvious inclusion-induced maps. Since

$$\chi(B') + k - \sum_{i=1}^{k} \chi(\partial \Delta_i) = \chi(B)$$

[7]

we are done for the case in which B is a finite complex. For the remainder of the proof we show how to reduce the general case to this case.

Our first observation is that if B is any compact Q-manifold, then the above proof goes through. We just replace B by $K \times Q$, for some finite complex K, and argue inductively over the skeleta of K times Q. More generally, if we multiply everything by Q we obtain Qmanifold fiber bundles $E_i \times Q \rightarrow B \times Q$, where $B \times Q$ must be a Qmanifold. We get a f.h.e. $f \times ld: E_1 \times Q \rightarrow E_2 \times Q$. The above special case implies that

$$\tau(f \times ld) = (i')_* \chi(B) \tau((f \times ld) \mid (E_1)_{b_0} \times Q),$$

where *i'* is inclusion. Projecting back to E_2 we get $\tau(f) = i_*\chi(B)\tau(f \mid (E_1)_{b_0})$ and we are done.

COROLLARY 2.6: With $p_i: E_i \rightarrow B$ as above let $g: E_1 \rightarrow E_2$ be a map such that $p_2g \approx p_1$ and assume that Wh $\pi_1((E_1)_{b_0}) = 0$. If g is a h.e., then g is a simple equivalence.

PROOF: Using Theorem 2.2 we have $g \approx g'$, where g' is a f.h.e. Then

$$\tau(g) = \tau(g') = i_* \chi(B) \tau(g' \mid (E_1)_{b_0}),$$

and $\tau(g' \mid (E_1)_{b_0}) \in Wh \ \pi_1(E_2)_{b_0} \cong Wh \ \pi_1(E_1)_{b_0} = 0.$

We will also need the notion of a mapping torus. For any compactum X and map $\varphi: X \to X$, the mapping torus of φ is the compactum

$$T(\varphi) = X \times [0, 1]/\sim,$$

where \sim is the equivalence relation generated by $(x, 0) \sim (\varphi(x), 1)$. It is clear that there is a natural map $T(\varphi) \rightarrow S^1$ so that each point-inverse is naturally identified with X.

Finally we introduce the group $\mathcal{P}(M)$ needed in Theorem 7. For any compact Q-manifold M let $\mathcal{P}(M)$ denote the group of isotopy classes of homeomorphisms of M which are homotopic to the identity. Here are some facts about $\mathcal{P}(M)$ which appear either explicitly or implicitly in [4].

- 1. If M is 1-connected, then $\mathcal{P}(M)$ is trivial.
- 2. $\mathscr{P}(S^1 \times Q) \cong Z_2 \oplus Z_2 \oplus \cdots,$
- 3. If M is h.e. to N, then $\mathcal{P}(M) \cong \mathcal{P}(N)$.
- 4. $\mathcal{P}(M)$ is always abelian.

If $h: M \to M$ is a homeomorphism homotopic to the identity, then h determines an isotopy class of homeomorphisms in $\mathcal{P}(M)$. To save notation we will identify h with this isotopy class in $\mathcal{P}(M)$. Thus in §8 a statement such as f = g actually means that f is isotopic to g, where f and g are homeomorphisms homotopic to the identity.

3. Proofs of Theorems 1 and 2

We begin with the proof of Theorem 1. The basic step is the following result.

LEMMA 3.1: Let N be a Q-manifold, $E \rightarrow S^n$ be a fiber bundle with fiber $N \times [0, 1)$, and let $f: S^n \times N \times [0, 1) \in E$ be a f.h.e. Then f is fiber homotopic to a homeomorphism.

PROOF: Using Theorem 4.1 of [5] there is a *f.p.* embedding $g: S^n \times N \times [0, 1) \rightarrow E$ such that each $g_x: N \times [0, 1) \rightarrow E_x$ is a Z-embedding and such that g is fiber homotopic to f. Let $S^n \times N \times [0, 1)$ be identified with $S^n \times N \times [0, 1) \times \{0\}$ in $S^n \times N \times [0, 1) \times I$. Our strategy is to show that we have a *f.p.* homeomorphism of pairs,

$$(E, g(S^n \times N \times [0, 1))) \cong (S^n \times N \times [0, 1) \times I, S^n \times N \times [0, 1)).$$

This implies that the inclusion $g(S^n \times N \times [0, 1)) \hookrightarrow E$ is fiber homotopic to a homeomorphism, thus completing the proof of our lemma. Let $D^n \subset S^n$ be any *n*-cell.

ASSERTION: There exists a f.p. homeomorphism of $D^n \times N \times [0, 1) \times I$ onto $E \mid D^n$ which agrees with g on $D^n \times N \times [0, 1)$.

PROOF OF ASSERTION: Choose any f.p. homeomorphism $\alpha: D^n \times N \times [0, 1) \times I \to E \mid D^n$. We must replace α by α' so that $\alpha' \mid D^n \times N \times [0, 1) = g$. Consider the f.p. Z-embedding

$$g_1 = \alpha^{-1}g \colon D^n \times N \times [0, 1] \to D^n \times N \times [0, 1] \times I.$$

It will suffice to construct a *f.p.* homeomorphism of $D^n \times N \times [0, 1] \times I$ onto itself which extends g_1 .

We now use the fact that g_1 is a *f.h.e.* Choose any $b_0 \in D^n$ and consider $(g_1)_{b_0}$: $N \times [0, 1) \to N \times [0, 1) \times I$, which is a *h.e.* It follows from [3, Theorem 21.2] that there exists a homeomorphism $u: N \times [0, 1) \times I \to N \times [0, 1] \times I$ extending $(g_1)_{b_0}$. Define $g_2: D^n \times N \times [0, 1] \to D^n \times N \times [0, 1) \times I$ by $(g_2)_b = (g_1)_{b_0}$, for all $b \in D^n$. Then g_2 is a "constant" f.p. Z-embedding. Using the homeomorphism u it is clear that g_2 extends to a f.p. homeomorphism of $D^n \times N \times [0, 1) \times I$ onto itself. So, to finish, all we need is a f.p. homeomorphism of $D^n \times N \times [0, 1) \times I$ onto itself which composes with g_1 to give g_2 .

To see this, let $\theta_t: D^n \to D^n$ be a homotopy such that $\theta_0 = id$ and $\theta_1(D^n) = \{b_0\}$. Then define a *f.p.* homotopy

$$\beta_t: D^n \times N \times [0, 1) \rightarrow D^n \times N \times [0, 1) \times I$$

by $(\beta_i)_b = (g_1)_{\theta_i(b)}$. Clearly $\beta_0 = g_1$ and $\beta_1 = g_2$. Moreover, this is a *f.p.* proper homotopy. By Theorem 5.1 of [5] we conclude that there exists a *f.p.* homeomorphism r of $D^n \times N \times [0, 1) \times I$ onto itself such that $rg_1 = g_2$. This completes the proof of the assertion.

Now let G be the homeomorphism group $\mathcal{H}(N \times [0, 1) \times I, N \times [0, 1))$, the space of all homeomorphisms of $N \times [0, 1) \times I$ onto itself which are the identity on $N \times [0, 1)$. For each $b \in S^n$ let $\Phi(b)$ be the space of all homeomorphisms $\varphi \colon N \times [0, 1) \times I \to E_b$ such that $\varphi = g_b$ on $N \times [0, 1)$. This makes $E \to S^n$ into a fiber bundle with structure group G, which we call a G-bundle (see [16, p. 90]). We will show that E is trivial as a G-bundle. This will imply that there is a f.p. homeomorphism of pairs,

$$(E, g(S^n \times N \times [0, 1))) \cong (S^n \times N \times [0, 1) \times I, S^n \times N \times [0, 1)),$$

as was our strategy. To show that E is trivial for all n, all we have to do is prove that G is contractible.

Choose any $h \in G$. If $f: [0, 1) \times I \rightarrow [0, 1) \times I$ is any homeomorphism which is the identity on $[0, 1) \times \{0\}$, then it is easy to isotope f to a homeomorphism $f'rel[0, 1) \times \{0\}$, where f' is also the identity on $\{0\} \times I$. This same idea easily shows that h is isotopic to $h'rel N \times$ [0, 1), where h' is the identity on $N \times \{0\} \times I$. Using a variation of the well known Alexander trick define $h'_1 = ld$ and for $0 \le t < 1$ define

$$h'_{t} = \begin{cases} ld, & \text{on } N \times [0, t] \times I \\ \varphi_{t}^{-1} h' \varphi_{t}, & \text{on } N \times [t, 1] \times I, \end{cases}$$

where $\varphi_t: N \times [t, 1) \times I \to N \times [0, 1) \times I$ is defined by linearly homeomorphing [t, 1) to [0, 1). Then h'_t defines an isotopy of h' to ld $rel(N \times \{0\} \times I) \cup (N \times [0, 1))$. All of these isotopies depend continuously on h. Thus G is contractible.

REMARK: The above method of proof can be used to prove that a *f.h.e.* between any two fiber bundles, with fiber $N \times [0, 1)$, is fiber homotopic to a homeomorphism.

We now use Lemma 3.1 to prove the following result.

LEMMA 3.2: Let $\mathscr{E} \to B$ be a Hurewicz fibration over a countable complex and assume that all the fibers are h.e. to countable complexes. Then \mathscr{E} is f.h.e. to a fiber bundle over B with fiber a Q-manifold.

PROOF: Without loss of generality assume that B is connected and use [3, Theorem 28.1] to choose a Q-manifold N which is h.e. to the fibers of $\mathscr{C} \to B$. We will induct over the n-skeleta of B, B_n , to inductively build our fiber bundle. For n = 0 it is clear that $\mathscr{C} | B_0$ is f.h.e. to a fiber bundle over B_0 with fiber $N \times [0, 1)$. Passing to the inductive step assume $n \ge 0$ and let $f_1: \mathscr{C} | B_n \to E_1$ be a f.h.e., where $E_1 \to B_n$ is a fiber bundle with fiber $N \times [0, 1)$. We will extend f_1 to a f.h.e. $f: \mathscr{C} | B_{n+1} \to E$, where $E \to B_{n+1}$ is a fiber bundle extending $E_1 \to B_n$. For simplicity of notation we assume that $B_{n+1} = B_n \cup \Delta$, where Δ is a single (n + 1)-simplex.

By restriction we get a *f.h.e.* $f_0: \mathscr{C} \mid \partial \Delta \to E_1 \mid \partial \Delta$. By Theorem 2.1 it suffices to extend f_0 to a *f.p.* map $f_2: \mathscr{C} \mid \Delta \to E_2$, where $E_2 \to \Delta$ is a fiber bundle extending $E_1 \mid \partial \Delta \to \partial \Delta$. Since $\mathscr{C} \mid \partial \Delta$ is *f.h.e.* to $\partial \Delta \times N \times [0, 1)$, we may replace $\mathscr{C} \mid \partial \Delta$ by $\partial \Delta \times N \times [0, 1)$ and consider the following reduction of the problem: If $f_0: \partial \Delta \times N \times [0, 1) \to E_1 \mid \partial \Delta$ is a *f.h.e.*, then f_0 extends to a *f.p.* map $f_2: \Delta \times N \times [0, 1) \to E_2$.

To see how this reduction implies the general case choose a *f.h.e.* $\alpha: \Delta \times N \times [0, 1) \rightarrow \mathscr{C} \mid \Delta$, let $\alpha_0 = \alpha \mid \partial \Delta \times N \times [0, 1)$, and let $\beta: \mathscr{C} \mid \partial \Delta \rightarrow \partial \Delta \times N \times [0, 1)$ be a fiber homotopy inverse of α_0 . Given a *f.h.e.* $f_0: \mathscr{C} \mid \partial \Delta \rightarrow E_1 \mid \partial \Delta$, we get a *f.h.e.* $f_0 \alpha_0 \beta: \mathscr{C} \mid \partial \Delta \rightarrow E_1 \mid \partial \Delta$. The reduction implies that $f_0 \alpha_0$ extends, and since β extends it follows that $f_0 \alpha_0 \beta$ extends. Since f_0 is fiber homotopic to $f_0 \alpha_0 \beta$ we conclude that f_0 extends.

To verify the reduction we first use Lemma 3.1 to see that f_0 is fiber homotopic to a homeomorphism $\alpha: \partial \Delta \times N \times [0, 1) \rightarrow E_1 | \partial \Delta$. Thus all we have to do is show how to extend α to a *f.p.* map $\tilde{\alpha}: \Delta \times N \times [0, 1) \rightarrow E_2$. Define

$$E_2 = (E_1 \mid \partial \Delta) \bigcup_{\alpha} (\Delta \times N \times [0, 1)),$$

where the attaching is made by α . Then α automatically extends to a *f.p.* map of $\Delta \times N \times [0, 1)$ onto E_2 .

Finally, we will need the following result.

16

LEMMA 3.3: If $f: M \rightarrow B$ is a map between locally compact ANRs, where B is connected, then the homotopy fiber of f has the homotopy type of a countable complex.

PROOF: For definiteness choose a basepoint $b_0 \in B$. Let $\alpha: M \to Q \times [0, 1)$ be any closed embedding and define $f': M \to B \times Q \times [0, 1)$ by $f' = (f, \alpha)$. Choose the basepoint $b'_0 = (b_0, 0, 0)$ in $B \times Q \times [0, 1)$ and consider the homotopy fiber $\mathcal{F}(f')$.

ASSERTION 1: $\mathcal{F}(f)$ is h.e. to $\mathcal{F}(f')$.

PROOF: Define $\varphi: \mathscr{F}(f) \to \mathscr{F}(f')$ by $\varphi(x, \omega) = (x, \omega')$, where ω' follows a straight-line path from $(f(x), \alpha(x))$ to (f(x), 0, 0)), for $0 \le t \le \frac{1}{2}$, and for $\frac{1}{2} \le t \le 1, \omega'$ follows the path ω in $B \times \{0\} \times \{0\} \equiv B$ from (f(x), 0, 0) to b'_0 . Define $\psi: \mathscr{F}(f') \to \mathscr{F}(f)$ by $\psi(x, \omega) = (x, \omega'')$, where $\omega'' = proj \circ \omega$ (proj: $B \times Q \times [0, 1) \to B$). We leave it as an easy exercise for the reader to prove that φ and ψ are homotopy inverses.

ASSERTION 2: $\mathcal{F}(f')$ is an ANR.

PROOF: Observe that f' is a closed embedding. Consider the space

$$\Omega = (B \times Q \times [0, 1), b_0')^{(l,1)} \subset (B \times Q \times [0, 1))^l,$$

the space of paths ending at b'_0 . It follows from [13] that Ω is an ANR. Clearly $\mathscr{F}(f')$ is a closed subset of $M \times \Omega$. Choose $(x, \omega) \in M \times \Omega$ which is close to $\mathscr{F}(f')$. Then we must have $\omega(0)$ close to f'(x). If they are sufficiently close, then there is a canonical path in $B \times Q \times [0, 1)$ from f'(x) to $\omega(0)$. By composing this canonical path with ω we obtain a new path $\omega' \in \Omega$ which starts at f'(x) and ends at b'_0 . Thus $(x, \omega) \to (x, \omega')$ defines a retraction $r: U \to \mathscr{F}(f')$, for U some suitable neighborhood of $\mathscr{F}(f')$ in $M \times \Omega$. Therefore $\mathscr{F}(f')$ is an ANR.

Finally, it follows from [15] that the ANR $\mathcal{F}(f')$ has the homotopy type of a countable complex.

PROOF OF THEOREM 1: We are given a map $f: M \to B$, where B is a locally compact ANR. It follows from [15] that B is a h.e. to a countable complex, and therefore by Theorem 2.4 we may assume that B is a countable complex. Without loss of generality assume that B is connected. Let $p: \mathcal{C} \to B$ be the mapping path fibration with fiber $\mathcal{F}(f)$, and let $g: M \to \mathcal{C}$ be a h.e. such that $pg \cong f$. Using Lemma 3.2 there is a fiber bundle $q: E \to B$, with fiber a Q-manifold N, which is f.h.e. to $p: \mathcal{C} \to B$. We therefore obtain a h.e. $g': M \to E$ such that $qg' \simeq f$. Then $g' \times id: M \times [0, 1) \rightarrow E \times [0, 1)$ is homotopic to a homeomorphism $h: M \times [0, 1) \rightarrow E \times [0, 1)$ by [3]. Clearly

$$M \times [0, 1) \xrightarrow{h} E \times [0, 1) \xrightarrow{proj} E \longrightarrow B$$

is a fiber bundle projection homotopic to $f \circ proj: M \times [0, 1) \rightarrow B$.

PROOF OF THEOREM 2: The machinery we have used for the proof of Theorem 1 has analogues for l_2 -manifolds. The knowledgeable reader can easily supply the details.

4. Proof of Theorem 3 and its Corollary

For the proof of Theorem 3 we will first need the following result.

LEMMA 4.1: Let N be a compact Q-manifold, $E \rightarrow S^n$ be a fiber bundle with fiber N, and let $f; S^n \times N \rightarrow E$ be a f.h.e. If N is (n + 1)connected, then f is fiber homotopic to a homeomorphism. Moreover, if n = 0 we only need assume that Wh $\pi_1(N) = 0$, and if n = 1 we only need assume that N is 1-connected.

PROOF: Following the proof of Lemma 3.1, f is homotopic to a f.p. Z-embedding $g: S^n \times N \rightarrow E$. It suffices to show that we have a f.p. homeomorphism of pairs,

$$(E, g(S^n \times N)) \cong (S^n \times N \times I, S^n \times N).$$

If n = 0 it follows from the assumption Wh $\pi_1(N) = 0$ that each inclusion $g_b(N) \hookrightarrow E_b$ is homotopic to a homeomorphism. Since $S^n = \{b_1, b_2\}$ this is all we need for our desired *f.p.* homeomorphism of pairs.

If $n \ge 1$ we proceed as in Lemma 3.1 and show that $E \to S^n$ may be regarded as a *G*-bundle, where *G* is the homeomorphism group $\mathcal{H}(N \times I, N)$. All we need to do is show that $E \to S^n$ is trivial as a *G*-bundle. For this it suffices to prove that *G* is (n-1)-connected. It follows from [4] and [11] that $\pi_0(G) = 0$ for *N* 1-connected, and in general $\pi_{k-1}(G) = 0$ for *N* (k+1)-connected.

LEMMA 4.2: Let $\mathscr{E} \to B$ be a Hurewicz fibration over a finite ncomplex and assume that all the fibers are h.e. to a compact Qmanifold N. If N is n-connected, then \mathscr{E} is f.h.e. to a fiber bundle over B with fiber N. Moreover, if n = 1 we only need assume Wh $\pi_1(N) = 0$, and if n = 2 we only need assume N to be 1-connected.

PROOF: Using Lemma 4.1 we can prove Lemma 4.2 just as Lemma 3.2 followed from Lemma 3.1.

PROOF OF THEOREM 3: We are given a map $f: M \to B$, of a compact Q-manifold to a compact, connected ANR B which is simple equivalent to a finite *n*-complex. By Theorem 2.3 we may assume that B is a finite *n*-complex. Let $\mathscr{C} \to B$ be the mapping path fibration and use Lemma 4.2 to conclude that \mathscr{C} is *f.h.e.* to a fiber bundle $p: E \to B$, whose fiber is a compact Q-manifold. Thus we have a homotopy equivalence $g: E \to M$ such that $fg \simeq p$. We define our obstruction to be $\tau(g) \in Wh \pi_1(M)$.

To see that $\tau(g)$ is well-defined we assume that there is another such *h.e.* $g_1: E_1 \rightarrow M$, where $E_1 \rightarrow B$ is a fiber bundle whose fiber is a compact Q-manifold. It follows from Corollary 2.6 that the torsion of the composition $g^{-1}g_1: E_1 \rightarrow E$ is zero, thus $\tau(g) = \tau(g_1)$.

If $\tau(g) = 0$, then g is homotopic to a homeomorphism $h: E \to M$, and f is therefore homotopic to the bundle projection $M \xrightarrow{h^{-1}} E \to B$. On the other hand assume that f is homotopic to a bundle projection $M \to B$. The h.e. $g: E \to M$ must have zero torsion by Corollary 2.6.

PROOF OF THE COROLLARY: The homotopy sequence of $f: M \rightarrow B$ gives us an exact sequence

$$\pi_1 \mathscr{F}(f) \to \pi_1(M) \to \pi_1(S^2),$$

thus $\pi_1(M) = 0$ and Wh $\pi_1(M) = 0$. This implies that our obstruction to fibering is zero.

5. Proof of Theorem 4

We first introduce some notation which will be used throughout this section. Let $\mathscr{C} \to B$ represent a Hurewicz fibration, where B is a compact ANR *h.e.* to a wedge of n 1-spheres. Choose a basepoint $b_0 \in B$ and assume that \mathscr{C}_{b_0} is *h.e.* to a finite connected complex. Let $\{\alpha_i\}_{i=1}^n$ be a collection of maps, $\alpha_i: (S^1, *) \to (B, b_0)$, such that $\{[\alpha_i]\}_{i=1}^n$ freely generates $\pi_1(B, b_0)$. Each map α_i may be regarded as a map of $(I, \partial I)$ to (B, b_0) , and the homotopy lifting criterion implies that α_i can be covered by a map $\tilde{\alpha_i}: \mathscr{C}_{b_0} \times I \to \mathscr{C}$ such that $(\tilde{\alpha_i})_0 = id$. We call

 $\varphi_i = (\tilde{\alpha}_i)_1: \mathscr{E}_{b_0} \to \mathscr{E}_{b_0}$ a characteristic map corresponding to α_i . It is well-known that φ_i is a *h.e.* and its homotopy class is uniquely determined.

DEFINITION OF THE OBSTRUCTION: Define a homomorphism

$$\theta$$
: Wh $\pi_1(\mathscr{E}_{b_0}) \to$ Wh $\pi_1(\mathscr{E}_{b_0}) \oplus \cdots \oplus$ Wh $\pi_1(\mathscr{E}_{b_0})$ (*n* copies)

by sending τ in Wh $\pi_1(\mathscr{E}_{b_0})$ to $((ld - (\varphi_1)_*)\tau, \ldots, (ld - (\varphi_n)_*)\tau)$, where * as usual indicates induced homomorphisms on Whitehead groups. Choose any *h.e. h* of \mathscr{E}_{b_0} to a finite complex *K*. We define our obstruction, $\mathcal{O}_1(\mathscr{E})$, to be the image of

 $(h_*^{-1}\tau(h\varphi_1h^{-1}),\ldots,h_*^{-1}\tau(h\varphi_nh^{-1}))$

in Cokernel $(\theta) = Wh \pi_1(\mathscr{E}_{b_0}) \bigoplus \cdots \bigoplus Wh \pi_1(\mathscr{E}_{b_0})/Image(\theta)$. (Here h^{-1} is a homotopy inverse of h.)

LEMMA 5.1: $\mathcal{O}_1(\mathscr{E})$ is well defined.

PROOF: Let $g: \mathscr{E}_{b_0} \to L$ be any other *h.e.* from \mathscr{E}_{b_0} to a finite complex. We must prove that $(h_*^{-1}\tau(h\varphi_1h^{-1}), \ldots, h_*^{-1}\tau(h\varphi_nh^{-1}))$ and $(g_*^{-1}\tau(g\varphi_1g^{-1}), \ldots, g_*^{-1}\tau(g\varphi_ng^{-1}))$ have the same image in Cokernel (θ) . Let $k: L \to K$ be a *h.e.* such that $kg \simeq h$. For each *i* we have

$$h_*^{-1}\tau(h\varphi_ih^{-1}) = (kg)_*^{-1}\tau(kg\varphi_ig^{-1}k^{-1})$$

= $g_*^{-1}k_*^{-1}\tau(k) + g_*^{-1}\tau(g\varphi_ig^{-1}) + (\varphi_i)_*g_*^{-1}\tau(k^{-1}),$

where the last equality follows from the formula for the torsion of a composition (see [6, p. 72]). The same formula gives us $\tau(k) + k_*\tau(k^{-1}) = 0$. Substituting this into the above equation gives us

$$h_*^{-1}\tau(h\varphi_ih^{-1}) = g_*^{-1}\tau(g\varphi_ig^{-1}) - (ld - (\varphi_i)_*)g_*^{-1}\tau(k^{-1})$$

$$(h_*^{-1}\tau(h\varphi_1h^{-1}),\ldots,h_*\tau(h\varphi_nh^{-1}))-(g_*^{-1}\tau(g\varphi_1g^{-1}),\ldots,g_*^{-1}\tau(g\varphi_ng^{-1}))$$

lies in Image (θ).

We will need the following classification result.

LEMMA 5.2: Let $\mathscr{E} \to B$ and $\mathscr{E}' \to B$ be Hurewicz fibrations of the type described at the beginning of this section, with characteristic maps $\varphi_i: \mathscr{E}_{b_0} \to \mathscr{E}_{b_0}$ and $\varphi'_i: \mathscr{E}'_{b_0} \to \mathscr{E}'_{b_0}$. Then a h.e. h: $\mathscr{E}_{b_0} \to \mathscr{E}'_{b_0}$ extends to a f.h.e. of \mathscr{E} onto \mathscr{E}' iff h homotopy commutes with all of the characteristic maps, i.e. $\varphi'_i h \simeq h\varphi_i$ for each i.

PROOF: This follows immediately from Theorem C of [17]. \blacksquare

PROOF OF THEOREM 4: The proof naturally splits into two parts.

I. Existence. First assume that \mathscr{C} is *f.h.e.* to a fiber bundle $E \to B$ with fiber a compact Q-manifold. Let $\{\psi_i\}_{i=1}^n$ be the characteristic maps of $E \to B$. If $f: \mathscr{C} \to E$ is a *f.h.e.* and $h = f \mid \mathscr{C}_{b_0}: \mathscr{C}_{b_0} \to E_{b_0}$, then by Lemma 5.2 we have $\psi_i h \simeq h\varphi_i$, for each *i*. Up to simple homotopy type we may regard E_{b_0} as a finite complex, so in order to prove that $\mathcal{O}_1(\mathscr{C}) = 0$ it will certainly suffice to prove that $\tau(\psi_i) = 0$. Since $E \to B$ is a fiber bundle its characteristic maps may be chosen to be homeomorphisms. But homeomorphisms of Q-manifolds are always simple equivalences.

On the other hand assume that $\mathcal{O}_1(\mathscr{E}) = 0$. Then there is a compact Q-manifold N and a h.e. $h: \mathscr{C}_{b_0} \to N$ such that

$$\theta(\tau) = (h_*^{-1}\tau(h\varphi_1h^{-1}), \ldots, h_*^{-1}\tau(h\varphi_nh^{-1})),$$

for some torsion $\tau \in Wh \pi_1(\mathcal{E}_{b_0})$. Thus $(ld - (\varphi_i)_*)\tau = h_*^{-1}\tau(h\varphi_i h^{-1})$. Choose a compact Q-manifold M and a h.e. $f: N \to M$ such that $\tau(f) = -f_*h_*(\tau)$. Then we calculate (again using the composition formula):

$$\tau(fh\varphi_i(fh)^{-1}) = \tau(f) + f_*\tau(h\varphi_ih^{-1}) + f_*h_*(\varphi_i)_*h_*^{-1}\tau(f^{-1})$$

= $-f_*h_*(\tau) + f_*h_*(ld - (\varphi_i)_*)\tau + f_*h_*(\varphi_i)_*h_*^{-1}f_*^{-1}(f_*h_*(\tau))$
= 0.

Let $\psi_i = fh\varphi_i(fh)^{-1}$: $M \to M$ and let $g_i: M \to M$ be any homeomorphism homotopic to ψ_i (which exists since ψ_i has zero torsion).

Let B' be a wedge of n 1-spheres and let b'_0 be the wedge point. For each i let $T(g_i)$ be the mapping torus of g_i and let E' be the space formed by sewing the $T(g_i)$ together along their common base, M. Then we have a natural projection $p': E' \rightarrow B'$ so that

- (1) $E' \rightarrow B'$ is a fiber bundle with fiber M,
- (2) E'_{b_0} is the common base of the $T(g_i)$,
- (3) the characteristic maps of E'→B' are {g_i}ⁿ_{i=1} (corresponding to loops α'_i in B').

Let $u: B \to B'$ be a *h.e.* such that $u(b_0) = b'_0$ and $u\alpha_i \simeq \alpha'_i$, for each *i*. Form the pull-back, $E = \{(b, e') \mid u(b) = p'(e)\}$:

$$E \longrightarrow E'$$

$$p \downarrow \qquad \downarrow p'$$

$$B \xrightarrow{u} B'$$

Then $p: E \to B$ is a fiber bundle with fiber *M*. Since $g_i \simeq fh\varphi_i(fh)^{-1}$ and since the g_i are the characteristic maps of $E \to B$ we conclude by Lemma 5.2 that \mathscr{E} is *f.h.e.* to *E.*

II. Classification. Define G to be the subgroup of Wh $\pi_1(\mathscr{E}_{b_0})$ conof all elements sisting ausuch that $(n-1)\tau =$ $(ld-(\varphi_1)_*)\tau_1+\cdots+(ld-(\varphi_n)_*)\tau_n$, for torsions $\tau_i\in Wh \ \pi_1(\mathcal{E}_{b_0})$. We prove that the simple equivalence classes of compact Q-manifold fiber bundles over B which are f.h.e. to \mathscr{C} are in 1-1 correspondence with the quotient group $H = \text{Kernel } (\theta)/(\text{Kernel } (\theta) \cap G)$, where two Q-manifold fiber bundles, $E_1 \rightarrow B$ and $E_2 \rightarrow B$, are in the same simple equivalence class if there exists a simple homotopy equivalence from E_1 to E_2 which is also a *f.h.e.* Choose a fixed compact Q-manifold fiber bundle $E \rightarrow B$ and a f.h.e. $f: \mathscr{E} \rightarrow E$. Choose any other compact Q-manifold fiber bundle $E_1 \rightarrow B$ and f.h.e. $f_1: \mathscr{E} \rightarrow E_1$. Put $h = f \mid \mathscr{E}_{b_0}$ and $h_1 = f_1 \mid \mathscr{C}_{b_0}$. Then we get a h.e. $hh_1^{-1}: (E_1)_{b_0} \to E_{b_0}$ and a torsion $\tau(hh_1^{-1}) \in \mathrm{Wh} \ \pi_1(E_{b_0}).$

ASSERTION 1: $h_*^{-1}\tau(hh_1^{-1}) \in \text{Kernel}(\theta)$.

PROOF: It follows from Lemma 5.2 that $(hh_1^{-1})\psi_i^1 \simeq \psi_i(hh_1^{-1})$, for each *i*, where the ψ_i are the characteristic maps for $E \rightarrow B$ and the ψ_i^1 are the characteristic maps for $E_1 \rightarrow B$. Since $E \rightarrow B$ and $E_1 \rightarrow B$ are compact Q-manifold fiber bundles we must have $\tau(\psi_i) = \tau(\psi_i^1) = 0$. Thus

$$\tau(hh_1^{-1}) = \tau(hh_1^{-1}\psi_i^{-1}) = \tau(\psi_i hh_1^{-1}) = (\psi_i)_* \tau(hh_1^{-1}),$$

or $(ld - (\psi_i)_*)\tau(hh_1^{-1}) = 0$. Since $h\varphi_i \simeq \psi_i h$ we can easily check that $ld - (\varphi_i)_*)h_*^{-1}\tau(hh_1^{-1}) = 0$. This proves Assertion 1.

We then define $R(h_1)$ to be the image of $h_*^{-1}\tau(hh_1^{-1})$ in H. Thus R is a function from the collection of f.h.e.'s $f_1: \mathscr{C} \to E_1$ to the group H. There are several properties of R which need to be established in order to finish the proof of Theorem 4.

ASSERTION 2: R is onto.

PROOF: Choose any $\tau \in \text{Kernel}(\theta)$. Thus $(ld - (\varphi_i)_*)\tau = 0$ for each *i*. Choose a *h.e. g* of E_{b_0} to a compact *Q*-manifold *N* such that $\tau(g) = -g_*h_*(\tau)$. (Recall that $g: E_{b_0} \to N$ can be chosen so that $\tau(g^{-1}) = -g_*^{-1}\tau(g) \in \text{Wh } \pi_1(E_{b_0})$ realizes any torsion in Wh $\pi_1(E_{b_0})$.) A simple torsion calculation gives us $\tau(gh\varphi_i(gh)^{-1}) = 0$. Just as in the proof of Theorem 4 (Part I) we can construct a compact *Q*-manifold fiber bundle $E_1 \to B$ such that $(E_1)_{b_0} = N$ and a *f.h.e.* $f_1: \mathscr{C} \to E_1$ such that $h_1 = f_1 \mid \mathscr{C}_{b_0} = gh$. Then $R(f_1)$ is the image of $h_*^{-1}\tau(hh_1^{-1})$ in *H*. Computing, we have

$$h_*^{-1}\tau(hh_1^{-1}) = h_*^{-1}\tau(h(gh)^{-1}) = h_*^{-1}\tau(g^{-1}) = -h_*^{-1}g_*^{-1}\tau(g) = \tau.$$

This completes Assertion 2.

ASSERTION 3: If $f_1: \mathcal{E} \to E_1$ and $f_2: \mathcal{E} \to E_2$ are f.h.e.'s of \mathcal{E} to compact Q-manifold fiber bundles, then $f_2f_1^{-1}: E_1 \to E_2$ is a simple equivalence iff $R(f_1) = R(f_2)$.

PROOF: Assume that $f_2f_1^{-1}$ is a simple equivalence. It follows from Theorem 2.5 that $0 = \tau(f_2f_1^{-1}) = j_*(1-n)\tau(h_2h_1^{-1})$, where j is the inclusion $(E_2)_{b_0} \hookrightarrow E_2$. Using Theorem 8 we have

$$(h_2)_*^{-1}(n-1)\tau(h_2h_1^{-1}) = (ld - (\varphi_1)_*)\tau_1 + \cdots + (ld - (\varphi_n)_*)\tau_n,$$

for torsions $\tau_i \in Wh \pi_1(\mathcal{E}_{b_0})$. Thus $(h_2)^{-1}_* \tau(h_2 h_1^{-1}) \in Kernel (\theta) \cap G$. Computing, we have

$$h_*^{-1}\tau(hh_1^{-1}) - h_*^{-1}\tau(hh_2^{-1}) = \tau(h_1^{-1}) - \tau(h_2^{-1}) = (h_2)_*^{-1}\tau(h_2) + \tau(h_1^{-1})$$

= $(h_2)_*^{-1}\tau(h_2h_1^{-1}) \in \text{Kernel } (\theta) \cap G.$

This proves that $R(h_1) = R(h_2)$.

On the other hand assume that $R(f_1) = R(f_2)$. From the above calculations we see that $(h_2)_*^{-1} \tau(h_2 h_1^{-1}) \in \text{Kernel } (\theta) \cap G$. This implies that there are torsions $\tau_1, \ldots, \tau_n \in \text{Wh } \pi_1((E_2)_{b_0})$ such that

$$(n-1)\tau(h_2h_1^{-1}) = (ld - (\psi_1^2)_*)\tau_1 + \cdots + (ld - (\psi_n^2)_*)\tau_n,$$

where the ψ_i^2 are the characteristic maps for $E_2 \rightarrow B$. It follows from Theorem 2.5 that $\tau(f_2 f_1^{-1}) = j_*(1-n)\tau(h_2 h_1^{-1})$ and it follows from Theorem 9.1 that

$$j_*((ld - (\psi_1^2)_*)\tau_1 + \cdots + (ld - (\psi_n^2)_*)\tau_n) = 0.$$

6. Proof of Theorem 5

We will need some general notation. Let $f: M \to B$ be the map given in the statement of Theorem 4. Let $p: \mathscr{C} \to B$ be the mapping path fibration of $f: M \to B$ which has fiber $\mathscr{F}(f) = \mathscr{C}_{b_0}$ and let $g: M \to \mathscr{C}$ be a *h.e.* such that $pg \simeq f$.

The First Obstruction. We define our first obstruction to be

$$\mathcal{O}_1(f) = \mathcal{O}_1(\mathscr{E}) \in \text{Cokernel}(\theta),$$

where $\mathcal{O}_1(\mathscr{E})$ was defined in §5. Recall that $\mathcal{O}_1(f)$ vanishes iff \mathscr{E} is *f.h.e.* to a compact *Q*-manifold fiber bundle.

[17]

PROOF OF THEOREM 5 (Part I). We show that the vanishing of $\mathcal{O}_1(f)$ is a necessary condition for f to fiber. Assume that $f \simeq f'$, where f' is the projection map of a compact Q-manifold fiber bundle. Then by Theorem 2.2 we must have g homotopic to a f.h.e. from the bundle $f': M \rightarrow B$ to the fibration $\mathscr{E} \rightarrow B$. Thus $\mathcal{O}_1(f) = 0$.

The Second Obstruction. Assume that $\mathcal{O}_1(f) = 0$ and let $h: M \to E$ be a *h.e.* such that $qh \simeq f$, where $q: E \to B$ is a compact Q-manifold fiber bundle. Let *i* be the inclusion map $\mathscr{C}_{b_0} \hookrightarrow \mathscr{C}$ and define $\mathcal{O}_2(f)$ to be the image of the torsion $h_*^{-1}\tau(h)$ in Wh $\pi_1(M)/(1-n)g_*^{-1}i_*$ Kernel (θ).

LEMMA 6.1: $\mathcal{O}_2(f)$ is well-defined.

PROOF: Let $h_1: M \to E_1$ be an alternate choice for h. We must prove that

$$g_*h_*^{-1}\tau(h) - g_*(h_1)_*^{-1}\tau(h_1) \in (1-n)i_*$$
 Kernel (θ).

Using Theorem 2.2 we see that h_1h^{-1} is homotopic to a *f.h.e.* $\alpha: E \rightarrow E_1$. Thus by Theorem 2.5 we calculate

$$\tau(h_1h^{-1}) = \tau(h_1) - (h_1)_* h_*^{-1} \tau(h) = (1-n)\tau,$$

where τ is the torsion of the *h.e.* $h_1 h^{-1} | E_{b_0}$. It follows from the proof of Theorem 4 (Part II) that $(ld - (\psi_i)_*)\tau = 0$, for each *i*, where the ψ_i are the characteristic maps for $E_1 \rightarrow B$. So, multiplying both sides of the above equation by $g_*(h_1)_*^{-1}$ we get what we need.

PROOF OF THEOREM 5 (Part II): Assume that $f \approx f'$, where $f': M \rightarrow B$ is a compact Q-manifold fiber bundle. Since $\mathcal{O}_2(f)$ is well-defined we may choose E = M and h = id. Clearly $\mathcal{O}_2(f) = 0$.

On the other hand assume that $\mathcal{O}_2(f) = 0$. This means that $h_*^{-1}\tau(h) = g_*^{-1}(1-n)i_*(\tau)$, for some $\tau \in \text{Kernel}(\theta)$. We may write h as g_1g , where $g_1: \mathscr{E} \to E$ is a *f.h.e.* Choose a compact Q-manifold N and a *h.e.* $\alpha: E_{b_0} \to N$ such that $\tau(\alpha) = -\alpha_*((g_1)_{b_0})_*(\tau)$. Calculating we get

$$\begin{aligned} \tau(\alpha\psi_{i}\alpha^{-1}) &= \tau(\alpha) + \alpha_{*}(\psi_{i})_{*}\tau(\alpha^{-1}) \\ &= \tau(\alpha) - \alpha_{*}(\psi_{i})_{*}\alpha_{*}^{-1}\tau(\alpha) \\ &= -\alpha_{*}((g_{1})_{b_{0}})_{*}(\tau) + \alpha_{*}(\psi_{i})_{*}\alpha_{*}^{-1}\alpha_{*}((g_{1})_{b_{0}})_{*}(\tau) \\ &= -\alpha_{*}(ld - (\psi_{i})_{*})((g_{1})_{b_{0}})_{*}(\tau), \end{aligned}$$

which is zero because $\tau \in \text{Kernel}(\theta)$. (Recall that ψ_i is a characteristic map for $E \rightarrow B$, which must have 0 torsion because it can be chosen to be a homeomorphism.) Using the proof of Theorem 4 (Part

II) we can construct a compact Q-manifold fiber bundle $E_1 \rightarrow B$ such that $(E_1)_{b_0} = N$ and a f.h.e. $\tilde{\alpha} \colon E \rightarrow E_1$ extending α . Put $j \colon (E_1)_{b_0} \hookrightarrow E_1$ and calculate to get

$$\begin{aligned} \tau(\tilde{\alpha}g_1g) &= \tau(\tilde{\alpha}) + (\tilde{\alpha})_* \tau(g_1g) \\ &= j_*(1-n)\tau(\alpha) + (\tilde{\alpha})_* h_* g_*^{-1}(1-n)i_*(\tau) \\ &= -j_*(1-n)\alpha_*((g_1)_{b_0})_*(\tau) + (\tilde{\alpha})_*(g_1)_*(1-n)i_*(\tau), \end{aligned}$$

which is easily seen to be zero. Thus $\tilde{\alpha}g_1g: M \to E_1$ is homotopic to a homeomorphism which implies that f is homotopic to a compact Q-manifold fiber bundle projection.

7. Proof of Theorem 6

We first introduce some notation for this section. It follows from Theorem 2.3 that we may replace B by S^1 . Let $p: \mathscr{C} \to S^1$ be the mapping path fibration of $f: M \to S^1$, where $\mathscr{F}(f) = \mathscr{C}_{b_0}$, and let $h: M \to \mathscr{C}$ be a fixed h.e. so that $ph \simeq f$.

We use $\varphi: \mathscr{F}(f) \to \mathscr{F}(f)$ for a characteristic map corresponding to a choice of a generator for $\pi_1(S^1)$.

The First Obstruction. The first obstruction is just the obstruction $\mathcal{O}_1(f)$ of Theorem 5. We must show that the group in which $\mathcal{O}_1(f)$ lies is isomorphic to a subgroup of Wh $\pi_1(M)$. This is the group

Cokernel (
$$\theta$$
) = Wh $\pi_1 \mathcal{F}(f)/(ld - \varphi_*)$ Wh $\pi_1 \mathcal{F}(f)$.

If *i* is the inclusion map $\mathscr{F}(f) \hookrightarrow \mathscr{C}$, then it is shown in Theorem 8 that Kernel $(i_*) = (ld - \varphi_*) \operatorname{Wh} \pi_1 \mathscr{F}(f)$. Thus Cokernel (θ) is isomorphic with a subgroup of Wh $\pi_1(\mathscr{C}) \cong \operatorname{Wh} \pi_1(M)$.

The Second Obstruction. We will need some more notation. Choose a finite complex K and a h.e. $g: \mathcal{F}(f) \to K$, and let $\psi: K \to K$ be the map $g\varphi g^{-1}$. Represent S^1 by $\{e^{2\pi i t} \mid 0 \le t \le 1\}$, where $b_0 = 1$, and let $T(\psi) \to S^1$ be the natural map of the mapping torus to S^1 . The fibers of $T(\psi) \to S^1$ are all naturally identified with K.

We leave it as a manageable exercise for the reader to construct a *h.e.* $\alpha: \mathscr{C} \to T(\psi)$ such that $\alpha \mid \mathscr{C}_{b_0} = g$, α takes $\mathscr{C} \mid \{e^{2\pi i t} \mid \frac{1}{2} \le t \le 1\}$ to $T(\psi) \mid \{e^{2\pi i t} \mid \frac{1}{2} \le t \le 1\}$, and α is *f.p.* over $\{e^{2\pi i t} \mid 0 \le t \le \frac{1}{2}\}$. We then define our second obstruction to be

$$\mathcal{O}_2'(f) = h_*^{-1} \alpha_*^{-1} \tau(\alpha h) \in \mathrm{Wh} \ \pi_1(M),$$

where $h: M \to \mathscr{C}$ is as chosen above.

LEMMA 7.1: $\mathcal{O}'_2(f)$ is well-defined.

PROOF: Let $g_1: \mathscr{F}(f) \to K_1$, $\psi_1 = g_1 \varphi g_1^{-1}$, $\alpha_1: \mathscr{C} \to T(\psi_1)$ be alternate choices. We must prove that

$$h_*^{-1}\alpha_*^{-1}\tau(\alpha h) = h_*^{-1}(\alpha_1)_*^{-1}\tau(\alpha_1 h),$$

and for this it suffices to prove that $\tau(\alpha_1 \alpha^{-1}) = 0$. (Just use the formula for the torsion of a composition.)

We may choose α^{-1} so that α^{-1} takes $T(\psi) | \{e^{2\pi i t} | \frac{1}{2} \le t \le 1\}$ to $\mathscr{C} | \{e^{2\pi i t} | \frac{1}{2} \le t \le 1\}$ and α^{-1} is *f.p.* over $(e^{2\pi i t} | 0 \le t \le \frac{1}{2}\}$. Write $T(\psi) = A \cup B$ and $T(\psi_1) = A_1 \cup B_1$, where

$$A = T(\psi) \left| \left\{ e^{2\pi i t} \left| 0 \le t \le \frac{1}{2} \right\}, A_1 = T(\psi_1) \left| \left\{ e^{2\pi i t} \left| 0 \le t \le \frac{1}{2} \right\}, \right. \right. \\ B = T(\psi) \left| \left\{ e^{2\pi i t} \left| \frac{1}{2} \le t \le 1 \right\}, B_1 = T(\psi_1) \left| \left\{ e^{2\pi i t} \left| \frac{1}{2} \le t \le 1 \right\}. \right. \right. \right.$$

Then $\alpha_1 \alpha^{-1}$ restricts to give *h.e.*'s of A to A_1 , B to B_1 and $A \cap B$ to $A_1 \cap B_1$. Using the Sum Theorem for torsion we have

$$\tau(\alpha_1\alpha^{-1}) = a\tau(\alpha_1\alpha^{-1} \mid A) + b\tau(\alpha_1\alpha^{-1} \mid B) - c\tau(\alpha_1\alpha^{-1} \mid A \cap B),$$

where a, b and c are inclusion-induced homomorphisms into Wh $\pi_1 T(\psi_1)$. It is easy to see that $a\tau(\alpha_1\alpha^{-1} | A) = b\tau(\alpha_1\alpha^{-1} | B)$. Clearly $A \cap B = K' \cup K''$ (two disjoint copies of K) and $A_1 \cap B_1 = K'_1 \cup K''_1$ (two disjoint copies of K_1). Computing torsions we get

$$\tau(\alpha_1\alpha^{-1} \mid A \cap B) = \tau(\alpha_1\alpha^{-1} \mid K') + \tau(\alpha_1\alpha^{-1} \mid K''),$$

where we have omitted the necessary inclusion-induced homomorphisms. It is easy to see that

$$c\tau(\alpha_1\alpha^{-1} \mid K') = c\tau(\alpha_1\alpha^{-1} \mid K'') = a\tau(\alpha_1\alpha^{-1} \mid A),$$

and therefore $\tau(\alpha_1 \alpha^{-1}) = 0$ by the above formula.

PROOF OF THEOREM 6: We first assume that $f \approx f'$, where $f': M \rightarrow S^1$ is the projection map of a compact Q-manifold fiber bundle. It follows from the proof of Theorem 5 (Part I) that $\mathcal{O}_1(f) = 0$. By Theorem 2.2 we have $h \approx h': M \rightarrow \mathcal{E}$, where h' is a f.h.e. Since $\mathcal{O}'_2(f)$ is well-defined we may choose $\alpha: \mathcal{E} \rightarrow T(\psi) = M$ to be $(h')^{-1}: \mathcal{E} \rightarrow M$, where ψ is a characteristic homeomorphism of the bundle $f: M \rightarrow S^1$. Then $\tau(\alpha h) = 0$ and consequently $\mathcal{O}'_2(f) = 0$.

On the other hand assume that $\mathcal{O}_1(f) = 0$ and $\mathcal{O}'_2(f) = 0$. Since $\mathcal{O}_1(f) = 0$ we have a *f.h.e.* $\alpha \colon \mathscr{C} \to E$, where $E \to S^1$ is a compact Q-manifold fiber bundle. In the definition of $\mathcal{O}'_2(f)$ we may take $T(\psi) = E$. Then $\mathcal{O}'_2(f) = 0$ implies that we have $\tau(\alpha h) = 0$. Thus αh is homotopic to a homeomorphism.

8. Proof of Theorem 7

We will first need some preliminary results on homotopies. Our main result is Corollary 8.3.

LEMMA 8.1: With M and B as in the statement of Theorem 7, let $F: M \times I \rightarrow B$ be a map such that $F_0 = F_1$. Then $F \simeq G$ rel $M \times \{0, 1\}$, where $G: M \times I \rightarrow B$ is of the form $G(m, t) = r_t F_0(m)$, for some homotopy $r: B \times I \rightarrow B$ satisfying $r_0 = r_1 = ld$.

PROOF: Let $\Delta \subset B^I$ be the set of maps $\alpha: I \to B$ such that $\alpha(0) = \alpha(1)$. There is a natural map $p: \Delta \to B$ given by $p(\alpha) = \alpha(0)$. This map is a fibration. The fiber is a disjoint union of contractible open subsets (B is a $K(\pi, 1)$ and the fiber is ΩB .)

Let $\overline{\Delta}$ be the space obtained from Δ by identifying $\alpha \sim \alpha'$ iff α is homotopic to α' rel {0, 1}. Certainly $\overline{\Delta}$ is a covering space of B where the components of $\overline{\Delta}$ correspond to free homotopy classes of loops and the sheets in a component correspond to π_1 acting on based loops.

There is a natural map (the quotient) $q: \Delta \to \overline{\Delta}$ covering the identity on *B*. This map takes components in the fiber of Δ to points in the fiber of $\overline{\Delta}$ in a 1-1 fashion. By Theorem 2.1, *q* is a *f.h.e.* and has a fiber homotopy inverse, $q_1: \overline{\Delta} \to \Delta$. We can therefore find a *f.p.* deformation retraction $s: \Delta \times I \to \Delta$ such that $s_0 = ld$ and $s_1(\Delta) = q_1(\overline{\Delta})$.

Each $m \in M$ determines a loop in B by $m \to F_t(m)$, $0 \le t \le 1$. This defines a map $k: M \to \Delta$ such that $F_t(m) = k(m)(t)$. Define $\overline{G}: M \times I \to \Delta$ by $\overline{G}_u(m) = s_u k(m)$. Then $\overline{G}_0(m)[t] = F_t(m)$, $\overline{G}_u(m)[0] = \overline{G}_u(m)[1] = f(m)$ and $\overline{G}_1(m)$ is a path depending only on f(m). Defining $G_t(m) = \overline{G}_1(m)[t]$ we have a homotopy from F_0 to F_1 . Because $G_t(m)$ depends only on f(m), we can write $G_t(m) = r_t F_0(m)$, for some $r: B \times I \to B$ satisfying $r_0 = r_1 = ld$.

REMARK: The above result is true (with the same proof) for B any $K(\pi, 1)$.

LEMMA 8.2: Let us choose B as in Theorem 7 and let $r: B \times I \rightarrow B$ be a homotopy such that $r_0 = r_1 = ld$.

(1) If $n \ge 2$, then r is homotopic to the constant identity homotopy rel $B \times \{0, 1\}$.

(2) If n = 1, then r is homotopic (rel $B \times \{0, 1\}$) to a "standard rotation."

PROOF: Let \tilde{B} be the universal cover of B and cover r by \tilde{r} : $\tilde{B} \times I \to \tilde{B}$ so that $\tilde{r}_0 = ld$. \tilde{r}_1 is a deck transformation properly homotopic to ld. It is therefore the identity if $n \ge 2$. Thus, all loops $r_t(b)$, $0 \le t \le 1$, are null-homotopic for $n \ge 2$. The component of $\bar{\Delta}$ containing the null-homotopic loops covers B trivially. The cover $\bar{\Delta}$ consists of disjoint trivial sheets for n = 1. Thus an argument similar to Lemma 8.1 homotopes r to a constant for $n \ge 2$ and to a "standard rotation" for n = 1. (If $B = S^1$, a "standard rotation" is a rotation through an integral multiple of 360°. For $B \simeq S^1$, the homotopy equivalence defines a standard rotation.)

COROLLARY 8.3 Let us choose M, B as in Theorem 7 and let $g_1, g_2: M \rightarrow B$ be homotopic maps. Then any two homotopies from g_1 to g_2

(1) are homotopic (rel g_1 and g_2) for $n \ge 2$, and

(2) differ by a "standard rotation" of B for n = 1.

The First Obstruction. For convenience we will henceforth refer to the fiber bundle $f_1: M \to B$ as $f_1: M_1 \to B$. By Theorem 2.2 we see that $ld: M_1 \to M$ is homotopic to a *f.h.e.* $g: M_1 \to M$. Choose $b_0 \in B$ so that $F = M_{b_0}$. The first obstruction is $\mathcal{P}_1(f_1) = \tau(g_{b_0}) \in Wh \pi_1(F)$, where $g_{b_0}: (M_1)_{b_0} \to F$.

LEMMA 8.4: $\mathcal{P}_1(f_1)$ is well defined.

PROOF: Let $g': M_1 \to M$ be another *f.h.e.* homotopic to *ld*. Both g and g' are obtained by lifting homotopies from f_1 to f. Thus g and g_1 depend only on the homotopy class (rel f_1 and f) of the homotopy from f_1 to f. If $n \ge 2$ we conclude by Corollary 8.3 that $g' \simeq g$ and therefore $\tau(g_{b_0}) = \tau(g'_{b_0})$. For n = 1 choose a characteristic map $\varphi: F \to F$ which is a homeomorphism. By Corollary 8.3 we have $g'_{b_0} = \varphi^k g_{b_0}$, for some $k \ge 0$. Computing we get

$$\tau(g'_{b_0}) = \tau(\varphi^k) + (\varphi^k)_* \tau(g_{b_0}) = (\varphi^k)_* \tau(g_{b_0}).$$

We showed in the proof of Theorem 4 (Part II) that $(ld - \varphi_*)\tau(g_{b_0}) = 0$. Thus $\tau(g'_{b_0}) = \tau(g_{b_0})$.

The Second Obstruction. Assume that $\mathcal{P}_1(f_1) = 0$. We have $\tau(g_{b_0}) = 0$ and therefore $g_{b_0}: (M_1)_{b_0} \to F$ is homotopic to a homeomorphism $g_1: (M_1)_{b_0} \to F$. Choose characteristic maps $\varphi_i: F \to F$, $1 \le i \le n$, where each φ_i is a homeomorphism. Similarly, choose characteristic maps

 $\psi_i: F_1 \to F_1$, where $F_1 = (M_1)_{b_0}$. Define $\theta: \mathscr{P}(F) \to \mathscr{P}(F) \oplus \cdots \oplus \mathscr{P}(F)$ by

$$\boldsymbol{\theta}(\boldsymbol{h}) = (\varphi_1^{-1} \boldsymbol{h} \varphi_1 \boldsymbol{h}^{-1}, \ldots, \varphi_n^{-1} \boldsymbol{h} \varphi_n \boldsymbol{h}^{-1}).$$

It is easy to check that θ is a homomorphism since $\mathscr{P}(F)$ is abelian. We define $\mathscr{P}_2(f_1) \in \text{Cokernel}(\theta)$ to be the image of $(\varphi_1^{-1}g_1\psi_1g_1^{-1}, \ldots, \varphi_n^{-1}g_1\psi_ng_1^{-1})$ In Cokernel (θ).

LEMMA 4: $\mathcal{P}_2(f_1)$ is well-defined.

PROOF: First assume that $n \ge 2$. Then all we have to do is show that if $g_2: (M_1)_{b_0} \to F$ is another homeomorphism homotopic to $g_{b_0}: (M_1)_{b_0} \to F$, then $\alpha = (\varphi_1^{-1}g_1\psi_1g_1^{-1}, \ldots, \varphi_n^{-1}g_1\psi_ng_1^{-1})$ and $\beta = (\varphi_1^{-1}g_2\psi_1g_2^{-1}, \ldots, \varphi_n^{-1}g_2\psi_ng_2^{-1})$ have the same image in Cokernel (θ). Since $\mathscr{P}(F)$ is abelian it is easy to see that

$$\varphi_i^{-1}g_2\psi_ig_2^{-1} = (\varphi_i^{-1}(g_2g_1^{-1})\varphi_i(g_2g_1^{-1})^{-1})(\varphi_i^{-1}g_1\psi_ig_1^{-1}),$$

which implies that $\beta \alpha^{-1} = \theta(g_2 g_1^{-1})$.

For n = 1 let $g_2: (M_1)_{b_0} \to F$ be any homeomorphism homotopic to $\varphi^k g_{b_0}$. Then we must show that $\varphi^{-1} g_1 \psi g_1^{-1}$ and $\varphi^{-1} g_2 \psi g_2^{-1}$ have the same image in Cokernel (θ). We have just shown above that $\varphi^{-1} g_2 \psi g_2^{-1}$ and $\varphi^{-1} (\varphi^k g_1) \psi (\varphi^k g_1)^{-1}$ have the same image. But

$$\varphi^{-1}(\varphi^{k}g_{1})\psi(\varphi^{k}g_{1})^{-1}=\varphi^{k}(\varphi^{-1}g_{1}\psi g_{1}^{-1})\varphi^{-k},$$

and therefore

$$(\varphi^{-1}(\varphi^{k}g_{1})\psi(\varphi^{k}g_{1})^{-1})(\varphi^{-1}g_{1}\psi g_{1}^{-1})^{-1} = \varphi^{k}(\varphi^{-1}g_{1}\psi g_{1}^{-1})\varphi^{-k}(\varphi^{-1}g_{1}\psi g_{1}^{-1})^{-1}.$$

So it remains to be shown that any element of the form $\varphi^k h \varphi^{-k} h^{-1}$ lies in Image (θ), for $h \in \mathcal{P}(F)$. But this follows from interated use of the formula

$$\varphi^{k}h\varphi^{-k}h^{-1} = [\varphi(\varphi^{k-1}h\varphi^{-(k-1)})\varphi^{-1}(\varphi^{k-1}h\varphi^{-(k-1)})^{-1}][\varphi^{k-1}h\varphi^{-(k-1)}h^{-1}].$$

PROOF OF THEOREM 7: First assume that there is a f.p. homeomorphism $h: M_1 \rightarrow M$ such that $h \simeq ld$. Then $g_1 = h \mid (M_1)_{b_0}: (M_1)_{b_0} \rightarrow F$ is a homeomorphism and $\tau(h \mid (M_1)_{b_0}) = 0$. This proves that $\mathcal{P}_1(f_1) = 0$. For the second obstruction it can easily be argued from the existence of h that $g_1 \psi g_1^{-1}$ is isotopic to φ_i , for $1 \le i \le n$. (Or we can refer to [7].) Therefore $\mathcal{P}_2(f_1) = 0$.

On the other hand assume that $\mathcal{P}_1(f_1) = 0$ and $\mathcal{P}_2(f_2) = 0$. Now $\mathcal{P}_1(f_1) = 0$ implies that there is a homeomorphism $g_1: (M_1)_{b_0} \to F$ which is homotopic to $g \mid (M_1)_{b_0}: (M_1)_{b_0} \to F$, where $g: M_1 \to M$ is a *f.h.e.*

homotopic to *ld*. Now $\mathcal{P}_2(f_1) = 0$ implies that

$$(\varphi_1^{-1}g_1\psi_1g_1^{-1},\ldots,\varphi_n^{-1}g_1\psi_ng_1^{-1})=\theta(\alpha),$$

for some $\alpha \in \mathcal{P}(F)$. Thus $\varphi_i^{-1}g_1\psi_ig_1^{-1}$ is isotopic to $\varphi_i^{-1}\alpha\varphi_i\alpha^{-1}$, which implies that $(\alpha^{-1}g_1)\psi_i(\alpha^{-1}g_1)^{-1}$ is isotopic to φ_i , for each *i*. By [7] this implies that $\alpha^{-1}g_1$ extends to a *f.p.* homeomorphism of M_1 onto M.

9. Computation of a Kernel

Our main result is Theorem 8. We will first need the general construction of Lemma 9.1 below. For notation let $X \xrightarrow{f} B$ be a map and let $\tilde{B} \xrightarrow{p} B$ be a covering space. Form the pull-back,

$$\begin{split} \tilde{X} & \stackrel{\tilde{f}}{\longrightarrow} \tilde{B} \\ q \downarrow \qquad \downarrow p \\ X & \stackrel{f}{\longrightarrow} B, \end{split}$$

where $\tilde{X} = \{(x, e) \mid f(x) = p(e)\}$. Each deck transformation $\varphi \colon \tilde{B} \to \tilde{B}$ induces a deck transformation $\tilde{\varphi} \colon \tilde{X} \to \tilde{X}$ defined by $\tilde{\varphi}(x, e) = (x, \varphi(e))$.

LEMMA 9.1: Let $X_1 \xrightarrow{f_1} B$ and $X_2 \xrightarrow{f_2} B$ be maps, $\tilde{B} \xrightarrow{p} B$ be a covering space, and let $h: X_1 \rightarrow X_2$ be a homeomorphism such that $f_2h \simeq f_1$. If the pull-back \tilde{X}_1 is connected, then there exists a homeomorphism $\tilde{h}: \tilde{X}_1 \rightarrow \tilde{X}_2$ such that \tilde{h} covers h and \tilde{h} commutes with the deck transformations of \tilde{X}_1 and \tilde{X}_2 which are induced by the deck transformations of \tilde{B} .

PROOF: Since $f_2h \approx f_1$ there is a homotopy $F: \tilde{X}_1 \times I \to B$ so that F_0 is the composition $\tilde{X}_1 \xrightarrow{q_1} X_1 \xrightarrow{f_1} B$ and F_1 is the composition $\tilde{X}_1 \xrightarrow{q_1} X_1 \xrightarrow{h} X_2 \xrightarrow{f_2} B$. Note that F_0 can be lifted to $\tilde{X}_1 \xrightarrow{\tilde{f}_1} \tilde{B}$. Therefore $F: \tilde{X}_1 \times I \to B$ can be lifted to $\tilde{F}: \tilde{X}_1 \times I \to \tilde{B}$ so that $\tilde{F}_0 = \tilde{f}_1$. This induces a map $\tilde{h}: \tilde{X}_1 \to \tilde{X}_2$ defined by $\tilde{h}(x, e) = (h(x), \tilde{F}_1(x, e))$. We leave it as an exercise for the reader to check that \tilde{h} fulfills our requirements.

LEMMA 9.2: Let K be a finite complex and let $\varphi: K \to K$ be a homotopy equivalence. If $T(\varphi)$ is the mapping torus of φ and i is the natural inclusion $K \hookrightarrow T(\varphi)$, then $i_*(ld - \varphi_*) = 0$, where i_* and φ_* are the induced homomorphisms on the Whitehead groups of K and $T(\varphi)$. PROOF: Choose any torsion $\tau \in Wh \pi_1(K)$. We must prove that $i_*(\tau) = i_*\varphi_*(\tau)$. By [6] we may represent τ by a pair [L, K], where L is a finite complex containing K as a deformation retract. This means that $\tau = \tau(f)$, where $f: L \to K$ is any deformation retraction. It then follows that $\varphi_*\tau(f)$ may be represented by $[L \cup_{\varphi} K, K]$ (we assume that φ is a PL map). Applying i_* we observe that $i_*\tau(f)$ may be represented by $[L \cup_{\varphi} T(\varphi), T(\varphi)]$ and $i_*\varphi_*\tau(f)$ may be represented by $[L \cup_{\varphi} T(\varphi), T(\varphi)]$. But $if \approx i\varphi f$, and this implies that $[L \cup T(\varphi), T(\varphi)]$ and $[L \cup_{\varphi} T(\varphi), T(\varphi)]$ represent the same torsion in Wh $\pi_1(T(\varphi))$.

LEMMA 9.3: Let K be a finite connected complex and let $\varphi_i: K \to K$ be a homotopy equivalence, for $1 \le i \le n$. Define X to be the space formed by sewing the mapping tori $T(\varphi_i)$ together along $K \equiv K \times \{0\} \equiv$ $K \times \{1\}$ in $T(\varphi_i)$. Then the kernel of the inclusion-induced map $i_*: Wh \pi_1(K) \to Wh \pi_1(X)$ is

 $G = \{\tau \in \mathrm{Wh} \ \pi_1(K) \ \big| \ \tau = (ld - (\varphi_1)_*)\tau_1 + \cdots + (ld - (\varphi_n)_*\tau_n\}.$

PROOF: It follows from Lemma 9.2 that each element of G lies in the kernel of i_* . For the other half we will assume n = 2. The other cases can be treated similarly.

Choose any torsion $\tau \in Wh \pi_1(K)$ for which $i_*(\tau) = 0$. As in Lemma 9.2 we may represent τ by a pair [L, K]. The condition $i_*(\tau) = 0$ implies that the inclusion $X \hookrightarrow X \cup L$ is simple. Multiplying by Q and

applying [3, Theorem 29.4] there is a homeomorphism $h: X \times Q \rightarrow (X \cup L) \times Q$ which is homotopic to the inclusion. Using Z-set unknotting we may assume that $h \mid X \times \{0\} = id$. There is a natural map $f: X \rightarrow B = S_1^1 \cup S_2^1$ so that K is sent to the wedge point of B and $T(\varphi_i)$ is wrapped once around S_i^1 . We choose notation so that $f^{-1}(b)$ is a copy of K, for each $b \in B$, and passing down the "rays" of $T(\varphi_i)$ covers a path wrapping counterclockwise around S_i^1 . That is, in the representation $T(\varphi_i) = K \times [0, 1]/\sim$, passing from 0 to 1 corresponds to going counterclockwise around S^1 . Let $X_1 = X \cup L$ and define $f_1: X_1 \rightarrow B$ by the composition $X_1 \longrightarrow X \xrightarrow{f} B$, where the first map is obtained by taking a deformation retraction of L onto K. Above is a picture of X_1 , where L is represented by a segment added to $K = T(\varphi_1) \cap T(\varphi_2)$.

Form the pull-backs as in Lemma 9.1,

$$\begin{split} \tilde{X} & \xrightarrow{\tilde{f}} \tilde{B} & \tilde{X}_1 & \xrightarrow{f_1} \tilde{B} & \swarrow \\ \downarrow & \downarrow p & \downarrow & \downarrow p \\ X & \xrightarrow{f} B & X_1 & \xrightarrow{f_1} B, \end{split}$$

where \tilde{B} is the universal covering space of B. The homeomorphism h lifts to a homeomorphism $\tilde{h}: \tilde{X} \times Q \to \tilde{X}_1 \times Q$ for which $\tilde{h} \mid \tilde{X} \times \{0\} = id$ and \tilde{h} commutes with the deck transformations of $\tilde{X} \times Q$ and $\tilde{X}_1 \times Q$ which are induced by the deck transformations of \tilde{B} .

 \overline{B} is a 1-complex such that p takes each vertex to the wedge point of B and p wraps each 1-simplex once around S_1^1 or S_2^1 . Let A_1 be the following subset of the plane.

We may identify A_1 with a subcomplex of \tilde{B} so that p wraps the horizontal 1-simplexes in A_1 around S_1^1 and the vertical 1-simplexes around S_2^1 . Choose notation so that the positive directions on A_1 correspond to the clockwise directions on S_1^1 and S_2^1 . Let T_1 be the

deck transformation of \tilde{B} taking (0, 0) to (1, 0) and let T_2 be the deck transformation taking (0, 0) to (0, 1).

Let

$$A_{1/2} = ([-\frac{1}{2}, \frac{1}{2}] \times \{0\}) \cup (\{0\} \times [-\frac{1}{2}, \frac{1}{2}]) \subset A_1$$

and choose a finite connected subcomplex A_n of \tilde{B} so large that

$$A' = \tilde{h}^{-1}(\tilde{f}_1^{-1}(A_{1/2}) \times Q) \subset \operatorname{Int} \tilde{f}^{-1}(A_n) \times Q.$$

Let $A = \tilde{f}^{-1}(A_{1/2}) \times Q$. Then A and A' divide $\tilde{f}^{-1}(A_n) \times Q$ into components as pictured.

The components are named so that $B_i \cap (\tilde{X} \times \{0\}) = B'_i \cap (\tilde{X} \times \{0\})$, $A \cap B_1 = \tilde{f}^{-1}(\{-\frac{1}{2}, 0\}) \times Q$, $A \cap B_2 = \tilde{f}^{-1}(\{(\frac{1}{2}, 0)\}) \times Q$, $A \cap B_3 = \tilde{f}^{-1}(\{(0, -\frac{1}{2})\}) \times Q$, and $A \cap B_4 = \tilde{f}^{-1}(\{(0, \frac{1}{2})\}) \times Q$. Additionally, define $K_i = A \cap B_i \cap (\tilde{X} \times \{0\})$) and note that each K_i has a standard identification with K. We observe that the pair $[A, K_1]$ represents the 0 torsion of Wh $\pi_1(K)$ and $[A', K_1]$ represents the given torsion $\tau \in Wh \pi_1(K)$.

An easy torsion calculation gives us

$$(*)[f^{-1}(A_n) \times Q, K_1] = [B'_1, K] + (A', K] + (\varphi_1)_*[B'_2, K] + [B'_3, K] + (\varphi_2)_*[B'_4, K].$$

Let $S_i: \tilde{X} \times Q \to \tilde{X} \times Q$ be the deck transformation induced by T_i . Since \tilde{h} commutes with the induced deck transformations we observe that

$$B'_1 \cup S_1^{-1}(B'_2) = B_1 \cup S_1^{-1}(B_2),$$

$$B'_3 \cup S_2^{-1}(B'_4) = B_3 \cup S_2^{-1}(B_4).$$

Thus

$$[B_1 \cup S_1^{-1}(B_2), K] = [B'_1, K] + [S_1^{-1}(B'_2), K],$$

$$[B_3 \cup S_2^{-1}(B_4), K] = [B'_3, K] + [S_2^{-1}(B'_4), K].$$

It is easy to see that $[S_1^{-1}(B_2'), K] = [B_2', K]$ and $[S_2^{-1}(B_4'), K] = [B_4', K]$. Substituting all this in (*) above we get

$$(**)[\bar{f}^{-1}(A_n) \times Q, K_1] - [B_1 \cup S_1^{-1}(B_2), K] - [B_3 \cup S_2^{-1}(B_4), K]$$

= $((\varphi_1)_* - ld)[B'_2, K] + ((\varphi_2)_* - ld)[B'_4, K] + [A', K_1].$

We now compute the left-hand side of (**). Note that

$$[B_1 \cup S_1^{-1}(B_2), K] = [B_1, K] + [B_2, K],$$
$$[B_3 \cup S_2^{-1}(B_4), K] = [B_3, K] + [B_4, K],$$
$$[\tilde{f}^{-1}(A_n) \times Q, K_1] = [B_1, K] + (\varphi_1)_* [B_2, K] + [B_3, K] + (\varphi_2)_* [B_4, K].$$

Substituting this into (**) above we get

$$((\varphi_1)_* - ld)[B_2, K] + ((\varphi_2)_* - ld)[B_4, K] = ((\varphi_1)_* - ld)[B'_2, K] + ((\varphi_2)_* - ld)[B'_4, K] + [A', K_1].$$

This is all we need.

THEOREM 8: Let $\mathscr{C} \to B$ be a Hurewicz fibration, where B is h.e. to a wedge of n 1-spheres and the fiber $F = \mathscr{C}_{b_0}$ is h.e. to a finite connected complex. If i is the inclusion map $F \hookrightarrow \mathscr{C}$ and $\{\varphi_i\}_{i=1}^n$ is the collection of characteristic maps $\varphi_i \colon F \to F$, then the kernel of $i_* \colon Wh \pi_1(F) \to$ Wh $\pi_1(\mathscr{C})$ is

$$\{\tau \in \mathrm{Wh} \ \pi_1(F) \mid \tau = (ld - (\varphi_1)_*)\tau_1 + \cdots + (ld - (\varphi_n)_*)\tau_n\}.$$

PROOF: By taking a *h.e.* of a wedge of *n* 1-spheres to *B* and forming the pull-back, we may assume that *B* is a wedge of *n* 1-spheres, $B = S_1^1 \cup \cdots \cup S_n^1$. Choose $b_0 \in B$ to be the wedge point and let $\varphi_i: F \to F$ be the characteristic maps. Let $\alpha: \mathscr{C}_{b_0} \to K$ be a *h.e.* of \mathscr{C}_{b_0} to a finite complex. Define $\psi_i = \alpha \varphi_i \alpha^{-1}: K \to K$ and form the space $X \to B$ of Lemma 9.3. We leave it as a manageable exercise for the reader to construct a *h.e.* $\beta: \mathscr{C} \to X$ such that

$$\begin{array}{c} \mathscr{E} \xrightarrow{\beta} X \\ i \stackrel{j}{\longrightarrow} J \\ \mathscr{E}_{b_0} \xrightarrow{} X_{b_0} \end{array}$$

homotopy commutes. Then Kernel $(i_*) = \text{Kernel } (j_*\alpha_*)$ and all we need is Lemma 9.3.

REFERENCES

- [1] D.R. ANDERSON: The Whitehead torsion of a fiber-homotopy equivalence. Michigan Math. J. 21 (1974) 171-180.
- [2] A.J. CASSON: Fibrations over spheres. Topology 6 (1967) 489-499.
- [3] T.A. CHAPMAN: Lectures on Hilbert cube manifolds. C.B.M.S. Regional Conf. Series in Math. 28, 1976.
- [4] T.A. CHAPMAN: Concordances of Hilbert cube manifolds. T.A.M.S. 219 (1976) 253-268.
- [5] T.A. CHAPMAN and R.Y.T. WONG: On homeomorphisms of infinite-dimensional bundles III. Trans. A.M.S. 191 (1974) 269-276.
- [6] M. COHEN: A course in simple-homotopy theory. Springer Verlag, New York, 1970.
- [7] ALBRECHT DOLD: Uber fasernweise Homotopieaquivalenz von Faserraumen. Math. Zeit. 62 (1955) 111-136.
- [8] EDWARD FADELL: On fiber homotopy equivalence. Duke Math. J. (1959) 699-706.
- [9] F.T. FARRELL: The obstruction to fibering a manifold over the circle. Doctoral Dissertation, Yale University, 1967.
- [10] F.T. FARRELL: The obstruction to fibering a manifold over the circle. Actes, Congres Intern, Math. (1970) 69-72.
- [11] A.E. HATCHER: Higher simple homotopy theory. Annals of Math. 102 (1975) 101-137.
- [12] A.E. HATCHER and J. WAGONER: Pseudo-isotopies of compact manifolds. *Asterisque 6* (1973).
- [13] C. KURATOWSKI: Sur les espaces localement connexes et péaniens en dimension n. Fund. Math. 24 (1935) 269-287.
- [14] J.P. MAY: Classifying spaces and fibrations. Memoirs A.M.S., no. 155, 1975.
- [15] J. MILNOR: On spaces having the homotopy type of a CW-complex. Trans. A.M.S. 90 (1959) 272-280.
- [16] E.H. SPANIER: Algebraic topology. McGraw-Hill Book Co., New York, 1966.
- [17] JAMES D. STASCHEFF: Parallel transport in fiber spaces. Bol. Soc. Mat. Mexicana 11 (1966) 68-84.

(Oblatum 4-VI-1976 and 22-II-1977)

Department of Mathematics University of Kentucky Lexington, Kentucky 40506