Compositio Mathematica

T. A. ChAPMAN
\section*{Steve Ferry}
Fibering Hilbert cube manifolds over ANRs

Compositio Mathematica, tome 36, $\mathrm{n}^{\mathrm{o}} 1$ (1978), p. 7-35
http://www.numdam.org/item?id=CM_1978__36_1_7_0
© Foundation Compositio Mathematica, 1978, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

FIBERING HILBERT CUBE MANIFOLDS OVER ANRs

T.A. Chapman and Steve Ferry

1. Introduction

By a Q-manifold we will mean a separable metric manifold modeled on the Hilbert cube Q. Let $f: M \rightarrow B$ be a map of a Q-manifold to an ANR. In this paper we will be concerned with the following question: Does f fiber, i.e. is f homotopic to the projection map of a fiber bundle $M \rightarrow B$ with fiber a Q-manifold? In general it is not true that f fibers. For example, a constant map $Q \rightarrow S^{1}$ does not fiber. In Theorem 1 below we treat the $[0,1)$-stable case in which f always fibers, while Theorems 3-7 indicate some of the problems one encounters in the compact cases.

Theorem 1 is not terribly surprising. It is an extension of the well known result that Q manifolds which have the form $M \times[0,1)$ are homeomorphic if and only if they are homotopy equivalent (see [3, Chapter V]).

Theorem 1: If $f: M \rightarrow B$ is a map of a Q-manifold to a locally compact ANR, then the composition $M \times[0,1) \xrightarrow{\text { proj }} M \xrightarrow{f} B$ fibers.

Of course, there is an analogue of this result for l_{2}-manifolds, where l_{2} is separable infinite-dimensional Hilbert space.

Theorem 2: If $f: M \rightarrow B$ is a map of an l_{2}-manifold to a topologically complete separable metric ANR, then fibers.

In the compact cases below we immediately encounter obstructions to repeating the proofs of Theorems 1 and 2. By making enough connectivity assumptions so that these obstructions vanish, we obtain the following result. See $\S 2$ for a review of the undefined terms.

Theorem 3: Let $f: M \rightarrow B$ be a map of a compact Q -manifold to a compact, connected ANR B which is simple homotopy equivalent to a finite n-complex. If the homotopy fiber $\mathscr{F}(f)$ of f is homotopy equivalent to a finite n-connected complex K, then there is an obstruction in the Whitehead group $\mathrm{Wh} \pi_{1}(M)$ which vanishes iff f fibers. Moreover, if $n=1$ we only need assume that $\mathrm{Wh} \pi_{1}(K)=0$, and if $n=2$ we only need assume that K is 1 -connected.

As a special case of Theorem 3 we obtain an infinite-dimensional version of Casson's fibering theorem [2].

Corollary: If $M \rightarrow S^{2}$ is a map of a compact Q-manifold to S^{2} such that $\mathscr{F}(f)$ is homotopy equivalent to a finite 1-connected complex, then f fibers.

In Theorems 4-7 we specialize to the cases in which the base B is homotopy equivalent to a wedge of 1 -spheres. The main tool is given in Theorem 4 and the main result is given in Theorem 5.

Theorem 4: Let (\mathscr{E}, p, B) be a Hurewicz fibration such that B is a compact ANR homotopy equivalent to a wedge of $n 1$-spheres and the fiber F is homotopy equivalent to a finite connected complex. Then \mathscr{E} is fiber homotopy equivalent to a compact Q-manifold fiber bundle over B iff an obstruction lying in a quotient of the direct sum of n copies of $\mathrm{Wh} \pi_{1}(F)$ vanishes. Given that this obstruction vanishes, there is a 1-1 correspondence between simple equivalence classes of such bundles and a quotient of a subgroup of $\mathrm{Wh} \pi_{1}(F)$.

For an explanation of the last sentence in the above statement we refer the reader to $\S 5$.

Theorem 5: Let $f: M \rightarrow B$ be a map of a compact Q-manifold to a compact ANR which is homotopy equivalent to a wedge of n 1spheres and assume that the homotopy fiber $\mathscr{F}(f)$ is homotopy equivalent to a finite connected complex. There are two obstructions to f fibering. The first one lies in a quotient of the direct sum of n copies of $\mathrm{Wh} \pi_{1} \mathscr{F}(f)$. If this obstruction vanishes, the second one is defined and lies in a quotient of $\mathrm{Wh} \pi_{1}(M)$.

In Theorem 6 we treat the special case of Theorem 5 in which B is homotopy equivalent to S^{1}. Here the situation is considerably simplified and what we obtain is an infinite-dimensional version of Farrell's fibering theorem [10].

Theorem 6: Let $f: M \rightarrow B$ be a map of a compact Q-manifold to a compact ANR which is homotopy equivalent to S^{1} and for which the homotopy fiber $\mathscr{F}(f)$ is homotopy equivalent to a finite connected complex. There are two obstructions to f fibering. They are independently defined and both lie in $\mathrm{Wh} \pi_{1}(M)$.

We remark that one of the obstructions obtained here is just Farrell's obstruction for the finite-dimensional case, but the infinitedimensional nature of the problem requires another obstruction.

Finally, in Theorem 7 we classify equivalence classes of Q-manifold fiber bundle projections over nice ANRs.

Theorem 7: Let $f, f_{1}: M \rightarrow B$ be homotopic compact Q-manifold fiber bundle projections, where B is a compact ANR homotopy equivalent to a wedge of $n 1$-spheres, and let F be the connected fiber of $f: M \rightarrow B$. There are two obstructions to finding a homeomorphism $h: M \rightarrow M$ such that $f h=f_{1}$ and h is homotopic to the identity. The first lies in $\mathrm{Wh} \pi_{1}(F)$, and if it vanishes the second is defined and lies in a quotient of the direct sum of n copies of $\mathscr{P}(F)$.

Here $\mathscr{P}(F)$ is the group of all isotopy classes of homeomorphisms of F to itself which are homotopic to the identity. It is a quotient of π_{0} of the concordance group of F, which has been algebraically investigated by [12]. See $\S 2$ for further details.

We now say a few words about the organization of the material in this paper. §2 contains some preliminary results and in §3 we prove Theorems 1 and 2 . In §§4-8 we prove Theorems $3-7$. In $\S 9$ we prove a result (Theorem 8) which calculates the kernel of a certain map of Whitehead groups. This generalizes a result of Farrell [9]. Theorem 8 may be paraphrased as follows. Let (\mathscr{E}, p, B) be a Hurewicz fibration, where B is a finite wedge of 1 -spheres and the fiber F has the homotopy type of a finite complex. If i is the inclusion map $i: F \hookrightarrow \mathscr{E}$, then Theorem 8 computes the kernel of

$$
i_{*}: \mathrm{Wh} \pi_{1}(F) \rightarrow \mathrm{Wh} \pi_{1}(\mathscr{E}) .
$$

The constructions in $\S 9$ are made more geometric by replacing \mathscr{E} with a finite "wedge" of mapping tori.

2. Preliminaries

If $p: E \rightarrow B$ is a map and $B_{1} \subset B$, we use $E \mid B_{1}$ to denote $p^{-1}\left(B_{1}\right)$ and we let $E_{b}=p^{-1}(b)$, for each $b \in B$. If $p^{\prime}: E^{\prime} \rightarrow B$ is another map,
then $f: E \rightarrow E^{\prime}$ is said to be fiber preserving (f.p.) provided that $f\left(E_{b}\right)=E_{b}^{\prime}$, for each $b \in B$. The restriction of f to E_{b} is denoted by $f_{b}: E_{b} \rightarrow E_{b}^{\prime}$. A f.p. map $f: E \rightarrow E^{\prime}$ is said to be a fiber homotopy equivalence (f.h.e.) if there exists a $f . p$. map $g: E^{\prime} \rightarrow E$ such that $f g$ and $g f$ are f.p. homotopic to their respective identities. We will abbreviate ordinary homotopy equivalence by h.e.

If $f: E \rightarrow B$ is any map, where B is path connected, then we define

$$
\mathscr{E}(f)=\left\{(e, \omega) \in E \times B^{I} \mid f(e)=\omega(0)\right\}
$$

(B^{I} is the space of paths in B.) Define $p: \mathscr{E}(f) \rightarrow B$ by $p(e, \omega)=\omega(1)$. $p: \mathscr{E}(f) \rightarrow B$ is the mapping path fibration of $f: E \rightarrow B$. There is a h.e. $g: E \rightarrow \mathscr{E}(f)$ such that $p g \simeq f$. For any $b_{0} \in B$, the fiber of $\mathscr{E}(f)$ over b_{0} is

$$
\mathscr{F}(f)=p^{-1}\left(b_{0}\right)=\left\{(e, \omega) \mid f(e)=\omega(0), \omega(1)=b_{0}\right\} .
$$

$\mathscr{F}(f)$ is called the homotopy fiber of $f: E \rightarrow B$.
The following result will be used several times in the sequel. For a proof see [8] for the case in which B is a countable complex and see [14] for the general case.

Theorem 2.1: Let $p: E \rightarrow B, p^{\prime}: E^{\prime} \rightarrow B$ be Hurewicz fibrations, where B is a connected ANR, and let $h: E \rightarrow E^{\prime}$ be a f.p. map such that $h_{b_{0}}: E_{b_{0}} \rightarrow E_{b_{0}}^{\prime}$ is a h.e., for some $b_{0} \in B$. Then h is a f.h.e.

The above result gives us the following useful theorem.

Theorem 2.2: Let $p: E \rightarrow B, p^{\prime}: E^{\prime} \rightarrow B$ be Hurewicz fibrations, where E, B and all the fibers have the homotopy types of countable complexes. If $f: E \rightarrow E^{\prime}$ is a h.e. such that $p^{\prime} f \simeq p$, then f is homotopic to a f.h.e.

Proof: Assume that B is connected and choose $b_{0} \in B, e_{0} \in E_{b_{0}}$. The condition $p^{\prime} f \simeq p$ gives us a homotopy $H: E \times I \rightarrow B$ such that $H_{0}=p$ and $H_{1}=p^{\prime} f$. Lifting H we get a homotopy $\tilde{H}: E \times I \rightarrow E^{\prime}$ for which $\tilde{H}_{1}=f$. Then $g=\tilde{H}_{0}: E \rightarrow E^{\prime}$ is homotopic to f and g is f.p. The homotopy exact sequences of the two fibrations give us a commutative diagram,

$$
\begin{array}{cccc}
\cdots \rightarrow \pi_{n+1}\left(E, e_{0}\right) \rightarrow \pi_{n+1}\left(B, b_{0}\right) \rightarrow \pi_{n}\left(E_{b_{0}}, e_{0}\right) \rightarrow \pi_{n}\left(E, e_{0}\right) \rightarrow \pi_{n}\left(B, b_{0}\right) \rightarrow \cdots \\
\downarrow g_{*} & \downarrow l d & \downarrow g_{b_{0}} & \downarrow g_{*} \\
\cdots \rightarrow \pi_{n+1}\left(E^{\prime}, e_{0}^{\prime}\right) \rightarrow \pi_{n+1}\left(B, b_{0}\right) \rightarrow \pi_{n}\left(E_{b_{0}}^{\prime}, e_{0}^{\prime}\right) \rightarrow \pi_{n}\left(E^{\prime}, e_{0}^{\prime}\right) \rightarrow \pi_{n}\left(B, b_{0}\right) \rightarrow \cdots
\end{array}
$$

Here $e_{0}^{\prime}=g\left(e_{0}\right)$ and by the five lemma $\left(g \mid E_{b_{0}}\right)_{*}$ is a h.e. Then we apply Theorem 2.1.

In the sequel we will need a considerable amount of Q-manifold machinery. Our basic reference for this is [3]. It would be time consuming to give a complete description of the material from [3] which we will need, but here is a list of some of the highlights.

1. Z-sets and Z-set unknotting ([3, Theorem 19.4]).
2. The classification theorem for simple equivalences in terms of homeomorphisms on Q-manifolds ([3, Theorem 38.1]).
3. The triangulation theorem for Q-manifolds ([3, Theorem 36.2]).
4. The ANR theorem, which says that every locally compact ANR times Q is a Q-manifold ([3, Theorem 44.1]).
It will be convenient to know how to change bases in fibering problems.

Theorem 2.3: Consider $f: M \rightarrow B$, where M is a compact Q-manifold, and B is a compact ANR, and let $g: B \rightarrow B^{\prime}$ be a simple equivalence of B to another compact ANR. Then fibers iff gf fibers.

Proof: Since $g: B \rightarrow B^{\prime}$ is a simple equivalence we have a homeomorphism $\beta: B \times Q \rightarrow B^{\prime} \times Q$ which is homotopic to $g \times l d$. Choose a homeomorphism $\alpha: M \times Q \rightarrow M$ homotopic to the projection map. Assuming that f fibers we have a fiber bundle projection map $p: M \rightarrow B$. It is easy to check that the composition

$$
M \xrightarrow{\alpha^{-1}} M \times Q \xrightarrow{p \times l d} B \times Q \xrightarrow{\beta} B^{\prime} \times Q \xrightarrow{\text { pros }} B^{\prime}
$$

is a fiber bundle projection homotopic to $g f$.

In a similar fashion we can establish the following [0, 1)-stable result.

Theorem 2.4: Consider $f: M \rightarrow B$, where M is a Q-manifold and B is a locally compact ANR, and let $g: B \rightarrow B^{\prime}$ be a h.e. of B to another locally compact ANR. Then $M \times[0,1) \xrightarrow{\text { pros }} M \xrightarrow{f} B$ fibers iff $M \times[0,1) \xrightarrow{\text { prol }} M \xrightarrow{f} B \xrightarrow{g} B^{\prime}$ fibers.

Here is a mild generalization of Anderson's result [1] to fiber bundles over ANRs. The result is also true for ANR Hurewicz fibrations over ANRs.

Theorem 2.5: Let $p_{1}: E_{1} \rightarrow B$ and $p_{2}: E_{2} \rightarrow B$ be compact Q-mani-
fold fiber bundles such that B is a compact connected ANR and let $f: E_{1} \rightarrow E_{2}$ be a f.h.e. If $b_{0} \in B$, then $\tau(f)=i_{*} \chi(B) \tau\left(f \mid\left(E_{1}\right)_{b_{0}}\right)$, where $\chi(B)$ is the Euler characteristic of B and i is the inclusion $\left(E_{2}\right)_{b_{0}} \hookrightarrow E_{2}$, and τ denotes Whitehead torsion.

Proof: For the moment assume that B is a finite complex. Choose any other basepoint $b_{1} \in B$. We will first prove that $j_{*} \tau\left(f \mid\left(E_{1}\right)_{b_{1}}\right)=$ $i_{*} \tau\left(f \mid\left(E_{1}\right)_{b_{0}}\right)$, where $j:\left(E_{2}\right)_{b_{1}} \hookrightarrow E_{2}$. Choose a path $\omega: I \rightarrow B$ from b_{0} to b_{1}. Over $\omega(I)$ we have trivial bundles. This induces homeomorphisms $\alpha:\left(E_{1}\right)_{b_{0}} \rightarrow\left(E_{1}\right)_{b_{1}}$ and $\beta:\left(E_{2}\right)_{b_{0}} \rightarrow\left(E_{2}\right)_{b_{1}}$ so that α is homotopic to $\left(E_{1}\right)_{b_{0}} \hookrightarrow E_{1}$ and β is homotopic to $\left(E_{2}\right)_{b_{0}} \hookrightarrow E_{2}$. Thus we have a homotopy commutative diagram,

$$
\left.\begin{array}{c}
\left(E_{1}\right)_{b_{0}} \xrightarrow{\alpha}\left(E_{1}\right)_{b_{1}} \\
f \mid \downarrow \\
\left(E_{2}\right)_{b_{0}} \xrightarrow{\beta} \downarrow f \mid \\
\hline
\end{array} E_{2}\right)_{b_{1}} .
$$

Since $\tau(\alpha)=0$ and $\tau(\beta)=0$ we have $\tau\left(f \mid\left(E_{1}\right)_{b_{1}}\right)=\beta_{*} \tau\left(f \mid\left(E_{1}\right)_{b_{0}}\right)$. Since $j \beta \simeq i$ we get $j_{*} \tau\left(f \mid\left(E_{1}\right)_{b_{1}}\right)=i_{*} \tau\left(f \mid\left(E_{1}\right)_{b_{0}}\right)$. Moreover, if Δ is any simplex in B we can also prove that $\tau\left(f \mid\left(E_{1}\right)_{b_{0}}\right)$ and $\tau\left(f \mid\left(E_{1} \mid \Delta\right)\right)$ have the same image in $\mathrm{Wh} \pi_{1}\left(E_{2}\right)$. This follows because if $b_{1} \in \Delta$, then we have a homotopy commutative diagram

$$
\begin{gathered}
\left(E_{1}\right)_{b_{1}} \hookrightarrow E_{1} \mid \Delta \\
f|\downarrow \quad \downarrow f| \\
\left(E_{2}\right)_{b_{1}} \hookrightarrow E_{2} \mid \Delta,
\end{gathered}
$$

where the inclusions are simple equivalences.
We now begin the proof. Let $\operatorname{dim} B=n$ and let B^{\prime} be the $(n-1)$ skeleton of B, where $b_{0} \in B^{\prime}$. Then we get restricted fiber bundles

$$
p_{1}^{\prime}: E_{1}\left|B^{\prime} \rightarrow B^{\prime}, \quad p_{2}^{\prime}: E_{2}\right| B^{\prime} \rightarrow B^{\prime},
$$

and a f.h.e. $f^{\prime}=f\left|\left(E_{1} \mid B^{\prime}\right): E_{1}\right| B^{\prime} \rightarrow E_{2} \mid B^{\prime}$. We inductively assume that $\tau\left(f^{\prime}\right)=\left(i^{\prime}\right)_{*} \chi\left(B^{\prime}\right) \tau\left(f \mid\left(E_{1}\right)_{b_{0}}\right)$, where $i^{\prime}:\left(E_{2}\right)_{b_{0}} \hookrightarrow E_{2} \mid B^{\prime}$. Let $\left\{\Delta_{i}\right\}_{i=1}^{k}$ be the n-simplexes of B. Using the Sum Theorem [6, p. 76] we have

$$
\tau(f)=\chi\left(B^{\prime}\right) \tau\left(f \mid\left(E_{1}\right)_{b_{0}}\right)+k \tau\left(f \mid\left(E_{1}\right)_{b_{0}}\right)-\left(\sum_{i=1}^{k} \chi\left(\partial \Delta_{i}\right) \tau\left(f \mid\left(E_{1}\right)_{b_{0}}\right)\right)
$$

where we have omitted obvious inclusion-induced maps. Since

$$
\chi\left(B^{\prime}\right)+k-\sum_{i=1}^{k} \chi\left(\partial \Delta_{i}\right)=\chi(B)
$$

we are done for the case in which B is a finite complex. For the remainder of the proof we show how to reduce the general case to this case.

Our first observation is that if B is any compact Q-manifold, then the above proof goes through. We just replace B by $K \times Q$, for some finite complex K, and argue inductively over the skeleta of K times Q. More generally, if we multiply everything by Q we obtain Q manifold fiber bundles $E_{i} \times Q \rightarrow B \times Q$, where $B \times Q$ must be a Q manifold. We get a f.h.e. $f \times l d: E_{1} \times Q \rightarrow E_{2} \times Q$. The above special case implies that

$$
\tau(f \times l d)=\left(i^{\prime}\right)_{*} \chi(B) \tau\left((f \times l d) \mid\left(E_{1}\right)_{b_{0}} \times Q\right)
$$

where i^{\prime} is inclusion. Projecting back to E_{2} we get $\tau(f)=$ $i_{*} \chi(B) \tau\left(f \mid\left(E_{1}\right)_{b_{0}}\right)$ and we are done.

Corollary 2.6: With $p_{i}: E_{i} \rightarrow B$ as above let $g: E_{1} \rightarrow E_{2}$ be a map such that $p_{2} g \simeq p_{1}$ and assume that $\mathrm{Wh} \pi_{1}\left(\left(E_{1}\right)_{b_{0}}\right)=0$. If g is a h.e., then g is a simple equivalence.

Proof: Using Theorem 2.2 we have $g \simeq g^{\prime}$, where g^{\prime} is a f.h.e. Then

$$
\tau(g)=\tau\left(g^{\prime}\right)=i_{*} \chi(B) \tau\left(g^{\prime} \mid\left(E_{1}\right)_{b_{0}}\right)
$$

and $\tau\left(g^{\prime} \mid\left(E_{1}\right)_{b_{0}}\right) \in \mathrm{Wh} \pi_{1}\left(E_{2}\right)_{b_{0}} \cong \mathrm{~Wh} \pi_{1}\left(E_{1}\right)_{b_{0}}=0$.
We will also need the notion of a mapping torus. For any compactum X and map $\varphi: X \rightarrow X$, the mapping torus of φ is the compactum

$$
T(\varphi)=X \times[0,1] / \sim
$$

where \sim is the equivalence relation generated by $(x, 0) \sim(\varphi(x), 1)$. It is clear that there is a natural map $T(\varphi) \rightarrow S^{1}$ so that each pointinverse is naturally identified with X.

Finally we introduce the group $\mathscr{P}(M)$ needed in Theorem 7. For any compact Q-manifold M let $\mathscr{P}(M)$ denote the group of isotopy classes of homeomorphisms of M which are homotopic to the identity. Here are some facts about $\mathscr{P}(M)$ which appear either explicitly or implicitly in [4].

1. If M is 1 -connected, then $\mathscr{P}(M)$ is trivial.
2. $\mathscr{P}\left(S^{1} \times Q\right) \cong Z_{2} \oplus Z_{2} \oplus \cdots$,
3. If M is h.e. to N, then $\mathscr{P}(M) \cong \mathscr{P}(N)$.
4. $\mathscr{P}(M)$ is always abelian.

If $h: M \rightarrow M$ is a homeomorphism homotopic to the identity, then h determines an isotopy class of homeomorphisms in $\mathscr{P}(M)$. To save notation we will identify h with this isotopy class in $\mathscr{P}(M)$. Thus in §8 a statement such as $f=g$ actually means that f is isotopic to g, where f and g are homeomorphisms homotopic to the identity.

3. Proofs of Theorems 1 and 2

We begin with the proof of Theorem 1. The basic step is the following result.

Lemma 3.1: Let N be a Q-manifold, $E \rightarrow S^{n}$ be a fiber bundle with fiber $N \times[0,1)$, and let $f: S^{n} \times N \times[0,1) \in E$ be a f.h.e. Then f is fiber homotopic to a homeomorphism.

Proof: Using Theorem 4.1 of [5] there is a $f . p$. embedding $g: S^{n} \times$ $N \times[0,1) \rightarrow E$ such that each $g_{x}: N \times[0,1) \rightarrow E_{x}$ is a Z-embedding and such that g is fiber homotopic to f. Let $S^{n} \times N \times[0,1)$ be identified with $S^{n} \times N \times[0,1) \times\{0\}$ in $S^{n} \times N \times[0,1) \times I$. Our strategy is to show that we have a $f . p$. homeomorphism of pairs,

$$
\left(E, g\left(S^{n} \times N \times[0,1)\right)\right) \cong\left(S^{n} \times N \times[0,1) \times I, S^{n} \times N \times[0,1)\right)
$$

This implies that the inclusion $g\left(S^{n} \times N \times[0,1)\right) \hookrightarrow E$ is fiber homotopic to a homeomorphism, thus completing the proof of our lemma. Let $D^{n} \subset S^{n}$ be any n-cell.

ASSERTION: There exists a f.p. homeomorphism of $D^{n} \times N \times$ $[0,1) \times I$ onto $E \mid D^{n}$ which agrees with g on $D^{n} \times N \times[0,1)$.

Proof of Assertion: Choose any f.p. homeomorphism $\alpha: D^{n} \times$ $N \times[0,1) \times I \rightarrow E \mid D^{n}$. We must replace α by α^{\prime} so that $\alpha^{\prime} \mid D^{n} \times N \times$ $[0,1)=g$. Consider the f.p. Z-embedding

$$
g_{1}=\alpha^{-1} g: D^{n} \times N \times[0,1) \rightarrow D^{n} \times N \times[0,1) \times I .
$$

It will suffice to construct a $f . p$. homeomorphism of $D^{n} \times N \times[0,1] \times I$ onto itself which extends g_{1}.

We now use the fact that g_{1} is a f.h.e. Choose any $b_{0} \in D^{n}$ and consider $\left(g_{1}\right)_{b_{0}}: N \times[0,1) \rightarrow N \times[0,1) \times I$, which is a h.e. It follows from [3, Theorem 21.2] that there exists a homeomorphism $u: N \times$ $[0,1) \times I \rightarrow N \times[0,1] \times I$ extending $\left(g_{1}\right)_{b_{0}}$. Define $g_{2}: D^{n} \times N \times[0,1) \rightarrow$ $D^{n} \times N \times[0,1) \times I$ by $\left(g_{2}\right)_{b}=\left(g_{1}\right)_{b_{0}}$, for all $b \in D^{n}$. Then g_{2} is a "con-
stant" f.p. Z-embedding. Using the homeomorphism u it is clear that g_{2} extends to a $f . p$. homeomorphism of $D^{n} \times N \times[0,1) \times I$ onto itself. So, to finish, all we need is a $f . p$. homeomorphism of $D^{n} \times N \times[0,1) \times$ I onto itself which composes with g_{1} to give g_{2}.

To see this, let $\theta_{t}: D^{n} \rightarrow D^{n}$ be a homotopy such that $\theta_{0}=i d$ and $\theta_{1}\left(D^{n}\right)=\left\{b_{0}\right\}$. Then define a f.p. homotopy

$$
\beta_{t}: D^{n} \times N \times[0,1) \rightarrow D^{n} \times N \times[0,1) \times I
$$

by $\left(\beta_{t}\right)_{b}=\left(g_{1}\right)_{\theta_{t}(b)}$. Clearly $\beta_{0}=g_{1}$ and $\beta_{1}=g_{2}$. Moreover, this is a $f . p$. proper homotopy. By Theorem 5.1 of [5] we conclude that there exists a f.p. homeomorphism r of $D^{n} \times N \times[0,1) \times I$ onto itself such that $r g_{1}=g_{2}$. This completes the proof of the assertion.

Now let G be the homeomorphism group $\mathscr{H}(N \times[0,1) \times I, N \times$ $[0,1)$), the space of all homeomorphisms of $N \times[0,1) \times I$ onto itself which are the identity on $N \times[0,1)$. For each $b \in S^{n}$ let $\Phi(b)$ be the space of all homeomorphisms $\varphi: N \times[0,1) \times I \rightarrow E_{b}$ such that $\varphi=g_{b}$ on $N \times[0,1)$. This makes $E \rightarrow S^{n}$ into a fiber bundle with structure group G, which we call a G-bundle (see [16, p. 90]). We will show that E is trivial as a G-bundle. This will imply that there is a f.p. homeomorphism of pairs,

$$
\left(E, g\left(S^{n} \times N \times[0,1)\right)\right) \cong\left(S^{n} \times N \times[0,1) \times I, S^{n} \times N \times[0,1)\right),
$$

as was our strategy. To show that E is trivial for all n, all we have to do is prove that G is contractible.

Choose any $h \in G$. If $f:[0,1) \times I \rightarrow[0,1) \times I$ is any homeomorphism which is the identity on $[0,1) \times\{0\}$, then it is easy to isotope f to a homeomorphism $f^{\prime} \operatorname{rel}[0,1) \times\{0\}$, where f^{\prime} is also the identity on $\{0\} \times I$. This same idea easily shows that h is isotopic to $h^{\prime} r e l N \times$ [0,1), where h^{\prime} is the identity on $N \times\{0\} \times I$. Using a variation of the well known Alexander trick define $h_{1}^{\prime}=l d$ and for $0 \leq t<1$ define

$$
h_{t}^{\prime}= \begin{cases}l d, & \text { on } N \times[0, t] \times I \\ \varphi_{t}^{-1} h^{\prime} \varphi_{t}, & \text { on } N \times[t, 1) \times I,\end{cases}
$$

where $\quad \varphi_{t}: N \times[t, 1) \times I \rightarrow N \times[0,1) \times I \quad$ is defined by linearly homeomorphing $[t, 1)$ to $[0,1)$. Then h_{t}^{\prime} defines an isotopy of h^{\prime} to $l d$ $\operatorname{rel}(N \times\{0\} \times I) \cup(N \times[0,1))$. All of these isotopies depend continuously on h. Thus G is contractible.

REMARK: The above method of proof can be used to prove that a f.h.e. between any two fiber bundles, with fiber $N \times[0,1)$, is fiber homotopic to a homeomorphism.

We now use Lemma 3.1 to prove the following result.
Lemma 3.2: Let $\mathscr{E} \rightarrow B$ be a Hurewicz fibration over a countable complex and assume that all the fibers are h.e. to countable complexes. Then \mathscr{E} is f.h.e. to a fiber bundle over B with fiber a Q manifold.

Proof: Without loss of generality assume that B is connected and use [3, Theorem 28.1] to choose a Q-manifold N which is h.e. to the fibers of $\mathscr{E} \rightarrow B$. We will induct over the n-skeleta of B, B_{n}, to inductively build our fiber bundle. For $n=0$ it is clear that $\mathscr{E} \mid B_{0}$ is f.h.e. to a fiber bundle over B_{0} with fiber $N \times[0,1)$. Passing to the inductive step assume $n \geq 0$ and let $f_{1}: \mathscr{E} \mid B_{n} \rightarrow E_{1}$ be a f.h.e., where $E_{1} \rightarrow B_{n}$ is a fiber bundle with fiber $N \times[0,1)$. We will extend f_{1} to a f.h.e. $f: \mathscr{E} \mid B_{n+1} \rightarrow E$, where $E \rightarrow B_{n+1}$ is a fiber bundle extending $E_{1} \rightarrow B_{n}$. For simplicity of notation we assume that $B_{n+1}=B_{n} \cup \Delta$, where Δ is a single $(n+1)$-simplex.

By restriction we get a f.h.e. $f_{0}: \mathscr{E}\left|\partial \Delta \rightarrow E_{1}\right| \partial \Delta$. By Theorem 2.1 it suffices to extend f_{0} to a f.p. map $f_{2}: \mathscr{E} \mid \Delta \rightarrow E_{2}$, where $E_{2} \rightarrow \Delta$ is a fiber bundle extending $E_{1} \mid \partial \Delta \rightarrow \partial \Delta$. Since $\mathscr{E} \mid \partial \Delta$ is f.h.e. to $\partial \Delta \times N \times$ $[0,1)$, we may replace $\mathscr{E} \mid \partial \Delta$ by $\partial \Delta \times N \times[0,1)$ and consider the following reduction of the problem: If $f_{0}: \partial \Delta \times N \times[0,1) \rightarrow E_{1} \mid \partial \Delta$ is a f.h.e., then f_{0} extends to a f.p. map $f_{2}: \Delta \times N \times[0,1) \rightarrow E_{2}$.

To see how this reduction implies the general case choose a f.h.e. $\alpha: \Delta \times N \times[0,1) \rightarrow \mathscr{E} \mid \Delta$, let $\quad \alpha_{0}=\alpha \mid \partial \Delta \times N \times[0,1)$, and let $\beta: \mathscr{E} \mid \partial \Delta \rightarrow \partial \Delta \times N \times[0,1)$ be a fiber homotopy inverse of α_{0}. Given a f.h.e. $f_{0}: \mathscr{E}\left|\partial \Delta \rightarrow E_{1}\right| \partial \Delta$, we get a f.h.e. $f_{0} \alpha_{0} \beta: \mathscr{E}\left|\partial \Delta \rightarrow E_{1}\right| \partial \Delta$. The reduction implies that $f_{0} \alpha_{0}$ extends, and since β extends it follows that $f_{0} \alpha_{0} \beta$ extends. Since f_{0} is fiber homotopic to $f_{0} \alpha_{0} \beta$ we conclude that f_{0} extends.

To verify the reduction we first use Lemma 3.1 to see that f_{0} is fiber homotopic to a homeomorphism $\alpha: \partial \Delta \times N \times[0,1) \rightarrow E_{1} \mid \partial \Delta$. Thus all we have to do is show how to extend α to a f.p. map $\tilde{\alpha}: \Delta \times N \times$ $[0,1) \rightarrow E_{2}$. Define

$$
E_{2}=\left(E_{1} \mid \partial \Delta\right) \bigcup_{\alpha}(\Delta \times N \times[0,1)),
$$

where the attaching is made by α. Then α automatically extends to a f.p. map of $\Delta \times N \times[0,1)$ onto E_{2}.

Finally, we will need the following result.

Lemma 3.3: If $f: M \rightarrow B$ is a map between locally compact ANRs, where B is connected, then the homotopy fiber of f has the homotopy type of a countable complex.

Proof: For definiteness choose a basepoint $b_{0} \in B$. Let $\alpha: M \rightarrow$ $Q \times[0,1)$ be any closed embedding and define $f^{\prime}: M \rightarrow B \times Q \times[0,1)$ by $f^{\prime}=(f, \alpha)$. Choose the basepoint $b_{0}^{\prime}=\left(b_{0}, 0,0\right)$ in $B \times Q \times[0,1)$ and consider the homotopy fiber $\mathscr{F}\left(f^{\prime}\right)$.

ASSERTION 1: $\mathscr{F}(f)$ is h.e. to $\mathscr{F}\left(f^{\prime}\right)$.

Proof: Define $\varphi: \mathscr{F}(f) \rightarrow \mathscr{F}\left(f^{\prime}\right)$ by $\varphi(x, \omega)=\left(x, \omega^{\prime}\right)$, where ω^{\prime} follows a straight-line path from $(f(x), \alpha(x))$ to $(f(x), 0,0)$), for $0 \leq t \leq \frac{1}{2}$, and for $\frac{1}{2} \leq t \leq 1, \omega^{\prime}$ follows the path ω in $B \times\{0\} \times\{0\} \equiv B$ from $(f(x), 0,0)$ to b_{0}^{\prime}. Define $\psi: \mathscr{F}\left(f^{\prime}\right) \rightarrow \mathscr{F}(f)$ by $\psi(x, \omega)=\left(x, \omega^{\prime \prime}\right)$, where $\omega^{\prime \prime}=\operatorname{proj}^{\circ} \omega($ proj: $B \times Q \times[0,1) \rightarrow B$). We leave it as an easy exercise for the reader to prove that φ and ψ are homotopy inverses.

Assertion 2: $\mathscr{F}\left(f^{\prime}\right)$ is an ANR.

Proof: Observe that f^{\prime} is a closed embedding. Consider the space

$$
\Omega=\left(B \times Q \times[0,1), b_{0}^{\prime}\right)^{(I, 1)} \subset(B \times Q \times[0,1))^{I},
$$

the space of paths ending at b_{0}^{\prime}. It follows from [13] that Ω is an ANR. Clearly $\mathscr{F}\left(f^{\prime}\right)$ is a closed subset of $M \times \Omega$. Choose $(x, \omega) \in M \times \Omega$ which is close to $\mathscr{F}\left(f^{\prime}\right)$. Then we must have $\omega(0)$ close to $f^{\prime}(x)$. If they are sufficiently close, then there is a canonical path in $B \times Q \times[0,1)$ from $f^{\prime}(x)$ to $\omega(0)$. By composing this canonical path with ω we obtain a new path $\omega^{\prime} \in \Omega$ which starts at $f^{\prime}(x)$ and ends at b_{0}^{\prime}. Thus $(x, \omega) \rightarrow\left(x, \omega^{\prime}\right)$ defines a retraction $r: U \rightarrow \mathscr{F}\left(f^{\prime}\right)$, for U some suitable neighborhood of $\mathscr{F}\left(f^{\prime}\right)$ in $M \times \Omega$. Therefore $\mathscr{F}\left(f^{\prime}\right)$ is an ANR.

Finally, it follows from [15] that the ANR $\mathscr{F}\left(f^{\prime}\right)$ has the homotopy type of a countable complex.

Proof of Theorem 1: We are given a map $f: M \rightarrow B$, where B is a locally compact ANR. It follows from [15] that B is a h.e. to a countable complex, and therefore by Theorem 2.4 we may assume that B is a countable complex. Without loss of generality assume that B is connected. Let $p: \mathscr{E} \rightarrow B$ be the mapping path fibration with fiber $\mathscr{F}(f)$, and let $g: M \rightarrow \mathscr{E}$ be a h.e. such that $p g \cong f$. Using Lemma 3.2 there is a fiber bundle $q: E \rightarrow B$, with fiber a Q-manifold N, which is f.h.e. to $p: \mathscr{E} \rightarrow B$. We therefore obtain a h.e. $g^{\prime}: M \rightarrow E$ such that
$q g^{\prime} \simeq f . \quad$ Then $g^{\prime} \times i d: M \times[0,1) \rightarrow E \times[0,1)$ is homotopic to a homeomorphism $h: M \times[0,1) \rightarrow E \times[0,1)$ by [3]. Clearly

$$
M \times[0,1) \xrightarrow{h} E \times[0,1) \xrightarrow{\text { proj }} E \longrightarrow B
$$

is a fiber bundle projection homotopic to $f \circ \operatorname{proj}: M \times[0,1) \rightarrow B$.

Proof of Theorem 2: The machinery we have used for the proof of Theorem 1 has analogues for l_{2}-manifolds. The knowledgeable reader can easily supply the details.

4. Proof of Theorem 3 and its Corollary

For the proof of Theorem 3 we will first need the following result.

Lemma 4.1: Let N be a compact Q-manifold, $E \rightarrow S^{n}$ be a fiber bundle with fiber N, and let $f ; S^{n} \times N \rightarrow E$ be a f.h.e. If N is $(n+1)$ connected, then f is fiber homotopic to a homeomorphism. Moreover, if $n=0$ we only need assume that $\mathrm{Wh} \pi_{1}(N)=0$, and if $n=1$ we only need assume that N is 1-connected.

Proof: Following the proof of Lemma 3.1, fis homotopic to a f.p. Z-embedding $g: S^{n} \times N \rightarrow E$. It suffices to show that we have a $f . p$. homeomorphism of pairs,

$$
\left(E, g\left(S^{n} \times N\right)\right) \cong\left(S^{n} \times N \times I, S^{n} \times N\right)
$$

If $n=0$ it follows from the assumption $\mathrm{Wh} \pi_{1}(N)=0$ that each inclusion $g_{b}(N) \hookrightarrow E_{b}$ is homotopic to a homeomorphism. Since $S^{n}=$ $\left\{b_{1}, b_{2}\right\}$ this is all we need for our desired f.p. homeomorphism of pairs.

If $n \geq 1$ we proceed as in Lemma 3.1 and show that $E \rightarrow S^{n}$ may be regarded as a G-bundle, where G is the homeomorphism group $\mathscr{H}(N \times I, N)$. All we need to do is show that $E \rightarrow S^{n}$ is trivial as a G-bundle. For this it suffices to prove that G is $(n-1)$-connected. It follows from [4] and [11] that $\pi_{0}(G)=0$ for $N 1$-connected, and in general $\pi_{k-1}(G)=0$ for $N(k+1)$-connected.

Lemma 4.2: Let $\mathscr{E} \rightarrow B$ be a Hurewicz fibration over a finite n complex and assume that all the fibers are h.e. to a compact Q manifold N. If N is n-connected, then \mathscr{E} is f.h.e. to a fiber bundle over B with fiber N. Moreover, if $n=1$ we only need assume $\mathrm{Wh} \pi_{1}(N)=0$,
and if $n=2$ we only need assume N to be 1-connected.
Proof: Using Lemma 4.1 we can prove Lemma 4.2 just as Lemma 3.2 followed from Lemma 3.1.

Proof of Theorem 3: We are given a map $f: M \rightarrow B$, of a compact Q-manifold to a compact, connected ANR B which is simple equivalent to a finite n-complex. By Theorem 2.3 we may assume that B is a finite n-complex. Let $\mathscr{E} \rightarrow B$ be the mapping path fibration and use Lemma 4.2 to conclude that \mathscr{E} is f.h.e. to a fiber bundle $p: E \rightarrow B$, whose fiber is a compact Q-manifold. Thus we have a homotopy equivalence $g: E \rightarrow M$ such that $f g \simeq p$. We define our obstruction to be $\tau(g) \in \mathrm{Wh} \pi_{1}(M)$.

To see that $\tau(g)$ is well-defined we assume that there is another such h.e. $g_{1}: E_{1} \rightarrow M$, where $E_{1} \rightarrow B$ is a fiber bundle whose fiber is a compact Q-manifold. It follows from Corollary 2.6 that the torsion of the composition $g^{-1} g_{1}: E_{1} \rightarrow E$ is zero, thus $\tau(g)=\tau\left(g_{1}\right)$.

If $\tau(g)=0$, then g is homotopic to a homeomorphism $h: E \rightarrow M$, and f is therefore homotopic to the bundle projection $M \xrightarrow{h^{-1}} E \rightarrow B$. On the other hand assume that f is homotopic to a bundle projection $M \rightarrow B$. The h.e. $g: E \rightarrow M$ must have zero torsion by Corollary 2.6.

Proof of the Corollary: The homotopy sequence of $f: M \rightarrow B$ gives us an exact sequence

$$
\pi_{1} \mathscr{F}(f) \rightarrow \pi_{1}(M) \rightarrow \pi_{1}\left(S^{2}\right),
$$

thus $\pi_{1}(M)=0$ and $\mathrm{Wh} \pi_{1}(M)=0$. This implies that our obstruction to fibering is zero.

5. Proof of Theorem 4

We first introduce some notation which will be used throughout this section. Let $\mathscr{E} \rightarrow B$ represent a Hurewicz fibration, where B is a compact ANR h.e. to a wedge of $n 1$-spheres. Choose a basepoint $b_{0} \in B$ and assume that $\mathscr{E}_{b_{0}}$ is h.e. to a finite connected complex. Let $\left\{\alpha_{i}\right\}_{i=1}^{n}$ be a collection of maps, $\alpha_{i}:\left(S^{1}, *\right) \rightarrow\left(B, b_{0}\right)$, such that $\left\{\left[\alpha_{i}\right]\right\}_{i=1}^{n}$ freely generates $\pi_{1}\left(B, b_{0}\right)$. Each map α_{i} may be regarded as a map of $(I, \partial I)$ to (B, b_{0}), and the homotopy lifting criterion implies that α_{i} can be covered by a map $\tilde{\alpha}_{i}: \mathscr{E}_{b_{0}} \times I \rightarrow \mathscr{E}$ such that $\left(\tilde{\alpha}_{i}\right)_{0}=i d$. We call
$\varphi_{i}=\left(\tilde{\alpha}_{i}\right)_{1}: \mathscr{E}_{b_{0}} \rightarrow \mathscr{E}_{b_{0}}$ a characteristic map corresponding to α_{i}. It is well-known that φ_{i} is a h.e. and its homotopy class is uniquely determined.

Definition of the Obstruction: Define a homomorphism

$$
\theta: \mathrm{Wh} \pi_{1}\left(\mathscr{E}_{b_{0}}\right) \rightarrow \mathrm{Wh} \pi_{1}\left(\mathscr{E}_{b_{0}}\right) \oplus \cdots \oplus \mathrm{Wh} \pi_{1}\left(\mathscr{E}_{b_{0}}\right) \quad(n \text { copies })
$$

by sending τ in Wh $\pi_{1}\left(\mathscr{E}_{b_{0}}\right)$ to $\left(\left(l d-\left(\varphi_{1}\right)_{*}\right) \tau, \ldots,\left(l d-\left(\varphi_{n}\right)_{*}\right) \tau\right)$, where $*$ as usual indicates induced homomorphisms on Whitehead groups. Choose any h.e. h of $\mathscr{E}_{b_{0}}$ to a finite complex K. We define our obstruction, $\mathscr{O}_{1}(\mathscr{E})$, to be the image of

$$
\left(h_{*}^{-1} \tau\left(h \varphi_{1} h^{-1}\right), \ldots, h_{*}^{-1} \tau\left(h \varphi_{n} h^{-1}\right)\right)
$$

in Cokernel $(\theta)=\mathrm{Wh} \pi_{1}\left(\mathscr{E}_{b_{0}}\right) \oplus \cdots \oplus \mathrm{Wh} \pi_{1}\left(\mathscr{E}_{b_{0}}\right) /$ Image (θ). $\left(\right.$ Here h^{-1} is a homotopy inverse of h.)

Lemma 5.1: $\mathcal{O}_{1}(\mathscr{E})$ is well defined.

Proof: Let $g: \mathscr{E}_{b_{0}} \rightarrow L$ be any other h.e. from $\mathscr{E}_{b_{0}}$ to a finite complex. We must prove that $\left(h_{*}^{-1} \tau\left(h \varphi_{1} h^{-1}\right), \ldots, h_{*}^{-1} \tau\left(h \varphi_{n} h^{-1}\right)\right)$ and $\left(g_{*}^{-1} \tau\left(g \varphi_{1} g^{-1}\right), \ldots, g_{*}^{-1} \tau\left(g \varphi_{n} g^{-1}\right)\right)$ have the same image in Cokernel (θ). Let $k: L \rightarrow K$ be a h.e. such that $k g \simeq h$. For each i we have

$$
\begin{gathered}
h_{*}^{-1} \tau\left(h \varphi_{i} h^{-1}\right)=(k g)_{*}^{-1} \tau\left(k g \varphi_{i} g^{-1} k^{-1}\right) \\
=g_{*}^{-1} k_{*}^{-1} \tau(k)+g_{*}^{-1} \tau\left(g \varphi_{i} g^{-1}\right)+\left(\varphi_{i}\right)_{*} g_{*}^{-1} \tau\left(k^{-1}\right),
\end{gathered}
$$

where the last equality follows from the formula for the torsion of a composition (see [6, p. 72]). The same formula gives us $\tau(k)+$ $k_{*} \tau\left(k^{-1}\right)=0$. Substituting this into the above equation gives us

$$
\begin{gathered}
h_{*}^{-1} \tau\left(h \varphi_{i} h^{-1}\right)=g_{*}^{-1} \tau\left(g \varphi_{i} g^{-1}\right)-\left(l d-\left(\varphi_{i}\right)_{*}\right) g_{*}^{-1} \tau\left(k^{-1}\right) . \\
\left(h_{*}^{-1} \tau\left(h \varphi_{1} h^{-1}\right), \ldots, h_{*} \tau\left(h \varphi_{n} h^{-1}\right)\right)-\left(g_{*}^{-1} \tau\left(g \varphi_{1} g^{-1}\right), \ldots, g_{*}^{-1} \tau\left(g \varphi_{n} g^{-1}\right)\right)
\end{gathered}
$$

lies in Image ($\boldsymbol{\theta}$).
We will need the following classification result.
Lemma 5.2: Let $\mathscr{E} \rightarrow B$ and $\mathscr{E}^{\prime} \rightarrow B$ be Hurewicz fibrations of the type described at the beginning of this section, with characteristic maps $\varphi_{i}: \mathscr{E}_{b_{0}} \rightarrow \mathscr{E}_{b_{0}}$ and $\varphi_{i}^{\prime}: \mathscr{E}_{b_{0}}^{\prime} \rightarrow \mathscr{E}_{b_{0}}^{\prime}$. Then a h.e. $h: \mathscr{E}_{b_{0}} \rightarrow \mathscr{E}_{b_{0}}^{\prime}$ extends to a f.h.e. of \mathscr{E} onto \mathscr{E}^{\prime} iff h homotopy commutes with all of the characteristic maps, i.e. $\varphi_{i}^{\prime} h \simeq h \varphi_{i}$ for each i.

Proof: This follows immediately from Theorem C of [17].

Proof of Theorem 4: The proof naturally splits into two parts.
I. Existence. First assume that \mathscr{E} is f.h.e. to a fiber bundle $E \rightarrow B$ with fiber a compact Q-manifold. Let $\left\{\psi_{i}\right\}_{i=1}^{n}$ be the characteristic maps of $E \rightarrow B$. If $f: \mathscr{E} \rightarrow E$ is a $f . h . e$. and $h=f \mid \mathscr{E}_{b_{0}}: \mathscr{E}_{b_{0}} \rightarrow E_{b_{0}}$, then by Lemma 5.2 we have $\psi_{i} h \simeq h \varphi_{i}$, for each i. Up to simple homotopy type we may regard $E_{b_{0}}$ as a finite complex, so in order to prove that $\mathcal{O}_{1}(\mathscr{E})=0$ it will certainly suffice to prove that $\tau\left(\psi_{i}\right)=0$. Since $E \rightarrow B$ is a fiber bundle its characteristic maps may be chosen to be homeomorphisms. But homeomorphisms of Q-manifolds are always simple equivalences.

On the other hand assume that $\mathscr{O}_{1}(\mathscr{E})=0$. Then there is a compact Q-manifold N and a h.e. $h: \mathscr{E}_{b_{0}} \rightarrow N$ such that

$$
\theta(\tau)=\left(h_{*}^{-1} \tau\left(h \varphi_{1} h^{-1}\right), \ldots, h_{*}^{-1} \tau\left(h \varphi_{n} h^{-1}\right)\right)
$$

for some torsion $\tau \in \mathrm{Wh} \pi_{1}\left(\mathscr{E}_{b_{0}}\right)$. Thus $\left(l d-\left(\varphi_{i}\right)_{*}\right) \tau=h_{*}^{-1} \tau\left(h \varphi_{i} h^{-1}\right)$. Choose a compact Q-manifold M and a h.e. $f: N \rightarrow M$ such that $\tau(f)=-f_{*} h_{*}(\tau)$. Then we calculate (again using the composition formula):

$$
\begin{aligned}
\tau\left(f h \varphi_{i}(f h)^{-1}\right) & =\tau(f)+f_{*} \tau\left(h \varphi_{i} h^{-1}\right)+f_{*} h_{*}\left(\varphi_{i}\right)_{*} h_{*}^{-1} \tau\left(f^{-1}\right) \\
& =-f_{*} h_{*}(\tau)+f_{*} h_{*}\left(l d-\left(\varphi_{i}\right)_{*}\right) \tau+f_{*} h_{*}\left(\varphi_{i}\right)_{*} h_{*}^{-1} f_{*}^{-1}\left(f_{*} h_{*}(\tau)\right) \\
& =0 .
\end{aligned}
$$

Let $\psi_{i}=f h \varphi_{i}(f h)^{-1}: M \rightarrow M$ and let $g_{i}: M \rightarrow M$ be any homeomorphism homotopic to ψ_{i} (which exists since ψ_{i} has zero torsion).

Let B^{\prime} be a wedge of $n 1$-spheres and let b_{0}^{\prime} be the wedge point. For each i let $T\left(g_{i}\right)$ be the mapping torus of g_{i} and let E^{\prime} be the space formed by sewing the $T\left(g_{i}\right)$ together along their common base, M. Then we have a natural projection $p^{\prime}: E^{\prime} \rightarrow B^{\prime}$ so that
(1) $E^{\prime} \rightarrow B^{\prime}$ is a fiber bundle with fiber M,
(2) $E_{b_{0}^{\prime}}^{\prime}$ is the common base of the $T\left(g_{i}\right)$,
(3) the characteristic maps of $E^{\prime} \rightarrow B^{\prime}$ are $\left\{g_{i}\right\}_{i=1}^{n}$ (corresponding to loops α_{i}^{\prime} in B^{\prime}).
Let $u: B \rightarrow B^{\prime}$ be a h.e. such that $u\left(b_{0}\right)=b_{0}^{\prime}$ and $u \alpha_{i} \simeq \alpha_{i}^{\prime}$, for each i. Form the pull-back, $E=\left\{\left(b, e^{\prime}\right) \mid u(b)=p^{\prime}(e)\right\}$:

$$
\begin{gathered}
E \longrightarrow E^{\prime} \\
p \downarrow \\
\\
\\
B \xrightarrow{u} p^{\prime} \\
B^{\prime}
\end{gathered}
$$

Then $p: E \rightarrow B$ is a fiber bundle with fiber M. Since $g_{i} \simeq f h \varphi_{i}(f h)^{-1}$ and since the g_{i} are the characteristic maps of $E \rightarrow B$ we conclude by Lemma 5.2 that \mathscr{E} is f.h.e. to E.
II. Classification. Define G to be the subgroup of $\mathrm{Wh} \pi_{1}\left(\mathscr{E}_{b_{0}}\right)$ consisting of all elements τ such that $(n-1) \tau=$ $\left(l d-\left(\varphi_{1}\right)_{*}\right) \tau_{1}+\cdots+\left(l d-\left(\varphi_{n}\right)_{*}\right) \tau_{n}$, for torsions $\tau_{i} \in \mathrm{~Wh} \pi_{1}\left(\mathscr{E}_{b_{0}}\right)$. We prove that the simple equivalence classes of compact Q-manifold fiber bundles over B which are f.h.e. to \mathscr{E} are in 1-1 correspondence with the quotient group $H=\operatorname{Kernel}(\theta) /(\operatorname{Kernel}(\theta) \cap G)$, where two Q-manifold fiber bundles, $E_{1} \rightarrow B$ and $E_{2} \rightarrow B$, are in the same simple equivalence class if there exists a simple homotopy equivalence from E_{1} to E_{2} which is also a f.h.e. Choose a fixed compact Q-manifold fiber bundle $E \rightarrow B$ and a f.h.e. $f: \mathscr{E} \rightarrow E$. Choose any other compact Q-manifold fiber bundle $E_{1} \rightarrow B$ and f.h.e. $f_{1}: \mathscr{E} \rightarrow E_{1}$. Put $h=f \mid \mathscr{C}_{b_{0}}$ and $h_{1}=f_{1} \mid \mathscr{E}_{b_{0}}$. Then we get a h.e. $h h_{1}^{-1}:\left(E_{1}\right)_{b_{0}} \rightarrow E_{b_{0}}$ and a torsion $\tau\left(h h_{1}^{-1}\right) \in \mathrm{Wh} \pi_{1}\left(E_{b_{0}}\right)$.

Assertion 1: $h_{*}^{-1} \tau\left(h h_{1}^{-1}\right) \in \operatorname{Kernel}(\theta)$.
Proof: It follows from Lemma 5.2 that $\left(h h_{1}^{-1}\right) \psi_{i}^{1} \simeq \psi_{i}\left(h h_{1}^{-1}\right)$, for each i, where the ψ_{i} are the characteristic maps for $E \rightarrow B$ and the ψ_{i}^{\prime} are the characteristic maps for $E_{1} \rightarrow B$. Since $E \rightarrow B$ and $E_{1} \rightarrow B$ are compact Q-manifold fiber bundles we must have $\tau\left(\psi_{i}\right)=\tau\left(\psi_{i}^{1}\right)=0$. Thus

$$
\tau\left(h h_{1}^{-1}\right)=\tau\left(h h_{1}^{-1} \psi_{i}^{1}\right)=\tau\left(\psi_{i} h h_{1}^{-1}\right)=\left(\psi_{i}\right)_{*} \tau\left(h h_{1}^{-1}\right),
$$

or $\left(l d-\left(\psi_{i}\right)_{*}\right) \tau\left(h h_{1}^{-1}\right)=0$. Since $h \varphi_{i} \simeq \psi_{i} h$ we can easily check that $\left.l d-\left(\varphi_{i}\right)_{*}\right) h_{*}^{-1} \tau\left(h h_{1}^{-1}\right)=0$. This proves Assertion 1.

We then define $R\left(h_{1}\right)$ to be the image of $h_{*}^{-1} \tau\left(h h_{1}^{-1}\right)$ in H. Thus R is a function from the collection of f.h.e.'s $f_{1}: \mathscr{E} \rightarrow E_{1}$ to the group H. There are several properties of R which need to be established in order to finish the proof of Theorem 4.

Assertion 2: R is onto.

Proof: Choose any $\tau \in \operatorname{Kernel}(\theta)$. Thus $\left(l d-\left(\varphi_{i}\right)_{*}\right) \tau=0$ for each i. Choose a h.e. g of $E_{b_{0}}$ to a compact Q-manifold N such that $\tau(g)=-g_{*} h_{*}(\tau)$. (Recall that $g: E_{b_{0}} \rightarrow N$ can be chosen so that $\tau\left(g^{-1}\right)=-g_{*}^{-1} \tau(g) \in \mathrm{Wh} \pi_{1}\left(E_{b_{0}}\right)$ realizes any torsion in $\mathrm{Wh} \pi_{1}\left(E_{b_{0}}\right)$.) A simple torsion calculation gives us $\tau\left(g h \varphi_{i}(g h)^{-1}\right)=0$. Just as in the proof of Theorem 4 (Part I) we can construct a compact Q-manifold fiber bundle $E_{1} \rightarrow B$ such that $\left(E_{1}\right)_{b_{0}}=N$ and a f.h.e. $f_{1}: \mathscr{E} \rightarrow E_{1}$ such that $h_{1}=f_{1} \mid \mathscr{E}_{b_{0}}=g h$. Then $R\left(f_{1}\right)$ is the image of $h_{*}^{-1} \tau\left(h h_{1}^{-1}\right)$ in H.

Computing, we have

$$
h_{*}^{-1} \tau\left(h h_{1}^{-1}\right)=h_{*}^{-1} \tau\left(h(g h)^{-1}\right)=h_{*}^{-1} \tau\left(g^{-1}\right)=-h_{*}^{-1} g_{*}^{-1} \tau(g)=\tau .
$$

This completes Assertion 2.
ASSERTION 3: If $f_{1}: \mathscr{E} \rightarrow E_{1}$ and $f_{2}: \mathscr{E} \rightarrow E_{2}$ are f.h.e.'s of \mathscr{E} to compact Q-manifold fiber bundles, then $f_{2} f_{1}^{-1}: E_{1} \rightarrow E_{2}$ is a simple equivalence iff $R\left(f_{1}\right)=R\left(f_{2}\right)$.

Proof: Assume that $f_{2} f_{1}^{-1}$ is a simple equivalence. It follows from Theorem 2.5 that $0=\tau\left(f_{2} f_{1}^{-1}\right)=j_{*}(1-n) \tau\left(h_{2} h_{1}^{-1}\right)$, where j is the inclusion $\left(E_{2}\right)_{b_{0}} \hookrightarrow E_{2}$. Using Theorem 8 we have

$$
\left(h_{2}\right)_{*}^{-1}(n-1) \tau\left(h_{2} h_{1}^{-1}\right)=\left(l d-\left(\varphi_{1}\right)_{*}\right) \tau_{1}+\cdots+\left(l d-\left(\varphi_{n}\right)_{*}\right) \tau_{n},
$$

for torsions $\tau_{i} \in W h \pi_{1}\left(\mathscr{E}_{b_{0}}\right)$. Thus $\left(h_{2}\right)_{*}^{-1} \tau\left(h_{2} h_{1}^{-1}\right) \in \operatorname{Kernel}(\theta) \cap G$. Computing, we have

$$
\begin{aligned}
h_{*}^{-1} \tau\left(h h_{1}^{-1}\right)-h_{*}^{-1} \tau\left(h h_{2}^{-1}\right) & =\tau\left(h_{1}^{-1}\right)-\tau\left(h_{2}^{-1}\right)=\left(h_{2}\right)_{*}^{-1} \tau\left(h_{2}\right)+\tau\left(h_{1}^{-1}\right) \\
& =\left(h_{2}\right)_{*}^{-1} \tau\left(h_{2} h_{1}^{-1}\right) \in \operatorname{Kernel}(\theta) \cap G .
\end{aligned}
$$

This proves that $R\left(h_{1}\right)=R\left(h_{2}\right)$.
On the other hand assume that $R\left(f_{1}\right)=R\left(f_{2}\right)$. From the above calculations we see that $\left(h_{2}\right)_{*}^{-1} \tau\left(h_{2} h_{1}^{-1}\right) \in \operatorname{Kernel}(\theta) \cap G$. This implies that there are torsions $\tau_{1}, \ldots, \tau_{n} \in \mathrm{~Wh} \pi_{1}\left(\left(E_{2}\right)_{b_{0}}\right)$ such that

$$
(n-1) \tau\left(h_{2} h_{1}^{-1}\right)=\left(l d-\left(\psi_{1}^{2}\right)_{*}\right) \tau_{1}+\cdots+\left(l d-\left(\psi_{n}^{2}\right)_{*}\right) \tau_{n}
$$

where the ψ_{i}^{2} are the characteristic maps for $E_{2} \rightarrow B$. It follows from Theorem 2.5 that $\tau\left(f_{2} f_{1}^{-1}\right)=j_{*}(1-n) \tau\left(h_{2} h_{1}^{-1}\right)$ and it follows from Theorem 9.1 that

$$
j_{*}\left(\left(l d-\left(\psi_{1}^{2}\right)_{*}\right) \tau_{1}+\cdots+\left(l d-\left(\psi_{n}^{2}\right)_{*}\right) \tau_{n}\right)=0
$$

6. Proof of Theorem 5

We will need some general notation. Let $f: M \rightarrow B$ be the map given in the statement of Theorem 4. Let $p: \mathscr{E} \rightarrow B$ be the mapping path fibration of $f: M \rightarrow B$ which has fiber $\mathscr{F}(f)=\mathscr{E}_{b_{0}}$ and let $g: M \rightarrow \mathscr{E}$ be a h.e. such that $p g \simeq f$.

The First Obstruction. We define our first obstruction to be

$$
\mathscr{O}_{1}(f)=\mathscr{O}_{1}(\mathscr{E}) \in \operatorname{Cokernel}(\theta)
$$

where $\mathscr{O}_{1}(\mathscr{E})$ was defined in $\S 5$. Recall that $\mathcal{O}_{1}(f)$ vanishes iff \mathscr{E} is f.h.e. to a compact Q-manifold fiber bundle.

Proof of Theorem 5 (Part I). We show that the vanishing of $\mathscr{O}_{1}(f)$ is a necessary condition for f to fiber. Assume that $f \simeq f^{\prime}$, where f^{\prime} is the projection map of a compact Q-manifold fiber bundle. Then by Theorem 2.2 we must have g homotopic to a f.h.e. from the bundle $f^{\prime}: M \rightarrow B$ to the fibration $\mathscr{E} \rightarrow B$. Thus $\mathscr{O}_{1}(f)=0$.

The Second Obstruction. Assume that $\mathcal{O}_{1}(f)=0$ and let $h: M \rightarrow E$ be a h.e. such that $q h \simeq f$, where $q: E \rightarrow B$ is a compact Q-manifold fiber bundle. Let i be the inclusion map $\mathscr{E}_{b_{0}} \hookrightarrow \mathscr{E}$ and define $\mathscr{O}_{2}(f)$ to be the image of the torsion $h_{*}^{-1} \tau(h)$ in $\mathrm{Wh} \pi_{1}(M) /(1-n) g_{*}^{-1} i_{*} \operatorname{Kernel}(\theta)$.

Lemma 6.1: $\mathcal{O}_{2}(f)$ is well-defined.
Proof: Let $h_{1}: M \rightarrow E_{1}$ be an alternate choice for h. We must prove that

$$
g_{*} h_{*}^{-1} \tau(h)-g_{*}\left(h_{1}\right)_{*}^{-1} \tau\left(h_{1}\right) \in(1-n) i_{*} \text { Kernel }(\theta)
$$

Using Theorem 2.2 we see that $h_{1} h^{-1}$ is homotopic to a f.h.e. $\alpha: E \rightarrow$ E_{1}. Thus by Theorem 2.5 we calculate

$$
\tau\left(h_{1} h^{-1}\right)=\tau\left(h_{1}\right)-\left(h_{1}\right)_{*} h_{*}^{-1} \tau(h)=(1-n) \tau,
$$

where τ is the torsion of the h.e. $h_{1} h^{-1} \mid E_{b_{0}}$. It follows from the proof of Theorem 4 (Part II) that $\left(l d-\left(\psi_{i}\right)_{*}\right) \tau=0$, for each i, where the ψ_{i} are the characteristic maps for $E_{1} \rightarrow B$. So, multiplying both sides of the above equation by $g_{*}\left(h_{1}\right)_{*}^{-1}$ we get what we need.

Proof of Theorem 5 (Part II): Assume that $f \simeq f^{\prime}$, where $f^{\prime}: M \rightarrow$ B is a compact Q-manifold fiber bundle. Since $\mathcal{O}_{2}(f)$ is well-defined we may choose $E=M$ and $h=i d$. Clearly $\mathcal{O}_{2}(f)=0$.

On the other hand assume that $\mathcal{O}_{2}(f)=0$. This means that $h_{*}^{-1} \tau(h)=$ $g_{*}^{-1}(1-n) i_{*}(\tau)$, for some $\tau \in \operatorname{Kernel}(\theta)$. We may write h as $g_{1} g$, where $g_{1}: \mathscr{E} \rightarrow E$ is a f.h.e. Choose a compact Q-manifold N and a h.e. $\alpha: E_{b_{0}} \rightarrow N$ such that $\tau(\alpha)=-\alpha_{*}\left(\left(g_{1}\right)_{b_{0}}\right)_{*}(\tau)$. Calculating we get

$$
\begin{aligned}
\tau\left(\alpha \psi_{i} \alpha^{-1}\right) & =\tau(\alpha)+\alpha_{*}\left(\psi_{i}\right)_{*} \tau\left(\alpha^{-1}\right) \\
& =\tau(\alpha)-\alpha_{*}\left(\psi_{i}\right)_{*} \alpha_{*}^{-1} \tau(\alpha) \\
& =-\alpha_{*}\left(\left(g_{1}\right)_{b_{0}}\right)_{*}(\tau)+\alpha_{*}\left(\psi_{i}\right)_{*} \alpha_{*}^{-1} \alpha_{*}\left(\left(g_{1}\right)_{b_{0}}\right)_{*}(\tau) \\
& =-\alpha_{*}\left(l d-\left(\psi_{i}\right)_{*}\right)\left(\left(g_{1}\right)_{b_{0}}\right)_{*}(\tau),
\end{aligned}
$$

which is zero because $\tau \in \operatorname{Kernel}(\theta)$. (Recall that ψ_{i} is a characteristic map for $E \rightarrow B$, which must have 0 torsion because it can be chosen to be a homeomorphism.) Using the proof of Theorem 4 (Part
II) we can construct a compact Q-manifold fiber bundle $E_{1} \rightarrow B$ such that $\left(E_{1}\right)_{b_{0}}=N$ and a f.h.e. $\tilde{\alpha}: E \rightarrow E_{1}$ extending α. Put $j:\left(E_{1}\right)_{b_{0}} \hookrightarrow E_{1}$ and calculate to get

$$
\begin{aligned}
\tau\left(\tilde{\alpha} g_{1} g\right) & =\tau(\tilde{\alpha})+(\tilde{\alpha})_{*} \tau\left(g_{1} g\right) \\
& =j_{*}(1-n) \tau(\alpha)+(\tilde{\alpha})_{*} h_{*} g_{*}^{-1}(1-n) i_{*}(\tau) \\
& =-j_{*}(1-n) \alpha_{*}\left(\left(g_{1}\right)_{b_{0}}\right)_{*}(\tau)+(\tilde{\alpha})_{*}\left(g_{1}\right)_{*}(1-n) i_{*}(\tau),
\end{aligned}
$$

which is easily seen to be zero. Thus $\tilde{\alpha} g_{1} g: M \rightarrow E_{1}$ is homotopic to a homeomorphism which implies that f is homotopic to a compact Q-manifold fiber bundle projection.

7. Proof of Theorem 6

We first introduce some notation for this section. It follows from Theorem 2.3 that we may replace B by S^{1}. Let $p: \mathscr{E} \rightarrow S^{1}$ be the mapping path fibration of $f: M \rightarrow S^{1}$, where $\mathscr{F}(f)=\mathscr{E}_{b_{0}}$, and let $h: M \rightarrow$ \mathscr{E} be a fixed h.e. so that $p h \simeq f$.

We use $\varphi: \mathscr{F}(f) \rightarrow \mathscr{F}(f)$ for a characteristic map corresponding to a choice of a generator for $\pi_{1}\left(S^{1}\right)$.

The First Obstruction. The first obstruction is just the obstruction $\mathcal{O}_{1}(f)$ of Theorem 5 . We must show that the group in which $\mathscr{O}_{1}(f)$ lies is isomorphic to a subgroup of $\mathrm{Wh} \pi_{1}(M)$. This is the group

$$
\text { Cokernel }(\theta)=\mathrm{Wh} \pi_{1} \mathscr{F}(f) /\left(l d-\varphi_{*}\right) \mathrm{Wh} \pi_{1} \mathscr{F}(f)
$$

If i is the inclusion map $\mathscr{F}(f) \hookrightarrow \mathscr{E}$, then it is shown in Theorem 8 that Kernel $\left(i_{*}\right)=\left(l d-\varphi_{*}\right) \mathrm{Wh} \pi_{1} \mathscr{F}(f)$. Thus Cokernel (θ) is isomorphic with a subgroup of $\mathrm{Wh} \pi_{1}(\mathscr{E}) \cong \mathrm{Wh} \pi_{1}(M)$.

The Second Obstruction. We will need some more notation. Choose a finite complex K and a h.e. $g: \mathscr{F}(f) \rightarrow K$, and let $\psi: K \rightarrow K$ be the map $g \varphi g^{-1}$. Represent S^{1} by $\left\{e^{2 \pi i t} \mid 0 \leq t \leq 1\right\}$, where $b_{0}=1$, and let $T(\psi) \rightarrow S^{1}$ be the natural map of the mapping torus to S^{1}. The fibers of $T(\psi) \rightarrow S^{1}$ are all naturally identified with K.

We leave it as a manageable exercise for the reader to construct a h.e. $\alpha: \mathscr{E} \rightarrow T(\psi)$ such that $\alpha \mid \mathscr{E}_{b_{0}}=g, \alpha$ takes $\mathscr{E} \left\lvert\,\left\{e^{2 \pi i t} \left\lvert\, \frac{1}{2} \leq t \leq 1\right.\right\}\right.$ to $T(\psi) \left\lvert\,\left\{e^{2 \pi i t} \left\lvert\, \frac{1}{2} \leq t \leq 1\right.\right\}\right.$, and α is f.p. over $\left\{e^{2 \pi i t} \left\lvert\, 0 \leq t \leq \frac{1}{2}\right.\right\}$. We then define our second obstruction to be

$$
\mathcal{O}_{2}^{\prime}(f)=h_{*}^{-1} \alpha_{*}^{-1} \tau(\alpha h) \in \mathrm{Wh} \pi_{1}(M),
$$

where $h: M \rightarrow \mathscr{E}$ is as chosen above.

Lemma 7.1: $\mathscr{O}_{2}^{\prime}(f)$ is well-defined.
Proof: Let $g_{1}: \mathscr{F}(f) \rightarrow K_{1}, \psi_{1}=g_{1} \varphi g_{1}^{-1}, \alpha_{1}: \mathscr{E} \rightarrow T\left(\psi_{1}\right)$ be alternate choices. We must prove that

$$
h_{*}^{-1} \alpha_{*}^{-1} \tau(\alpha h)=h_{*}^{-1}\left(\alpha_{1}\right)_{*}^{-1} \tau\left(\alpha_{1} h\right)
$$

and for this it suffices to prove that $\tau\left(\alpha_{1} \alpha^{-1}\right)=0$. (Just use the formula for the torsion of a composition.)

We may choose α^{-1} so that α^{-1} takes $T(\psi) \left\lvert\,\left\{e^{2 \pi i t} \left\lvert\, \frac{1}{2} \leq t \leq 1\right.\right\}\right.$ to $\mathscr{E} \left\lvert\,\left\{e^{2 \pi i t} \left\lvert\, \frac{1}{2} \leq t \leq 1\right.\right\}\right.$ and α^{-1} is f.p. over $\left(e^{2 \pi i t} \left\lvert\, 0 \leq t \leq \frac{1}{2}\right.\right\}$. Write $T(\psi)=$ $A \cup B$ and $T\left(\psi_{1}\right)=A_{1} \cup B_{1}$, where

$$
\begin{array}{ll}
A=T(\psi) \left\lvert\,\left\{e^{2 \pi i t} \left\lvert\, 0 \leq t \leq \frac{1}{2}\right.\right\}\right., & A_{1}=T\left(\psi_{1}\right) \left\lvert\,\left\{e^{2 \pi i t} \left\lvert\, 0 \leq t \leq \frac{1}{2}\right.\right\}\right., \\
B=T(\psi) \left\lvert\,\left\{e^{2 \pi i t} \left\lvert\, \frac{1}{2} \leq t \leq 1\right.\right\}\right., & B_{1}=T\left(\psi_{1}\right) \left\lvert\,\left\{e^{2 \pi i t} \left\lvert\, \frac{1}{2} \leq t \leq 1\right.\right\} .\right.
\end{array}
$$

Then $\alpha_{1} \alpha^{-1}$ restricts to give h.e.'s of A to A_{1}, B to B_{1} and $A \cap B$ to $A_{1} \cap B_{1}$. Using the Sum Theorem for torsion we have

$$
\tau\left(\alpha_{1} \alpha^{-1}\right)=a \tau\left(\alpha_{1} \alpha^{-1} \mid A\right)+b \tau\left(\alpha_{1} \alpha^{-1} \mid B\right)-c \tau\left(\alpha_{1} \alpha^{-1} \mid A \cap B\right),
$$

where a, b and c are inclusion-induced homomorphisms into Wh $\pi_{1} T\left(\psi_{1}\right)$. It is easy to see that $a \tau\left(\alpha_{1} \alpha^{-1} \mid A\right)=b \tau\left(\alpha_{1} \alpha^{-1} \mid B\right)$. Clearly $A \cap B=K^{\prime} \cup K^{\prime \prime}$ (two disjoint copies of K) and $A_{1} \cap B_{1}=$ $K_{1}^{\prime} \cup K_{1}^{\prime \prime}\left(t w o\right.$ disjoint copies of K_{1}). Computing torsions we get

$$
\tau\left(\alpha_{1} \alpha^{-1} \mid A \cap B\right)=\tau\left(\alpha_{1} \alpha^{-1} \mid K^{\prime}\right)+\tau\left(\alpha_{1} \alpha^{-1} \mid K^{\prime \prime}\right)
$$

where we have omitted the necessary inclusion-induced homomorphisms. It is easy to see that

$$
c \tau\left(\alpha_{1} \alpha^{-1} \mid K^{\prime}\right)=c \tau\left(\alpha_{1} \alpha^{-1} \mid K^{\prime \prime}\right)=a \tau\left(\alpha_{1} \alpha^{-1} \mid A\right)
$$

and therefore $\tau\left(\alpha_{1} \alpha^{-1}\right)=0$ by the above formula.
Proof of Theorem 6: We first assume that $f \simeq f^{\prime}$, where $f^{\prime}: M \rightarrow$ S^{1} is the projection map of a compact Q-manifold fiber bundle. It follows from the proof of Theorem 5 (Part I) that $\mathscr{O}_{1}(f)=0$. By Theorem 2.2 we have $h \approx h^{\prime}: M \rightarrow \mathscr{E}$, where h^{\prime} is a f.h.e. Since $\mathscr{O}_{2}^{\prime}(f)$ is well-defined we may choose $\alpha: \mathscr{E} \rightarrow T(\psi)=M$.to be $\left(h^{\prime}\right)^{-1}: \mathscr{E} \rightarrow M$, where ψ is a characteristic homeomorphism of the bundle $f: M \rightarrow S^{1}$. Then $\tau(\alpha h)=0$ and consequently $\mathscr{O}_{2}^{\prime}(f)=0$.

On the other hand assume that $\mathscr{O}_{1}(f)=0$ and $\mathscr{O}_{2}^{\prime}(f)=0$. Since $\mathscr{O}_{1}(f)=$ 0 we have a f.h.e. $\alpha: \mathscr{E} \rightarrow E$, where $E \rightarrow S^{1}$ is a compact Q-manifold fiber bundle. In the definition of $\mathcal{O}_{2}^{\prime}(f)$ we may take $T(\psi)=E$. Then $\mathcal{O}_{2}^{\prime}(f)=0$ implies that we have $\tau(\alpha h)=0$. Thus αh is homotopic to a homeomorphism.

8. Proof of Theorem 7

We will first need some preliminary results on homotopies. Our main result is Corollary 8.3.

Lemma 8.1: With M and B as in the statement of Theorem 7, let $F: M \times I \rightarrow B$ be a map such that $F_{0}=F_{1}$. Then $F \simeq G$ rel $M \times\{0,1\}$, where $G: M \times I \rightarrow B$ is of the form $G(m, t)=r_{t} F_{0}(m)$, for some homotopy $r: B \times I \rightarrow B$ satisfying $r_{0}=r_{1}=l d$.

Proof: Let $\Delta \subset B^{I}$ be the set of maps $\alpha: I \rightarrow B$ such that $\alpha(0)=$ $\alpha(1)$. There is a natural map $p: \Delta \rightarrow B$ given by $p(\alpha)=\alpha(0)$. This map is a fibration. The fiber is a disjoint union of contractible open subsets (B is a $K(\pi, 1)$ and the fiber is ΩB.)

Let $\bar{\Delta}$ be the space obtained from Δ by identifying $\alpha \sim \alpha^{\prime}$ iff α is homotopic to α^{\prime} rel $\{0,1\}$. Certainly $\bar{\Delta}$ is a covering space of B where the components of $\bar{\Delta}$ correspond to free homotopy classes of loops and the sheets in a component correspond to π_{1} acting on based loops.

There is a natural map (the quotient) $q: \Delta \rightarrow \bar{\Delta}$ covering the identity on B. This map takes components in the fiber of Δ to points in the fiber of $\bar{\Delta}$ in a $1-1$ fashion. By Theorem $2.1, q$ is a f.h.e. and has a fiber homotopy inverse, $q_{1}: \bar{\Delta} \rightarrow \Delta$. We can therefore find a $f . p$. deformation retraction $s: \Delta \times I \rightarrow \Delta$ such that $s_{0}=l d$ and $s_{1}(\Delta)=$ $q_{1}(\bar{\Delta})$.

Each $m \in M$ determines a loop in B by $m \rightarrow F_{t}(m), 0 \leq t \leq 1$. This defines a map $k: M \rightarrow \Delta$ such that $F_{t}(m)=k(m)(t)$. Define $\bar{G}: M \times I \rightarrow$ Δ by $\bar{G}_{u}(m)=s_{u} k(m)$. Then $\bar{G}_{0}(m)[t]=F_{t}(m), \bar{G}_{u}(m)[0]=\bar{G}_{u}(m)[1]=$ $f(m)$ and $\bar{G}_{1}(m)$ is a path depending only on $f(m)$. Defining $G_{t}(m)=$ $\bar{G}_{1}(m)[t]$ we have a homotopy from F_{0} to F_{1}. Because $G_{t}(m)$ depends only on $f(m)$, we can write $G_{t}(m)=r_{t} F_{0}(m)$, for some $r: B \times I \rightarrow B$ satisfying $r_{0}=r_{1}=l d$.

Remark: The above result is true (with the same proof) for B any $K(\pi, 1)$.

Lemma 8.2: Let us choose B as in Theorem 7 and let $r: B \times I \rightarrow B$ be a homotopy such that $r_{0}=r_{1}=l d$.
(1) If $n \geq 2$, then r is homotopic to the constant identity homotopy rel $B \times\{0,1\}$.
(2) If $n=1$, then r is homotopic (rel $B \times\{0,1\}$) to a "standard rotation."

Proof: Let \tilde{B} be the universal cover of B and cover r by $\tilde{r}: \tilde{B} \times$ $I \rightarrow \tilde{B}$ so that $\tilde{r}_{0}=l d . \tilde{r}_{1}$ is a deck transformation properly homotopic to $l d$. It is therefore the identity if $n \geq 2$. Thus, all loops $r_{t}(b)$, $0 \leq t \leq 1$, are null-homotopic for $n \geq 2$. The component of $\bar{\Delta}$ containing the null-homotopic loops covers B trivially. The cover $\bar{\Delta}$ consists of disjoint trivial sheets for $n=1$. Thus an argument similar to Lemma 8.1 homotopes r to a constant for $n \geq 2$ and to a "standard rotation" for $n=1$. (If $B=S^{1}$, a "standard rotation" is a rotation through an integral multiple of 360°. For $B \simeq S^{\prime}$, the homotopy equivalence defines a standard rotation.)

Corollary 8.3 Let us choose M, B as in Theorem 7 and let $g_{1}, g_{2}: M \rightarrow B$ be homotopic maps. Then any two homotopies from g_{1} to g_{2}
(1) are homotopic (rel g_{1} and g_{2}) for $n \geq 2$, and
(2) differ by a "standard rotation" of B for $n=1$.

The First Obstruction. For convenience we will henceforth refer to the fiber bundle $f_{1}: M \rightarrow B$ as $f_{1}: M_{1} \rightarrow B$. By Theorem 2.2 we see that $I d: M_{1} \rightarrow M$ is homotopic to a f.h.e. $g: M_{1} \rightarrow M$. Choose $b_{0} \in B$ so that $F=M_{b_{0}}$. The first obstruction is $\mathscr{P}_{1}\left(f_{1}\right)=\tau\left(g_{b_{0}}\right) \in \mathrm{Wh} \pi_{1}(F)$, where $g_{b_{0}}:\left(M_{1}\right)_{b_{0}} \rightarrow F$.

Lemma 8.4: $\mathscr{P}_{1}\left(f_{1}\right)$ is well defined.

Proof: Let $g^{\prime}: M_{1} \rightarrow M$ be another f.h.e. homotopic to ld. Both g and g^{\prime} are obtained by lifting homotopies from f_{1} to f. Thus g and g_{1} depend only on the homotopy class (rel f_{1} and f) of the homotopy from f_{1} to f. If $n \geq 2$ we conclude by Corollary 8.3 that $g^{\prime} \simeq g$ and therefore $\tau\left(g_{b_{0}}\right)=\tau\left(g_{b_{0}}^{\prime}\right)$. For $n=1$ choose a characteristic map $\varphi: F \rightarrow$ F which is a homeomorphism. By Corollary 8.3 we have $g_{b_{0}}^{\prime}=\varphi^{k} g_{b_{0}}$, for some $k \geq 0$. Computing we get

$$
\tau\left(g_{b_{0}}^{\prime}\right)=\tau\left(\varphi^{k}\right)+\left(\varphi^{k}\right)_{*} \tau\left(g_{b_{0}}\right)=\left(\varphi^{k}\right)_{*} \tau\left(g_{b_{0}}\right) .
$$

We showed in the proof of Theorem 4 (Part II) that $\left(l d-\varphi_{*}\right) \tau\left(g_{b_{0}}\right)=0$. Thus $\tau\left(g_{b_{0}}^{\prime}\right)=\tau\left(g_{b_{0}}\right)$.

The Second Obstruction. Assume that $\mathscr{P}_{1}\left(f_{1}\right)=0$. We have $\tau\left(g_{b_{0}}\right)=$ 0 and therefore $g_{b_{0}}:\left(M_{1}\right)_{b_{0}} \rightarrow F$ is homotopic to a homeomorphism $g_{1}:\left(M_{1}\right)_{b_{0}} \rightarrow F$. Choose characteristic maps $\varphi_{i}: F \rightarrow F, 1 \leq i \leq n$, where each φ_{1} is a homeomorphism. Similarly, choose characteristic maps
$\psi_{i}: F_{1} \rightarrow F_{1}$, where $F_{1}=\left(M_{1}\right)_{b_{0}}$. Define $\theta: \mathscr{P}(F) \rightarrow \mathscr{P}(F) \oplus \cdots \oplus \mathscr{P}(F)$ by

$$
\theta(h)=\left(\varphi_{1}^{-1} h \varphi_{1} h^{-1}, \ldots, \varphi_{n}^{-1} h \varphi_{n} h^{-1}\right) .
$$

It is easy to check that θ is a homomorphism since $\mathscr{P}(F)$ is abelian. We define $\mathscr{P}_{2}\left(f_{1}\right) \in \operatorname{Cokernel}(\theta)$ to be the image of $\left(\varphi_{1}^{-1} g_{1} \psi_{1} g_{1}^{-1}, \ldots, \varphi_{n}^{-1} g_{1} \psi_{n} g_{1}^{-1}\right)$ In Cokernel (θ).

Lemma 4: $\mathscr{P}_{2}\left(f_{1}\right)$ is well-defined.
Proof: First assume that $n \geq 2$. Then all we have to do is show that if $g_{2}:\left(M_{1}\right)_{b_{0}} \rightarrow F$ is another homeomorphism homotopic to $g_{b_{0}}:\left(M_{1}\right)_{b_{0}} \rightarrow F$, then $\alpha=\left(\varphi_{1}^{-1} g_{1} \psi_{1} g_{1}^{-1}, \ldots, \varphi_{n}^{-1} g_{1} \psi_{n} g_{1}^{-1}\right) \quad$ and $\quad \beta=$ $\left(\varphi_{1}^{-1} g_{2} \psi_{1} g_{2}^{-1}, \ldots, \varphi_{n}^{-1} g_{2} \psi_{n} g_{2}^{-1}\right)$ have the same image in Cokernel (θ). Since $\mathscr{P}(F)$ is abelian it is easy to see that

$$
\varphi_{i}^{-1} g_{2} \psi_{i} g_{2}^{-1}=\left(\varphi_{i}^{-1}\left(g_{2} g_{1}^{-1}\right) \varphi_{i}\left(g_{2} g_{1}^{-1}\right)^{-1}\right)\left(\varphi_{i}^{-1} g_{1} \psi_{i} g_{1}^{-1}\right)
$$

which implies that $\beta \alpha^{-1}=\theta\left(g_{2} g_{1}^{-1}\right)$.
For $n=1$ let $g_{2}:\left(M_{1}\right)_{b_{0}} \rightarrow F$ be any homeomorphism homotopic to $\varphi^{k} g_{b_{0}}$. Then we must show that $\varphi^{-1} g_{1} \psi g_{1}^{-1}$ and $\varphi^{-1} g_{2} \psi g_{2}^{-1}$ have the same image in Cokernel (θ). We have just shown above that $\varphi^{-1} g_{2} \psi g_{2}^{-1}$ and $\varphi^{-1}\left(\varphi^{k} g_{1}\right) \psi\left(\varphi^{k} g_{1}\right)^{-1}$ have the same image. But

$$
\varphi^{-1}\left(\varphi^{k} g_{1}\right) \psi\left(\varphi^{k} g_{1}\right)^{-1}=\varphi^{k}\left(\varphi^{-1} g_{1} \psi g_{1}^{-1}\right) \varphi^{-k}
$$

and therefore

$$
\left(\varphi^{-1}\left(\varphi^{k} g_{1}\right) \psi\left(\varphi^{k} g_{1}\right)^{-1}\right)\left(\varphi^{-1} g_{1} \psi g_{1}^{-1}\right)^{-1}=\varphi^{k}\left(\varphi^{-1} g_{1} \psi g_{1}^{-1}\right) \varphi^{-k}\left(\varphi^{-1} g_{1} \psi g_{1}^{-1}\right)^{-1}
$$

So it remains to be shown that any element of the form $\varphi^{k} h \varphi^{-k} h^{-1}$ lies in Image (θ), for $h \in \mathscr{P}(F)$. But this follows from interated use of the formula

$$
\varphi^{k} h \varphi^{-k} h^{-1}=\left[\varphi\left(\varphi^{k-1} h \varphi^{-(k-1)}\right) \varphi^{-1}\left(\varphi^{k-1} h \varphi^{-(k-1)}\right)^{-1}\right]\left[\varphi^{k-1} h \varphi^{-(k-1)} h^{-1}\right] .
$$

Proof of Theorem 7: First assume that there is a f. p. homeomorphism $h: M_{1} \rightarrow M$ such that $h \simeq l d$. Then $g_{1}=h \mid\left(M_{1}\right)_{b_{0}}:\left(M_{1}\right)_{b_{0}} \rightarrow F$ is a homeomorphism and $\tau\left(h \mid\left(M_{1}\right)_{b_{0}}\right)=0$. This proves that $\mathscr{P}_{1}\left(f_{1}\right)=0$. For the second obstruction it can easily be argued from the existence of h that $g_{1} \psi g_{1}^{-1}$ is isotopic to φ_{i}, for $1 \leq i \leq n$. (Or we can refer to [7].) Therefore $\mathscr{P}_{2}\left(f_{1}\right)=0$.

On the other hand assume that $\mathscr{P}_{1}\left(f_{1}\right)=0$ and $\mathscr{P}_{2}\left(f_{2}\right)=0$. Now $\mathscr{P}_{1}\left(f_{1}\right)=0$ implies that there is a homeomorphism $g_{1}:\left(M_{1}\right)_{b_{0}} \rightarrow F$ which is homotopic to $g \mid\left(M_{1}\right)_{b_{0}}:\left(M_{1}\right)_{b_{0}} \rightarrow F$, where $g: M_{1} \rightarrow M$ is a f.h.e.
homotopic to $l d$. Now $\mathscr{P}_{2}\left(f_{1}\right)=0$ implies that

$$
\left(\varphi_{1}^{-1} g_{1} \psi_{1} g_{1}^{-1}, \ldots, \varphi_{n}^{-1} g_{1} \psi_{n} g_{1}^{-1}\right)=\theta(\alpha)
$$

for some $\alpha \in \mathscr{P}(F)$. Thus $\varphi_{i}^{-1} g_{1} \psi_{i} g_{1}^{-1}$ is isotopic to $\varphi_{i}^{-1} \alpha \varphi_{i} \alpha^{-1}$, which implies that $\left(\alpha^{-1} g_{1}\right) \psi_{i}\left(\alpha^{-1} g_{1}\right)^{-1}$ is isotopic to φ_{i}, for each i. By [7] this implies that $\alpha^{-1} g_{1}$ extends to a $f . p$. homeomorphism of M_{1} onto M.

9. Computation of a Kernel

Our main result is Theorem 8. We will first need the general construction of Lemma 9.1 below. For notation let $X \xrightarrow{f} B$ be a map and let $\tilde{B} \xrightarrow{p} B$ be a covering space. Form the pull-back,

where $\tilde{X}=\{(x, e) \mid f(x)=p(e)\}$. Each deck transformation $\varphi: \tilde{B} \rightarrow \tilde{B}$ induces a deck transformation $\tilde{\varphi}: \tilde{X} \rightarrow \tilde{X}$ defined by $\tilde{\varphi}(x, e)=(x, \varphi(e))$.

Lemma 9.1: Let $X_{1} \xrightarrow{f_{1}} B$ and $X_{2} \xrightarrow{f_{2}} B$ be maps, $\tilde{B} \xrightarrow{p} B$ be a covering space, and let $h: X_{1} \rightarrow X_{2}$ be a homeomorphism such that $f_{2} h \simeq f_{1}$. If the pull-back \tilde{X}_{1} is connected, then there exists a homeomorphism $\tilde{h}: \tilde{X}_{1} \rightarrow \tilde{X}_{2}$ such that \tilde{h} covers h and \tilde{h} commutes with the deck transformations of \tilde{X}_{1} and \tilde{X}_{2} which are induced by the deck transformations of \tilde{B}.

Proof: Since $f_{2} h \simeq f_{1}$ there is a homotopy $F: \tilde{X}_{1} \times I \rightarrow B$ so that F_{0} is the composition $\tilde{X}_{1} \xrightarrow{q_{1}} X_{1} \xrightarrow{f_{1}} B$ and F_{1} is the composition $\tilde{X}_{1} \xrightarrow{q_{1}} X_{1} \xrightarrow{h} X_{2} \xrightarrow{f_{2}} B$. Note that F_{0} can be lifted to $\tilde{X}_{1} \xrightarrow{\tilde{f}_{1}} \tilde{B}$. Therefore $F: \tilde{X}_{1} \times I \rightarrow B$ can be lifted to $\tilde{F}: \tilde{X}_{1} \times I \rightarrow \tilde{B}$ so that $\tilde{F}_{0}=\tilde{f}_{1}$. This induces a map $\tilde{h}: \tilde{X}_{1} \rightarrow \tilde{X}_{2}$ defined by $\tilde{h}(x, e)=\left(h(x), \tilde{F}_{1}(x, e)\right)$. We leave it as an exercise for the reader to check that \tilde{h} fulfills our requirements.

Lemma 9.2: Let K be a finite complex and let $\varphi: K \rightarrow K$ be a homotopy equivalence. If $T(\varphi)$ is the mapping torus of φ and i is the natural inclusion $K \hookrightarrow T(\varphi)$, then $i_{*}\left(l d-\varphi_{*}\right)=0$, where i_{*} and φ_{*} are the induced homomorphisms on the Whitehead groups of K and $T(\varphi)$.

Proof: Choose any torsion $\tau \in \mathrm{Wh} \pi_{1}(K)$. We must prove that $i_{*}(\tau)=i_{*} \varphi_{*}(\tau)$. By [6] we may represent τ by a pair [L, K], where L is a finite complex containing K as a deformation retract. This means that $\tau=\tau(f)$, where $f: L \rightarrow K$ is any deformation retraction. It then follows that $\varphi_{*} \tau(f)$ may be represented by $\left[L \bigcup_{\varphi} K, K\right]$ (we assume that φ is a $P L$ map). Applying i_{*} we observe that $i_{*} \tau(f)$ may be represented by $[L \cup T(\varphi), T(\varphi)]$ and $i_{*} \varphi_{*} \tau(f)$ may be represented by $\left[L \cup{ }_{\varphi} T(\varphi), T(\varphi)\right]$. But if $\simeq i \varphi f$, and this implies that $[L \cup$ $T(\varphi), T(\varphi)$] and $\left[L \bigcup_{\varphi} T(\varphi), T(\varphi)\right.$] represent the same torsion in $\mathrm{Wh} \pi_{1}(T(\varphi))$.

Lemma 9.3: Let K be a finite connected complex and let $\varphi_{i}: K \rightarrow K$ be a homotopy equivalence, for $1 \leq i \leq n$. Define X to be the space formed by sewing the mapping tori $T\left(\varphi_{i}\right)$ together along $K \equiv K \times\{0\} \equiv$ $K \times\{1\}$ in $T\left(\varphi_{i}\right)$. Then the kernel of the inclusion-induced map $i_{*}: \mathrm{Wh} \pi_{1}(K) \rightarrow \mathrm{Wh} \pi_{1}(X)$ is

$$
G=\left\{\tau \in \mathrm{Wh} \pi_{1}(K) \mid \tau=\left(l d-\left(\varphi_{1}\right)_{*}\right) \tau_{1}+\cdots+\left(l d-\left(\varphi_{n}\right)_{*} \tau_{n}\right\} .\right.
$$

Proof: It follows from Lemma 9.2 that each element of G lies in the kernel of i_{*}. For the other half we will assume $n=2$. The other cases can be treated similarly.

Choose any torsion $\tau \in \mathrm{Wh} \pi_{1}(K)$ for which $i_{*}(\tau)=0$. As in Lemma 9.2 we may represent τ by a pair $[L, K]$. The condition $i_{*}(\tau)=0$ implies that the inclusion $X \hookrightarrow X \cup L$ is simple. Multiplying by Q and

applying [3, Theorem 29.4] there is a homeomorphism $h: X \times Q \rightarrow$ $(X \cup L) \times Q$ which is homotopic to the inclusion. Using Z-set unknotting we may assume that $h \mid X \times\{0\}=i d$. There is a natural map $f: X \rightarrow B=S_{1}^{1} \cup S_{2}^{1}$ so that K is sent to the wedge point of B and $T\left(\varphi_{i}\right)$ is wrapped once around S_{i}^{1}. We choose notation so that $f^{-1}(b)$ is a copy of K, for each $b \in B$, and passing down the "rays" of $T\left(\varphi_{i}\right)$ covers a path wrapping counterclockwise around S_{i}^{1}. That is, in the representation $T\left(\varphi_{i}\right)=K \times[0,1] / \sim$, passing from 0 to 1 corresponds to going counterclockwise around S^{1}. Let $X_{1}=X \cup L$ and define $f_{1}: X_{1} \rightarrow B$ by the composition $X_{1} \longrightarrow X \xrightarrow{f} B$, where the first map is obtained by taking a deformation retraction of L onto K. Above is a picture of X_{1}, where L is represented by a segment added to $K=$ $T\left(\varphi_{1}\right) \cap T\left(\varphi_{2}\right)$.

Form the pull-backs as in Lemma 9.1,

where \tilde{B} is the universal covering space of B. The homeomorphism h lifts to a homeomorphism $\tilde{h}: \tilde{X} \times Q \rightarrow \tilde{X}_{1} \times Q$ for which $\tilde{h} \mid \tilde{X} \times\{0\}=$ id and \tilde{h} commutes with the deck transformations of $\tilde{X} \times Q$ and $\tilde{X}_{1} \times Q$ which are induced by the deck transformations of \tilde{B}.
\tilde{B} is a 1 -complex such that p takes each vertex to the wedge point of B and p wraps each 1 -simplex once around S_{1}^{1} or S_{2}^{1}. Let A_{1} be the following subset of the plane.

We may identify A_{1} with a subcomplex of \tilde{B} so that p wraps the horizontal 1-simplexes in A_{1} around S_{1}^{1} and the vertical 1-simplexes around S_{2}^{1}. Choose notation so that the positive directions on A_{1} correspond to the clockwise directions on S_{1}^{1} and S_{2}^{1}. Let T_{1} be the
deck transformation of \tilde{B} taking $(0,0)$ to $(1,0)$ and let T_{2} be the deck transformation taking $(0,0)$ to $(0,1)$.

Let

$$
A_{1 / 2}=\left(\left[-\frac{1}{2}, \frac{1}{2}\right] \times\{0\}\right) \cup\left(\{0\} \times\left[-\frac{1}{2}, \frac{1}{2}\right]\right) \subset A_{1}
$$

and choose a finite connected subcomplex A_{n} of \tilde{B} so large that

$$
A^{\prime}=\tilde{h}^{-1}\left(\tilde{f}_{1}^{-1}\left(A_{1 / 2}\right) \times Q\right) \subset \operatorname{Int} \tilde{f}^{-1}\left(A_{n}\right) \times Q
$$

Let $A=\tilde{f}^{-1}\left(A_{1 / 2}\right) \times Q$. Then A and A^{\prime} divide $\tilde{f}^{-1}\left(A_{n}\right) \times Q$ into components as pictured.

$\tilde{f}^{-1}\left(A_{n}\right) \times Q$

$\tilde{f}^{-1}\left(A_{n}\right) \times Q$

The components are named so that $B_{i} \cap(\tilde{X} \times\{0\})=B_{i}^{\prime} \cap(\tilde{X} \times\{0\})$, $\left.A \cap B_{1}=\tilde{f}^{-1}\left(\left\{-\frac{1}{2}, 0\right)\right\}\right) \times Q, \quad A \cap B_{2}=\tilde{f}^{-1}\left(\left\{\left(\frac{1}{2}, 0\right)\right\}\right) \times Q, \quad A \cap B_{3}=$ $\tilde{f}^{-1}\left(\left\{\left(0,-\frac{1}{2}\right)\right\}\right) \times Q$, and $A \cap B_{4}=\tilde{f}^{-1}\left(\left\{\left(0, \frac{1}{2}\right)\right\}\right) \times Q$. Additionally, define $\left.K_{i}=A \cap B_{i} \cap(\tilde{X} \times\{0\})\right)$ and note that each K_{i} has a standard identification with K. We observe that the pair [$A, K_{\text {I }}$] represents the 0 torsion of $\mathrm{Wh} \pi_{1}(K)$ and $\left[A^{\prime}, K_{1}\right]$ represents the given torsion $\tau \in \mathrm{Wh} \pi_{1}(K)$.

An easy torsion calculation gives us

$$
\begin{aligned}
(*)\left[f^{-1}\left(A_{n}\right) \times Q, K_{1}\right]=\left[B_{1}^{\prime}, K\right]+\left(A^{\prime}, K\right]+\left(\varphi_{1}\right)_{*}\left[B_{2}^{\prime},\right. & K]+\left[B_{3}^{\prime}, K\right] \\
& +\left(\varphi_{2}\right)_{*}\left[B_{4}^{\prime}, K\right] .
\end{aligned}
$$

Let $S_{i}: \tilde{X} \times Q \rightarrow \tilde{X} \times Q$ be the deck transformation induced by T_{i}. Since \tilde{h} commutes with the induced deck transformations we observe that

$$
\begin{aligned}
& B_{1}^{\prime} \cup S_{1}^{-1}\left(B_{2}^{\prime}\right)=B_{1} \cup S_{1}^{-1}\left(B_{2}\right), \\
& B_{3}^{\prime} \cup S_{2}^{-1}\left(B_{4}^{\prime}\right)=B_{3} \cup S_{2}^{-1}\left(B_{4}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& {\left[B_{1} \cup S_{1}^{-1}\left(B_{2}\right), K\right]=\left[B_{1}^{\prime}, K\right]+\left[S_{1}^{-1}\left(B_{2}^{\prime}\right), K\right],} \\
& {\left[B_{3} \cup S_{2}^{-1}\left(B_{4}\right), K\right]=\left[B_{3}^{\prime}, K\right]+\left[S_{2}^{-1}\left(B_{4}^{\prime}\right), K\right] .}
\end{aligned}
$$

It is easy to see that $\left[S_{1}^{-1}\left(B_{2}^{\prime}\right), K\right]=\left[B_{2}^{\prime}, K\right]$ and $\left[S_{2}^{-1}\left(B_{4}^{\prime}\right), K\right]=\left[B_{4}^{\prime}, K\right]$. Substituting all this in $\left(^{*}\right)$ above we get

$$
\begin{aligned}
(* *)\left[\tilde{f}^{-1}\left(A_{n}\right) \times Q,\right. & \left.K_{1}\right]-\left[B_{1} \cup S_{1}^{-1}\left(B_{2}\right), K\right]-\left[B_{3} \cup S_{2}^{-1}\left(B_{4}\right), K\right] \\
& =\left(\left(\varphi_{1}\right)_{*}-l d\right)\left[B_{2}^{\prime}, K\right]+\left(\left(\varphi_{2}\right)_{*}-l d\right)\left[B_{4}^{\prime}, K\right]+\left[A^{\prime}, K_{1}\right]
\end{aligned}
$$

We now compute the left-hand side of (**). Note that

$$
\begin{gathered}
{\left[B_{1} \cup S_{1}^{-1}\left(B_{2}\right), K\right]=\left[B_{1}, K\right]+\left[B_{2}, K\right],} \\
{\left[B_{3} \cup S_{2}^{-1}\left(B_{4}\right), K\right]=\left[B_{3}, K\right]+\left[B_{4}, K\right],} \\
{\left[\tilde{f}^{-1}\left(A_{n}\right) \times Q, K_{1}\right]=\left[B_{1}, K\right]+\left(\varphi_{1}\right)_{*}\left[B_{2}, K\right]+\left[B_{3}, K\right]+\left(\varphi_{2}\right)_{*}\left[B_{4}, K\right] .}
\end{gathered}
$$

Substituting this into (**) above we get

$$
\begin{aligned}
\left(\left(\varphi_{1}\right)_{*}-l d\right)\left[B_{2}, K\right]+ & \left(\left(\varphi_{2}\right)_{*}-l d\right)\left[B_{4}, K\right]=\left(\left(\varphi_{1}\right)_{*}-l d\right)\left[B_{2}^{\prime}, K\right] \\
& +\left(\left(\varphi_{2}\right)_{*}-l d\right)\left[B_{4}^{\prime}, K\right]+\left[A^{\prime}, K_{1}\right] .
\end{aligned}
$$

This is all we need.

Theorem 8: Let $\mathscr{E} \rightarrow B$ be a Hurewicz fibration, where B is h.e. to a wedge of $n 1$-spheres and the fiber $F=\mathscr{E}_{b_{0}}$ is h.e. to a finite connected complex. If i is the inclusion map $F \hookrightarrow \mathscr{E}$ and $\left\{\varphi_{i}\right\}_{i=1}^{n}$ is the collection of characteristic maps $\varphi_{i}: F \rightarrow F$, then the kernel of $i_{*}: \mathrm{Wh} \pi_{1}(F) \rightarrow$ $\mathrm{Wh} \pi_{1}(\mathscr{E})$ is

$$
\left\{\tau \in \mathrm{Wh} \pi_{1}(F) \mid \tau=\left(l d-\left(\varphi_{1}\right)_{*}\right) \tau_{1}+\cdots+\left(l d-\left(\varphi_{n}\right)_{*}\right) \tau_{n}\right\} .
$$

Proof: By taking a h.e. of a wedge of $n 1$-spheres to B and forming the pull-back, we may assume that B is a wedge of n 1-spheres, $B=S_{1}^{1} \cup \cdots \cup S_{n}^{1}$. Choose $b_{0} \in B$ to be the wedge point and let $\varphi_{i}: F \rightarrow F$ be the characteristic maps. Let $\alpha: \mathscr{E}_{b_{0}} \rightarrow K$ be a h.e. of $\mathscr{E}_{b_{0}}$ to a finite complex. Define $\psi_{i}=\alpha \varphi_{i} \alpha^{-1}: K \rightarrow K$ and form the space $X \rightarrow B$ of Lemma 9.3. We leave it as a manageable exercise for the reader to construct a h.e. $\beta: \mathscr{E} \rightarrow X$ such that

$$
\begin{aligned}
& \mathscr{E} \xrightarrow{\beta} X
\end{aligned}
$$

homotopy commutes. Then Kernel $\left(i_{*}\right)=\operatorname{Kernel}\left(j_{*} \alpha_{*}\right)$ and all we need is Lemma 9.3.

REFERENCES

[1] D.R. ANDERSON: The Whitehead torsion of a fiber-homotopy equivalence. Michigan Math. J. 21 (1974) 171-180.
[2] A.J. Casson: Fibrations over spheres. Topology 6 (1967) 489-499.
[3] T.A. Chapman: Lectures on Hilbert cube manifolds. C.B.M.S. Regional Conf. Series in Math. 28, 1976.
[4] T.A. Chapman: Concordances of Hilbert cube manifolds. T.A.M.S. 219 (1976) 253-268.
[5] T.A. Chapman and R.Y.T. WONG: On homeomorphisms of infinite-dimensional bundles III. Trans. A.M.S. 191 (1974) 269-276.
[6] M. COHEN: A course in simple-homotopy theory. Springer Verlag, New York, 1970.
[7] Albrecht Dold: Uber fasernweise Homotopieaquivalenz von Faserraumen. Math. Zeit. 62 (1955) 111-136.
[8] Edward Fadell: On fiber homotopy equivalence. Duke Math. J. (1959) 699706.
[9] F.T. Farrell: The obstruction to fibering a manifold over the circle. Doctoral Dissertation, Yale University, 1967.
[10] F.T. Farrell: The obstruction to fibering a manifold over the circle. Actes, Congres Intern, Math. (1970) 69-72.
[11] A.E. Hatcher: Higher simple homotopy theory. Annals of Math. 102 (1975) 101-137.
[12] A.E. Hatcher and J. Wagoner: Pseudo-isotopies of compact manifolds. Asterisque 6 (1973).
[13] C. Kuratowski: Sur les espaces localement connexes et péaniens en dimension n. Fund. Math. 24 (1935) 269-287.
[14] J.P. May: Classifying spaces and fibrations. Memoirs A.M.S., no. 155, 1975.
[15] J. Milnor: On spaces having the homotopy type of a $C W$-complex. Trans. A.M.S. 90 (1959) 272-280.
[16] E.H. Spanier: Algebraic topology. McGraw-Hill Book Co., New York, 1966.
[17] James D. Stascheff: Parallel transport in fiber spaces. Bol. Soc. Mat. Mexicana 11 (1966) 68-84.
(Oblatum 4-VI-1976 and 22-II-1977)
Department of Mathematics
University of Kentucky
Lexington, Kentucky 40506

