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Abstract

The purpose of this work is to show that, over an algebraically
closed field of characteristic 2, the number of smooth conics tangent
to 5 general conics is only 51, (versus 3264 in every other charac-
teristic) and that each solution occurs with multiplicity one.

1. Introduction

Enumerative problems concerning conics - and in particular that of
determining the number, 3264, of smooth conics tangent to 5 general
ones - have had a rich history. The reader is referred to the article of
H.G. Zeuthen and M. Pieri, "Géometrie énumerative", Encyclopédie
des sciences Mathématiques, tome III, vol. 1, fasc. II, pp. 260-331,
Leipzig (1915), and to the forthcoming work of S.L. Kleiman,
"Chasles’ Enumerative Theory of Conics, a Historical Introduction",
to appear in the volume of the Mathematical Association of America

on Algebraic Geometry, edited by A. Seidenberg.
We review here some of the features of the classical theory, which

extend without surprises to every characteristic 7é 2. Then we explain
the changes needed to treat the case of char. 2.
The set of conics tangent to a fixed smooth conic is a hypersurface

D of degree d (= 6 in char. :;é 2, and = 3 in char. 2) in the projective
5-space p5 parametrizing all the conics. If one tries a naïve solution to
the problem, one will obtain d 5 for the number of intersections of 5
such divisors (as J. Steiner (1848) and J. Bischoff (1859) actually did).
This number, however, has no enumerative significance because each

* Supported by the CNPq. (Brazil).
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of these hypersurfaces contains the surface parametrizing the double
lines. What is in fact required is the number of isolated intersections
of these hypersurfaces with the open subset of smooth conics. The
correct answer was first found by Chasles (1864), essentially by
introducing the variety B of complete conics. B is, in char. # 2, the
closure of the graph of the duality correspondence that sends a

smooth conic to its dual conic. It turns out that B is just the blowup
of P along the Veronese surface of double lines and that the proper
transforms of 5 general translates of the hypersurface D intersect
properly. Moreover, this intersection is actually transversal and lies
over the open subset of P 

5 of smooth conics. The correct solution,
namely 3264, can be computed in the numerical equivalence ring of B
as the 5-fold self-intersection of the class of the proper transform of

D.

In characteristic 2, however, the classical duality no longer holds.
Nevertheless, we will see that the very pathology can be used to our

advantage. We replace the classical duality correspondence by the
mapping of a smooth conic to its strange point (see 2 and 3 below). In
section 4, we introduce the variety of complete conics and identify it

with the blowup of p5 along the linear subspace of double lines. We
review in section 5 the action of Gl (3, k ) on P and in the following
section we show this action extends naturally to the complete conics.
In section 7, we employ the techniques of [3] to prove a "char.

p-transversality" statement needed in the last section to justify the
claim of multiplicity one. Section 8 contains an elementary derivation
of the degree of D and the verification that D passes doubly through
the subspace of double lines. Finally, in section 9, we compute the
number 51 of smooth conics tangent to 5 general conics.

2. Strange points (cf. [4], p. 76)

Fix an algebraically closed ground field k of characteristic 2.
The most curious feature of the theory is the presence of a point

common to all tangent lines to a fixed conic. Indeed, let

denote the equation of an arbitrary conic. The tangent line of F at a
point (x, y, z) is given by
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Obviously the point (f, e, d) lies on that line. We are, of course,

assuming that (x, y, z) is not a singular point of our conic, and in
particular, the coefficients f, e, d are not all zero. This amounts to
saying F is not the square of a linear form, i.e., the conic is not a

double line.

We call (f, e, d) the strange point of F, and denote it by st(F).

3. The dual map

The projective 5-space p5 parametrizes the conics. We will often
denote a conic and its equation by the same letter and say "the conic
F" instead of "conic with equation F = 0". We adopt the homo-
geneous coordinates (a, b, c, d, e, f), in that order, for the conic F as
in (1).

Let L C P denote the linear subspace

The map

will be called the dual map. In homogeneous coordinates, we have,

4. Complète conics

Let A C (P’- L) x p2 denote the graph of the dual map. The

closure B of .d in p5 x p2 will be called the variety of complete
conics. It plays a central role below.

Since st is a linear projection with centre L, and B is the closure of
its graph, B is the blowup of P 

5 along L. We have the following
diagram:
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where p is the projection. It can be shown that B is cut out in P 5 x P 2
by the bi-homogeneous equations,

The subvariety E = p-’(L) is the exceptional divisor. Recalling
equations (2) which define L, one finds

Intuitively, the exceptional divisor solves the indeterminacy of

assigning a strange point to a double line. Precisely, the 2nd pro-
jection q: B ---&#x3E; P’ extends the dual map, once we have identified
P’- L with A LB as in diagram (3).
We remark for later use that the class of E in the Chow ring A(B)

is given by

where H (resp. H’) is a hyperplane in p5 (resp. a line in P2). In fact,
(5) is an immediate consequence of the finer equality of divisors,

which simply means that the product of local equations for E and
q-’(H’) is a local equation for p-’(H). This can easily be verified with
the help of (2) and (4).

5. The group action on P 5

The general linear group

acts on p2 and hence on the linear systems of plane curves. In

particular, we have a natural action of G on our p5 of conics.

Explicitly, given an element g in G and a conic F in P5, the equation
of the image of {.F = 01 under g is

where (gij) is the inverse matrix of g.
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It is well-known (and very easy to check) that G has 3 orbits in p5:
(i) p5 - S, the complement of the divisor S which parametrizes the

singular conics;
(ii) S - L, the variety of the singular conics consisting of 2 distinct

lines; and
(iii) L, the linear subspace (2) parametrizing the double lines.

(5.1) PROPOSITION: Fix some F in T == p5 - S. Then the scheme-
theoretic fibres of the map

are integral.

PROOF: Any two fibres are isomorphic, because G acts transitively
on T. For the same reason, we may assume F = X2+ X2X3. Denote
by G(F) the fibre over F. Set-theoretically, G(F) is the subgroup of all
elements in G that leave F fixed. Restricting m over the open subset
Ta, complement of the hyperplane f a = 01, we may write, for each

The equations defining Ç(F) in G are obtained by matching the

coefficients of m (g) above with those of F. Let 0,(gij)=O denote
these equations (there are 5 of these since the coefficient of X2 has
been normalized to 1). We will show G(F) is (a) smooth (hence
reduced) and (b) irreducible. Since G(F) acts transitively on itself,
smoothness follows from the explicit verification that the jacobian
matrix (al/&#x3E;vI agij) has a rank 5 submatrix at g = identity. This can be
done conveniently by differentiating (6) implicitly. As to the irreduci-
bility, recall that any smooth conic is isomorphic to P’, and therefore,
the action of G(F) on the conic F yields a homomorphism of algebraic
groups,

(see [1], prop. on p. 265). The kernel of h is the subgroup of scalar
multiples of the identity matrix, because any element of G that fixes
more than 4 points, no 3 of which are collinear, induces the identity.
It follows that the fibres of h are irreducible. Counting dimensions,
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one sees that h is dominating; hence, h is surjective ([l], (1.4), p. 88).
Since h is generically flat ([EGAIV2] 6.9.1), it is actually flat (because
Ç(F) acts transitively on PGL(2, k)). By ([EGAIV2] 2.3.5 (iii», it

follows that G(F) is irreducible.

6. The group action on B

Since any automorphism g in G preserves both tangency and lines,
it follows that for any F in p5 - L, the strange point of gF is g(st(F)).
In other words, the dual map is G-equivariant. Thus, its graph
A C P’ x P’ is invariant under the action of G on p5Xp2 By
continuity, it follows that B is also G-invariant.

Let us now describe the orbits of G in B. Observing that p : B -&#x3E;P5
is G-equivariant, and that p identifies B - E with PS - L, we conclude
that B - .E is G-invariant, and the orbits of G in B - E are identified
with those of G in PS - L, namely, S - L and p5_S (see 5).

It remains to investigate the orbits of G in E. Recall that a point of
E is a pair (F, x) where F is a double line and x is an arbitrary point
in P2. Let G(F) denote the stabilizer of F, i.e., the set of g in G such
that gF = F. It is clear that G(F) has precisely 2 orbits in p2: (i) the line
1 of which F is the double; and (ii) p2 _1. Therefore, the orbits of G in E
are

and

7. Miscellaneous properties of group actions

Throughout this section, the characteristic of k is arbitrary.
Let G be an integral algebraic group, and V an integral variety

with a G-action G x V- V. Assume there are only finitely many
orbits.

(7.1) LEMMA: Exactly one of the orbits is open in V.

PROOF: Each orbit is open in its closure ([1], p. 98). Now, V is
irreducible and equal to the finite union of the closures of the orbits,
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so V is the closure of some orbit. There is only one open orbit
because orbits are disjoint and V is irreducible.

(7.2) PROPOSITION: Let W,, ..., Wn be (not necessarily distinct nor
irreducible) locally closed subvarieties of V. Suppose each W; inter-
sects properly each of the orbits, and

Then: (i) There exists an open dense subset U of Qxn such that, for
every (g;) in U, the intersection n(g¡ W;) is finite, is empty if r  0, and
lies in the open orbit.

(ii) If each W; is integral, and if, for some point xo in the open orbit
Vo, the map

has integral fibres, then there exist integers s, e and an open dense
subset U of Qxn such that, for all (gi) in U, the intersection n(giwi)
has precisely s distinct points and the multiplicity at each is 1 in

characteristic 0 and p e in characteristic p &#x3E; 0.

PROOF: Observe that, once (i) is proven, we may replace V by Vo
and W by wi n Vo to prove (ii). On the other hand, since Qxn is

irreducible (because G is and k is algebraically closed), we may, also
in the proof of (i), replace V by an orbit and Wi by an irreducible
component. Thus, we may as well assume the action is transitive and

W integral.
Consider the fibre product diagram:

By ([EGA IV2], 6.9.1), q is generically flat. Since G’" acts transitively
on V"n (and compatibly with q), q is flat. Since q is also surjective, all
of its fibres are equidimensional, with dimension
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Hence Z is equidimensional, with

Denote by p: Z ---&#x3E; G"’ the projection map. A minute of reflection
should convince us all that the fibre p-’(gi) is precisely

There exists an open dense subset of G"’ over which the fibres of p
are either empty or of the dimension

(e.g., by generic flatness). This completes the proof of (i).
Next we show that the additional hypotheses of (ii) imply Z is in

fact integral. By ([EGA IV2], 2.3.5 (iii), and 3.3.5), it suffices to show
the fibres of q’ (see diagram (7)) are integral. Since q’ is the pullback
of q, we are reduced to verifying the fibres of G x Wi ---&#x3E; V are integral
for each W;. Now, it can easily be seen that the fibre over any x in V
is isomorphic to the fibred product G x w defined by the diagram,- 

v

Since mx and m-l-, differ by an automorphism, every mx has integral
fibres. Since mx is flat (same argument as for q above), it follows that
G x W is flat and has integral fibres over W, whence is integral. Thus

v 
.

Z is integral, as we claimed.
By the lemma below, there exists an open dense subset U of Gxn

such that, for every (gi) in U, the number of distinct points in p -l(gi)
(resp. the multiplicity at each) equals the separable (resp. inseparable)
degree of p (both are zero if dim(p(Z))  dim(Gxn")). Since the insepar-
able degree is 1 in char. 0 and a power of p in char. p &#x3E; 0, (ii) follows.

REMARK: The multiplicity referred to in the last paragraph as well
as in the lemma below is the naïve one, namely, the length of the
artinian local ring of the fibre at each point. One still must verify that
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it coincides with the intersection-theoretic one, obtained from the

alternating sum of Tor’s. Now, all the higher Tor’s vanish provided
each giWi is Cohen-Macaulay at the points of their intersection ([5],
Cor. p. V-20). Shrinking U, we may actually assume (in view of (i))
that the intersection lies in the smooth locus of each giWi. Therefore,
the naïve multiplicity is right.
We include a proof of the result below as no convenient reference

could be found.

LEMMA: Let f : X ---&#x3E; Y be a finite surjective map of integral schemes
of finite type over k. Then there exists an open dense subset U of Y
such that the geometric fibre of f over each y in U has s (= separable
degree of f) distinct points and the multiplicity at each is the insepar-
able degree of f.

PROOF: Denote by S the singular locus of X. Replacing Y by
Y-f(S), we may assume X smooth, and in particular, normal. Now,
let X, denote the normalization of Y in the separable closure of its
function field R( Y) in R(X). Since X is the normalization of Y in

R(X), we get a factorization X ---&#x3E; X, ---&#x3E; Y for f. Thus, we may assume
f is either separable or purely inseparable. In both cases, by factoring
f through the normalization of Y in some intermediate field, the result
follows easily by induction on the degree.

8. Conics tangent to a smooth conic

Return to char. k = 2. We will derive the equation of the subvariety
D of p5 parametrizing the conics tangent to a given smooth conic.
Since G = G 1 (3, k) acts transitively on the set of smooth conics, (and
of course the action preserves tangency), it is enough to work it out
for the conic

which will remain fixed for the rest of this article.

A conic F in P 5 - L is tangent to Fo iff some point of F rl Fo lies on
a line with st(F) and st(Fo) = (1, 0, 0). Hence we have to eliminate XI,
X2 and X3 from the equations
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On the complement of the hyperplane le = 01, we have

Substituting in we get

which requires

Set (provisorily) D’ = divisor of zeros of 0. We have seen that

D = D’off le = 01. Since neither D nor D’ contains f e = 01 (e.g., look
at X 3 + XIX2), it follows that D = D’.

(8.1 ): Let us now consider the tangency, of complete conics. Look-
ing at the homogeneous equation (8) of D, we find

Since (f, e, d) is the homogeneous ideal of L (see (2)), the multiplicity
of L in D is exactly 2. It follows from the general theory of

blowing-ups that the pull-back of D to B has the form

where D, the proper transform of D in B, is the closure of p -1(D - L)
in B. ((9) means that, locally on B, the ideal of p -’(D) is generated by
an element of the form E’â, where E (resp. i) generates the idéal of E
(resp. D), and E does not divide i.)
What is E D D? In other words, when is a double line F plus an

assigned strange point x a limit of elements of p -’(D - L)? We claim
that a n.a.s.c. for (F, x) in L x p2 to lie in D is that x belong to a line
through st(FO) and a point in F FI Fo.

Indeed, since for any F in D - L, there exists a point x’ in F n F.
such that x’, st(F) and st(FO) are collinear, namely, the point of
tangency, it follows by continuity that the condition is necessary.

Conversely, assume the condition. We will prove that (F, x) lies in
D by explicitly exhibiting a pencil {At} C D such that: (a) Ao = F and,
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To construct the pencil, we consider two cases:
(i) F intersects Fo in only one point;
(ii) F intersects Fo in two distinct points.

Recalling that the stabilizer G(F,» induces the full group of automor-
phisms of Fo (see proof of 5.1) and observing that 15 is invariant

under G’(Fo), we may assume in case (i) (resp. (ii» that F is twice the
tangent line X2 = 0 (resp. the transversal line XI = 0). Hence F n Fo is
{(O, 0, I)j (resp. {(O, 1, 0), (0, 0, 1)1). Thus x is of the form (f, 0, d) (resp.
(f, e, 0) or (f, 0, d)). Consider the pencils:

and

With the help of equation (8), one sees at once that lAt lies in D for
i = 1, 2, 3 and all t, and also that (a) and (b) hold.

9. The 51 smooth conics tangent to 5 general conics

We will prove now that 5 general translates of D (see (9)) intersect
properly on B in 51 points. Moreover, the intersection actually lies
over P 5 - S, and the multiplicity of each point in that intersection is
one.

To apply the results on group actions of Section 7, we must verify
that D intersects properly each of the orbits of G = GI(3, k) in B. But
this is clear, because each of the orbits is irreducible and D is a

divisor which does not contain any of them (see the explicit descrip-
tions in 6 and 8.1). In view of (5.1), we may apply (7.2, (ii)) with
V = B and W = D: there exist an open dense subset U C G 5 and
integers s and e such that, for each (gi) in U, the intersection

gl15 n ... f1 g5D lies over p5_ S, has s distinct points and the mul-
tiplicity at each is 2e. Hence, the weighted number of points is s 2e.

However, the computation below gives s2e = 51, so e = 0 as asserted.
Let us finally compute the weighted number of intersections of 5

general translates of D. Since G is isomorphic to an open subset of an
affine space, the translates of D lie all in the same class in the rational

equivalence ring A(B). Thus, what is required is the degree of the
self-intersection [D)5.
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By (9), we have [D] =p*[D]-2[E]. Since D is a hypersurface of
degree 3 (by (8)), its class in A(P’) is 3[H]. Recalling the expression
(5), then observing the relation [H’]‘ = 0 for i &#x3E; 2, we get

Using the projection formula, and the invariance of degree under p * ,
we get:

We have used the formulas

which hold because the restriction of q: B ---&#x3E; P’ to the pullback of a
linear subspace of p5 disjoint from L, is an isomorphism onto a linear
subspace of P 2.
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