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Abstract

A unitary representation of the Sobolev-Lie group of C, -mappings
from an orientable Riemann manifold M to a Lie group G with

compact Lie algebra is constructed. The representation is given in

terms of the energy function on Cj(M, G) and provides a new type of
representations of current algebras. The representation space can be
realized in the L2-space of a random field, which in the case where M
is a closed interval of the real line reduces to the left Brownian

motion on the Lie group G.

1. Introduction

In this paper we construct a unitary representation of the Sobolev-
Lie group of C,-mappings from an orientable Riemann manifold M to
a Lie group G with compact Lie algebra. The representation is given
in terms of the energy function on Ci(M, G). Other types of

representations of groups of mappings between manifolds have been
considered before in several connections, e.g. for the representation
of the "current groups" and "current algebras" of interest in quantum
physics, see e.g. [1]-[5]. The best studied representations are

"ultralocal" in the sense of unitary representations of G attached to
each point of the original space M. These representations, fac-

torizable in Araki’s sense [7], are given by factorizable positive
definite functions on the group Gm, hence are connected with the
infinitely divisible laws of probability. For these aspects see parti-
cularly ([1], [6]-[11]. A general construction of this type has been

* Work supported in part by the Norwegian Research Council for Science and the
Humanities.



38

developed from a different point of view by Vershik, Gelfand and
Graev in a series of papers [12]-[4]. In this paper we shall construct
a different class of unitary representations of the group CI(M, G), for
the case where M is an arbitrary orientable Riemann manifold and G
is a connected Lie group with compact Lie algebra. We call these
representations "energy representations" in sofar as they are given in
terms of the energy function T on Ci(M, G)

They provide a class of new representations of current algebras
which could be called "local representations" to distinguish them
from the "ultralocal representations" mentioned before.

Let us shortly summarize the content of the different sections.
In Section 2 we define the Sobolev-Lie group HI(M, G) of map-

pings from an orientable Riemann manifold M into a connected Lie
group G with compact Lie algebra g. By construction H,(M, G) is the
completion of C?(M, G) in a certain Sobolev metric d, where

C,°(M, G) is the set of mappings in CI(M, G) which are equal to the
identity in G outside some compact in M. The Sobolev metric is

defined by d(o, 03C8) = 2T(cf&#x3E;-Il/J) for any cf&#x3E;, l/J in C?(M, G).
In Section 3 we define the representation 3 of the Sobolev-Lie

group HI(M, G), given by the energy function T(4». To describe the
representation space for 8 we take the free module over the complex
numbers generated by the Sobolev-Lie group HI(M, G). Denoting the

generator of this free module by el/&#x3E; with 0 E H,(M, G), we introduce
in the free module a positive sesquilinear form (,)H, by setting

Then HI(M, G), suitably completed with respect to the seminorm

given by this sesquilinear form, becomes an Hilbert space E(M, G).
This Hilbert space is the representation space for the unitary
representation 6 of the Sobolev-Lie group HI(M, G), defined as the
linear continuous extension to all of E(M, G) of the operation 60
defined by

A continuity property of S is also exhibited. All results of Sections 2
and 3 are also valid for the case where M is a manifold with
boundaries.
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The unitary representation 6 of the Sobolev-Lie group H,(M, G)
constructed in the preceding sections is then in Section 4, put in
relation with the "Brownian motion representation", in the case

where M is a closed interval [0, t] of the real line. In this particular
case one has namely that the representation space E([O, t], G) is

unitarily equivalent with L2(C([o, t], G), dw), where dw is the Wiener
measure on the space of continuous paths in G, defined by left

Brownian motion on G ([17]-|19|). Moreover the representation b is

unitarily equivalent with the representation of Hl([O, t], G) induced by
right translations on L2(C([o, T], G), dw), by the fact that dw is quasi
invariant under right translations by the group Hl([O, t], G). Thus the
general construction of the preceding sections is an extension to the
case of arbitrary orientable manifolds M of the representation of
Sobolev-Lie groups given, when M is an interval of the real line, by
the Brownian motion on G.

In Section 5 we realize isometrically the representation space

E(M, G) of the unitary representation S as a subspace of the

L2(il, (3, d03BC)-space of square integrable functions of a random field
ip - ev,(ù», tp E HI(M, G) associated with the pair (M, G). In the case
where M is a closed interval of the real line this random field reduces

to the Brownian motion process discussed in Section 4.

2. The group H,(M, G)

If M and N are two Riemann manifolds, we denote by Ci(M, N)
the C,-mappings from M to N that are constant outside a compact in
M. Let 0 EE CI(M, N), then do(x) E L(Mx, N~(x)), where Mx and N~(x)
are the tangent spaces at x and 0(x) respectively. By assumption Mx
and N~(x) are equipped with their Riemann metrics which indentify
these spaces with their duals, so that if A E L(Mx, N4,(x» then the
adjoint A’ belongs to L(N~(x), Mx). Hence the metrics in Mx and N4,(x)
induce a natural metric in L(Mx, Ne(x» by IAI2 =tr(AA) = tr(A’A).

Let us now also assume that M is orientable, then there is a natural
measure dx on- M coming from its Riemann structure and we define
the energy function T on CI(M, N) by

We shall be interested in the case where N is a connected Lie group
G with a compact Lie algebra g. We recall that a Lie algebra is said to
be compact if Int(g) is compact, where Int(g) is the group of inner
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automorphisms of the Lie algebra g. Since G is connected, Int(g) =
AdG (see [16], Ch. II, Section 5) where AdG is the adjoint represen-
tation of G in g. Since AdG is compact there are strictly positive
definite invariant bilinear forms on g. We remark that any compact
Lie algebra is the direct sum of a semisimple compact Lie algebra and
its center, and that a semisimple Lie algebra over R is compact if and
only if its Killing form is strictly negative definite (see [16], Ch. II,
Section 6).
Now any strictly positive definite form on g defines obviously a

unique Riemann structure on G which is invariant under left mul-

tiplications on G. Let now B(X, Y) be any strictly positive definite
form on g invariant under AdG, then the corresponding Riemann
structure on G is left and right invariant. In what follows we shall
consider G as a Riemann space with a left and right invariant

Riemann structure induced by some fixed strictly positive definite

form B(X, Y) on g.

If xi, ... , xn are normal coordinates at x E M we denote V,O(x) =
(dldxi)o(x), and we have

with the notation 0-’(x) for the inverse (lj&#x3E;(X))-I. Let now lj&#x3E;(x) and

l/1(x) be in C,(M, G), then we set Oqi(x) = 0(x)qj(x), and this mul-

tiplication organizes CI(M, G) obviously to be a group. We see that

where R(03C3) and L(03C3) are the right and left multiplications in G by the
element a in G, and the sum is the sum as vectors in G+x&#x3E;,x&#x3E;. Hence

and by the invariance of B we therefore get

Let us now introduce the expression

for any 0 and 03C8 in H,(lvl, G).
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Then

or

We observe that since

we have, by the left and right invariance of the Riemann structure on
G, that

Then we have

Moreover we have that

By the Schwarz inequality and the invariance of B we then get

which by (2.6) yields

This together with (2.14) and (2.11) gives us

Let now C?(M, G) be the set of mappings in CI(M, G) which are equal
to the identity in G outside a compact in M. We shall see that

d(o, 03C8) = |~-103C8| is a metric on C?(M, G). From (2.11) we have

From (2.16) we get

If |~| = 0 then do (x) = 0 for all x, so that ~ (x) is constant, hence, if M is
non compact 0(x) = e. Therefore
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Hence d(o, 03C8) is a metric on C?(M, G) and we define H,(M, G) as the
completion of C?(M, G) in the metric d. H,(M, G) is then a complete
metric group.
We say that 0 E Hl(M, G) has support in an open set U C M if it is

the limit in the metric d of elements 0, E C?(M, G) which are equal to
the identity e in G outside a compact subset of U. It is then obvious
that if supp Oi C Ui and U1 rl U2 = 0 then ~1 ~2 = ~2~1. We shall refer
to this property by saying that the group HI(M, G) is local.

3. The unitary representation 6 of Hl(M, G)

From the definition

it follows easily that, for any set of complex numbers À 1, ..., 03BBn and
elements ~1,... , cPn in H1(M, G), we have

and hence

Consider now the free C-module generated by the group HI(M, G),
and denote the generators of this module by e", 0 E H,(M, G).
Then for l/J == L i= 1 aie cf&#x3E;, and 1/1’ = L J= 1 {3je I/I} we define the inner

product

We have then that (,) is a positive sequilinear form on the free

C-module, and hence that 101 = (03A6, 03A6)1/2 is a seminorm. Hence the set
of elements in the free C-module with norm zero is a linear subspace,
and after dividing out by this linear subspace we then get a pre-
Hilbert space. We denote by E(M, G) the completion of this pre-
Hilbert space.
We shall see that there is a unitary representation S of the group

HI(M, G) in the Hilbert space E(M, G). For any generating element
e’" of the free C-module over H,(M, G) we define
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Then we extend 03B40(~) by linearity to the whole free C-module. Let
W = I ; Q;e", then

and

By (2.8) and (2.15) we have

Hence

Thus 03B40(~) is a linear isometry defined on the free C-module, which
therefore maps the linear subspace of norm zero vectors into itself.
Hence there is a natural mapping on the pre-Hilbert space we get by
dividing out by the linear subspace of norm zero vectors. This

mapping being again an isometry, it extends by continuity to an

isometry 03B4(~) on the Hilbert space E(M, G), which for any 03C8 E

HI(M, G) satisfies

Let now q E HI(M, G), then

and

By (2.15) we have

which proves the identity of (3.11) and (3.12). Hence by linearity and
continuity we have that 5 is a representation of HI(M, G)
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We obviously have that S(e) = 1, where e is the constant function

e(x) = e, the identity in G. This, together with (3.14), gives that

03B4(~-1) = S( 4». Hence S( 4» has an inverse and it is therefore unitary.
We have thus proven the following theorem.

THEOREM 3.1: 03B4 as defined by (3.10) is a unitary representation of
H,(M, G) on E(M, G). ~

Consider now the space C(M, G) of continuous mappings from M
into G. Since G is a compact Riemann manifold in the left and right
invariant Riemann structure given by B, there is a metric dB on G
such that dB(03C3, 03C4) is the length of the shortest geodesics from u to T.

dB induces a natural metric on C(M, G) given by

It is immediate that do is a metric on the group C(M, G) in which

C(M, G) is a complete metric space and the topology induced on
C(M, G) by do is that of uniform convergence.
We also have that the group C(M, G) n HI(M, G) is dense in

C(M, G) and HI(M, G) respectively, where both these groups are

considered in their metric topology. Furthermore the group

C(M, G) n H,(M, G) is a complete metric space with metric do + d. As
for the continuity of the representation 6 we have now the following
theorem:

THEOREM 3.2: The restriction of 8 to C(M, G) rl H,(M, G) is con-

tinuous as a mapping from C(M, G) rl HI(M, G) with metric topology
given by do+ d into E(M, G) with the strong topology.

PROOF: Since the adjoint representation of G on it Lie algebra g is
continuous and by assumption AdG is compact, we have that Adu is
a uniformly continuous function from G into the set of orthogonal
matrices on g. Hence if Il /lB is the natural norm in the algebra of linear
transformations on g induced by the B-norm on g, we therefore have
that

where K is some fixed constant and dB(o,, e) is the Riemann distance
from 0’ to e. Consider now for 0 and 03C8 in HI(M, G) and ~ in
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Then

where ~ B is the norm in g induced by B. Hence

Since &#x26;(,q) is unitary we have that

and with we have

Since 0)1:5 lq-’l - 101 we have by (3.18) that (W, à(q)O) con-
verges to 114J112 as d(q, e) + do(q, e) tends to zero. By uniform boun-
dedness we get the same result for any 0 E E(M, G). This proves the
theorem. ~

We shall also need to consider manifolds with boundaries. So let M

be a manifold with a boundary aM -:j:. 0 and let now CI(M, aM, G) be
the space of differentiable maps 0 from M into G such that 0(x) = e
on aM. CI(M, dM, G) has a natural group structure and on the

subgroup of elements 0 with |~| finite we see that d(o, 03C8) = |~-103C8| is

a metric. The completion of this subgroup in the metric d(o, 03C8) is

denoted H,(M, aM, G). Similarly we also introduce the Hilbert space
E(M, aM, G). It is then an immediate consequence of the proofs of
Theorem 3.1 and Theorem 3.2 that these theorems extend to the case

of manifolds with boundaries, where we introduce the notation

C(M, aM, G) for the group of continuous mappings that satisfy the
boundary conditions.
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4. The Brownian motion on a Lie group of compact type

That a Lie group G is of compact type just means that its Lie

algebra g is compact in the sense of the previous sections. In this
section we consider the Brownian motion on such a Lie group. So let

,q(t) be the left invariant Brownian motion on G which starts at the

identity e in G and satisfies the stochastic differential equation.

where 1(t) is the standard Brownian motion (or Wiener process) in
the Lie algebra g equipped with the invariant inner product given by
the strictly positive definite form B(el, e2). Hence q(t) is the non an-
ticipating solution of the stochastic integral equation corresponding to
(4.1) with initial condition q (0) = e, where de ---&#x3E;,q - de is the mapping
from g = Ge to GTJ’ from the tangent space at e to the tangent space at
q, induced by the left translation by q on the group G. So that if

L(,q) o- = q - o,- then, according to our notation, we have 11dç ==
dL (,q - de.

Stochastic differential equations of the type (4.1) have been studied
in the well known work of Ito [19], McKean [18], Gangolli [17], and
the existence and uniqueness of solutions is established. The solution
q (t) has the property that it starts afresh at its stopping times T in the
sense that, conditional on T  00, the future q’(t) = + T),
t &#x3E; 0 is independent of the past q(s) s :~ T+, and identically in law to
the original motion q(t): t:c&#x3E; 0 starting at e. This is an analog of the

independent increments of the one dimensional Brownian motion, and
we shall shortly refer to this property by saying that q(t) has left

independent increments. It follows from the uniqueness of solutions
of (4.1) and the fact that the standard Brownian motion e(t) in g is

invariant under time reflection, that the backward process q*(t)-
q(-t) is identical in law with q(t). Moreover since d/dt(lf&#x3E;-I(t)) ==
_lf&#x3E;-I(t)cÍ&#x3E;(t)f&#x3E;-I(t), where $(t) = (d/dt)lf&#x3E;(t), if 0 is Ci, we have that

dT/-I(t) == -T/-I(t)dT/ . q-’(t) and since e(t) and -ç(t) are identical in
law we get that Ç(t) = i7-’(t) satisfies the differential equation

where de - C = dR (C) - de. So that the mapping a - lT-1 on G takes the
Brownian motion with left independent increments into the Brownian
motion with right independent increments. It follows from the

uniqueness of solutions of (4.1) and the fact that B is invariant under
AdG that q(t) is a left and right invariant process on G, i.e. if q(t) is
the solution of (4.1) with q (0) = e, then uq (t) as well as q (t) - o- for
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03C3 e G are identical in law with the solution of (4.1) that starts at 03C3,

for t = 0.

Let da be the Haar measure on G, then since q(t) is left invariant it
must leave da invariant, the Haar measure being unique up to a
constant. Hence q(t) induces a symmetric Markov semigroup in

L2(G, do-), which we denote by e"à, so that for f E L2(du)

where q(t) is the Brownian motion such that q(0) = e. It follows then
easily that ~ is the standard self-âdjoint Laplacian in L2(G, do,) given
by the invariant form B. In the case G is a simple compact Lie group
we have that B is proportional to the Killing form, in which case d is
proportional to the Casimir operator. Consider now the left Brownian
motion on G given by the stochastic differential equation

starting at e for t = 0, where e(t) is the standard Brownian motion on
its Lie algebra g equipped with the inner product given by
4 - B(el, e2). It follows from the proof of the existence of solutions of
(4.4) that almost all paths 71(s), 0  s  t are continuous paths on G
and in fact there is a measure dw on the space of continuous paths
C([O, t), {0}, G) = C([O, t), G), where dw is a regular measure in the
metric topology given by the supremum metric do(o, 03C8) on the metric

group C([O, t), G). It follows from a Sobolev inequality in RI that

HI([O, t), {0}, G) = H,([0, t), G) is actually a subgroup of C([O, t), G).
By utilizing equation (4.1) and the corresponding stochastic integral

equation one proves that the Wiener measure dw on C([0, t), G) is

quasi invariant under right multiplication by elements in Hl([O, t), G).
In fact if dw, is the image of dw under the mapping q(x)---&#x3E;,q(x)qi(x),
for 03C8 E Hi([0, t), G), then one has

where the Radon-Nikodym derivative a (,q, 03C8) is a positive integrable
function with integral 1.

Let now L2(C([o, t), G), dw) = L2(C, dw) be the corresponding L2-
space. Since dw is quasi invariant under right translations by the
group HI(([o, t), G) there is a natural unitary representation of this
group in L2(C, dw) given by

We now compute (V(0)1, V(#)1) and find
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thus

Consider now the linear mapping from E([0, t), G) into L2(C, dw)
defined by

It follows from (4.8) that (4.9) defines an isometry from E([O, t), G)
into L2(C, dw). We shall see that this isometry is actually a unitary
equivalence between E([O, t), G) and L2(C, dw). Let X(r) be arbitrary
in L2([o, t), G), where g is the Lie algebra of G equipped with the
Euclidean norm given by B. Then the differential equation «Í1( T) ==
X(T)#(T) has a unique solution with initial value #(0) = e, and

obviously this solution 03C8 is in Hi([0, t], G). By (4.4)

which obviously generates the full o--algebra of 11 (s), 0  s - t, since
q(s) is given in terms of e(s) by a non anticipating stochastic integral.
We summarize this in the following theorem.

THEOREM 4.1: Let q(s) be the standard left Brownian motion on G
relative to the form 4. B (§ , § ) on its Lie algebra g. Then the mapping1 2

defined for t/i E HI([O, t), G) extends by linearity to a unitary equivalence
between E([O, t), G) and L2(C, dw) which takes the unitary represen-
tation à(q ) into the unitary right translation V(11) on L2(C, dw), which is

the L2-space with respect to the Wiener measure.

5. The random field associated with the pair (M, G)

Let now M be a Riemann manifold, G as before a Lie group of

compact type and B a positive definite invariant bilinear form on its
Lie algebra g. Let HI(M, G) be the corresponding Sobolev-Lie group.
To any element A in the group algebra of HI(M, G), i.e. A = L ?=l aly
with ai E C and 03C8i E HI(M, G), we may associate a gC-valued one-
form a(x), which is square integrable over M and given by
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We also write this as is the com-

plexification of g). Now the linear space of gC -valued square integrable
one-forms has a natural Hilbert structure given by

where dx is the Riemann measure on M, C = I g (3jpj and c is the one
form corresponding to C.

Let us now consider the free C-module over the group algebra A of
Hi(M, G). We denote the elements in this C-module by

where Ai E C and Ai E A. We introduce the Hilbert norm given by

where (Ai, Aj) == (ai, aj) and aj is the one-form corresponding to Ai.
Since (ai, aj) is the Gram matrix given by vectors a,, ... , an in a

Hilbert space it is non negative definite and thus e(1,,A,) is non negative
definite, so after dividing out by the vectors of norm zero we have
that (5.4) defines a Hilbert space which we denote by F(M, G).

Let now tp e HI(M, G) and t E R, then we define the operator

U(t03C8) on F(M, G) by

It is easily verified that U(t03C8) are strongly continuous unitary
groups as functions of t and they commute for different tf¡a in

H,(M, G). Hence by the spectral theorem applied to the weakly
closed C*-algebra generated by U(t03C8) for t E R and 03C8 E HI(M, G) we
have that there is a probability space (03A9, B, dw) and a mapping qi ---&#x3E; 03BE03C8
from HI(M, G) into 2B-measurable functions on 03A9 such that

and the mapping

extends to a unitary isomorphism between the cyclic Hilbert space
generated by U (t03C8) acting on e° and L2(il, do». We shall call the

mapping 03C8 ~ 03BE03C8 the random field associated with the pair (M, G) and
we note that by construction we have that the o--algebra generated by
the functions ep(ù» is equal to 9/J.
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It follows from what is above that fep,, - ... , epl are jointly Gaussian
distributed with mean zero and covariance matrix (tPi, qij), since

From this it follows that for ai E C we have that el’ie4 is integrable
with

Especially we see that

with A = 1 03B1i03C8i, extends to a unitary mapping of F(M, G) in L2(f2, dw).
That its image is all of L2(f2, d03C9) follows by the construction of
L2(03A9, dw). We see that E(M, G) thus becomes the subspace of

L2(fl, dw) spanned by functions of the form eev,. We summarize this in
the following theorem.

THEOREM 5.1: There exists a probability space (f2, B, dw) and a

mapping from H,(M, G) into the space of measurable functions on
03A9, Ji --&#x3E; ),(w), such that -0? is the smallest u-algebra generated by the
random variables ep and

extends by linearity to an isometry of E(M, G) into L2(03A9, dw).
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Added in proof

This work was completed in the Spring of 1976 and appeared as a preprint of ZIF,
University of Bielefeld in May 1976. In between the following work, containing the proof
of the irreducibility of the energy representation, has appeared:

R.C. Ismagilov (Dokl. Ak. Nauk 100 (142) n° 1 (5), 117-131 (1976) (russ.)) and A.M.

Vershik, I.M. Gelfand, M.I. Graev. (Representation of the group of smooth maps of a
manifold into a compact Lie group, Moscow University preprint).


