Locally convex spaces for which Λ(E)=Λ[E] and the Dvoretsky-Rogers theorem
Compositio Mathematica, Tome 35 (1977) no. 2, pp. 139-145.
@article{CM_1977__35_2_139_0,
     author = {de Grande-de Kimpe, N.},
     title = {Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the {Dvoretsky-Rogers} theorem},
     journal = {Compositio Mathematica},
     pages = {139--145},
     publisher = {Noordhoff International Publishing},
     volume = {35},
     number = {2},
     year = {1977},
     zbl = {0359.46010},
     language = {en},
     url = {http://www.numdam.org/item/CM_1977__35_2_139_0/}
}
TY  - JOUR
AU  - de Grande-de Kimpe, N.
TI  - Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem
JO  - Compositio Mathematica
PY  - 1977
SP  - 139
EP  - 145
VL  - 35
IS  - 2
PB  - Noordhoff International Publishing
UR  - http://www.numdam.org/item/CM_1977__35_2_139_0/
LA  - en
ID  - CM_1977__35_2_139_0
ER  - 
%0 Journal Article
%A de Grande-de Kimpe, N.
%T Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem
%J Compositio Mathematica
%D 1977
%P 139-145
%V 35
%N 2
%I Noordhoff International Publishing
%U http://www.numdam.org/item/CM_1977__35_2_139_0/
%G en
%F CM_1977__35_2_139_0
de Grande-de Kimpe, N. Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem. Compositio Mathematica, Tome 35 (1977) no. 2, pp. 139-145. http://www.numdam.org/item/CM_1977__35_2_139_0/

[1] N. De Grande-De Kimpe: Generalized sequence spaces. Bull. Soc. Math. Belg. XXIII (1971) 123-166. | MR | Zbl

[2] N. De Grange-De Kimpe: Operator theory for bornological spaces. Bull. Soc. Math. Belg. XXVI, (1974) 3-23. | MR | Zbl

[3] N. De Grange-De Kimpe: Criteria for nuclearity in terms of generalized sequence spaces. To appear in Archiv der Mathematik. | Zbl

[4] Ed. Dubinsky and M.S. Ramanujan: Inclusion theorems for absolutely A-summing maps. Math. Ann. 192 (1971) 177-190. | MR | Zbl

[5] A. Grothendieck: Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretsky-Rogers. Boletin Soc. Math. Sao Paulo, 8 (1956). | MR | Zbl

[6] G. Kothe: Topologische lineare Räume. Springer Verlag (1960). | MR | Zbl

[7] A. Pietsch: Verallgemeinerte volkommene Folgenräume. Akademie Verlag (1962). | MR | Zbl

[8] A. Pietsch: Nukleare lokalkonvexe Räume. Akademie Verlag (1965). | MR | Zbl

[9] A. Pietsch: Absolut p-summierende Abbildungen in normierte Räume. Studia Math. 28 (1967) 333-353. | MR | Zbl

[10] R.C. Rosier: Dual spaces of certain vector sequence spaces. Pacific J. Math. 46(2) (1973) 487-501. | MR | Zbl

[11] R.C. Rosier: Vector sequence spaces and the Dvoretsky-Rogers theorem. (To appear).