@article{CM_1977__35_2_139_0, author = {de Grande-de Kimpe, N.}, title = {Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the {Dvoretsky-Rogers} theorem}, journal = {Compositio Mathematica}, pages = {139--145}, publisher = {Noordhoff International Publishing}, volume = {35}, number = {2}, year = {1977}, zbl = {0359.46010}, language = {en}, url = {http://www.numdam.org/item/CM_1977__35_2_139_0/} }
TY - JOUR AU - de Grande-de Kimpe, N. TI - Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem JO - Compositio Mathematica PY - 1977 SP - 139 EP - 145 VL - 35 IS - 2 PB - Noordhoff International Publishing UR - http://www.numdam.org/item/CM_1977__35_2_139_0/ LA - en ID - CM_1977__35_2_139_0 ER -
%0 Journal Article %A de Grande-de Kimpe, N. %T Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem %J Compositio Mathematica %D 1977 %P 139-145 %V 35 %N 2 %I Noordhoff International Publishing %U http://www.numdam.org/item/CM_1977__35_2_139_0/ %G en %F CM_1977__35_2_139_0
de Grande-de Kimpe, N. Locally convex spaces for which $\Lambda (E) = \Lambda [E]$ and the Dvoretsky-Rogers theorem. Compositio Mathematica, Tome 35 (1977) no. 2, pp. 139-145. http://www.numdam.org/item/CM_1977__35_2_139_0/
[1] Generalized sequence spaces. Bull. Soc. Math. Belg. XXIII (1971) 123-166. | MR | Zbl
:[2] Operator theory for bornological spaces. Bull. Soc. Math. Belg. XXVI, (1974) 3-23. | MR | Zbl
:[3] Criteria for nuclearity in terms of generalized sequence spaces. To appear in Archiv der Mathematik. | Zbl
:[4] Inclusion theorems for absolutely A-summing maps. Math. Ann. 192 (1971) 177-190. | MR | Zbl
and :[5] Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretsky-Rogers. Boletin Soc. Math. Sao Paulo, 8 (1956). | MR | Zbl
:[6] Topologische lineare Räume. Springer Verlag (1960). | MR | Zbl
:[7] Verallgemeinerte volkommene Folgenräume. Akademie Verlag (1962). | MR | Zbl
:[8] Nukleare lokalkonvexe Räume. Akademie Verlag (1965). | MR | Zbl
:[9] Absolut p-summierende Abbildungen in normierte Räume. Studia Math. 28 (1967) 333-353. | MR | Zbl
:[10] Dual spaces of certain vector sequence spaces. Pacific J. Math. 46(2) (1973) 487-501. | MR | Zbl
:[11] Vector sequence spaces and the Dvoretsky-Rogers theorem. (To appear).
: