@article{CM_1977__34_2_127_0, author = {Mignotte, Maurice and Waldschmidt, Michel}, title = {Approximation simultan\'ee de valeurs de la fonction exponentielle}, journal = {Compositio Mathematica}, pages = {127--139}, publisher = {Noordhoff International Publishing}, volume = {34}, number = {2}, year = {1977}, mrnumber = {441884}, zbl = {0345.10022}, language = {fr}, url = {http://www.numdam.org/item/CM_1977__34_2_127_0/} }
TY - JOUR AU - Mignotte, Maurice AU - Waldschmidt, Michel TI - Approximation simultanée de valeurs de la fonction exponentielle JO - Compositio Mathematica PY - 1977 SP - 127 EP - 139 VL - 34 IS - 2 PB - Noordhoff International Publishing UR - http://www.numdam.org/item/CM_1977__34_2_127_0/ LA - fr ID - CM_1977__34_2_127_0 ER -
%0 Journal Article %A Mignotte, Maurice %A Waldschmidt, Michel %T Approximation simultanée de valeurs de la fonction exponentielle %J Compositio Mathematica %D 1977 %P 127-139 %V 34 %N 2 %I Noordhoff International Publishing %U http://www.numdam.org/item/CM_1977__34_2_127_0/ %G fr %F CM_1977__34_2_127_0
Mignotte, Maurice; Waldschmidt, Michel. Approximation simultanée de valeurs de la fonction exponentielle. Compositio Mathematica, Tome 34 (1977) no. 2, pp. 127-139. http://www.numdam.org/item/CM_1977__34_2_127_0/
[1] A sharpening of the bounds for linear forms in logarithms; I. Acta Arith. 21 (1972) 117-129; II, Acta Arith. 24 (1973) 33-36; III. Acta Arith. (à paraître). | Zbl
:[2] Transcendence measures, Academisch Proefschrift. Amsterdam, 1972; 107 p. | MR | Zbl
:[3] Transcendence measures of exponentials and logarithms of algebraic numbers; Compositio Math. 28 (1974) 163-178. | Numdam | MR | Zbl
:[4] On a class of entire functions. Acta Math. Acad. Sci. Hungar. 18 (1967) 83-96. | MR | Zbl
:[5] Approximation des valeurs de fonctions transcendantes. Proc. Nederl. Akad. Wetensch., Ser. A 78 (1975) 213-223. (= Indag. Math., 37, fasc. 3). | MR | Zbl
et :[6] Introduction aux nombres transcendants. Springer, Berlin, 1957, et Gauthier-Villars, Paris, 1959. | MR | Zbl
:[7] On the sum Σ3k=1 |2πk - α k|, αk algebraic numbers. J. Number Theory 6 (1974) 248-260. | Zbl
:[8] Further advances in the theory of linear forms in logarithms, Diophantine approximation and its applications (edited by Charles F. Osgood). Academic Press, 1973, 255-293. | MR | Zbl
: