Some properties of the ring of germs of C -functions
Compositio Mathematica, Tome 34 (1977) no. 1, pp. 99-108.
@article{CM_1977__34_1_99_0,
     author = {Van der Put, M.},
     title = {Some properties of the ring of germs of $C^\infty $-functions},
     journal = {Compositio Mathematica},
     pages = {99--108},
     publisher = {Noordhoff International Publishing},
     volume = {34},
     number = {1},
     year = {1977},
     zbl = {0404.58012},
     language = {en},
     url = {http://www.numdam.org/item/CM_1977__34_1_99_0/}
}
TY  - JOUR
AU  - Van der Put, M.
TI  - Some properties of the ring of germs of $C^\infty $-functions
JO  - Compositio Mathematica
PY  - 1977
SP  - 99
EP  - 108
VL  - 34
IS  - 1
PB  - Noordhoff International Publishing
UR  - http://www.numdam.org/item/CM_1977__34_1_99_0/
LA  - en
ID  - CM_1977__34_1_99_0
ER  - 
%0 Journal Article
%A Van der Put, M.
%T Some properties of the ring of germs of $C^\infty $-functions
%J Compositio Mathematica
%D 1977
%P 99-108
%V 34
%N 1
%I Noordhoff International Publishing
%U http://www.numdam.org/item/CM_1977__34_1_99_0/
%G en
%F CM_1977__34_1_99_0
Van der Put, M. Some properties of the ring of germs of $C^\infty $-functions. Compositio Mathematica, Tome 34 (1977) no. 1, pp. 99-108. http://www.numdam.org/item/CM_1977__34_1_99_0/

[1] M. Artin: On the solutions of Analytic Equations. Inventiones Math. 5 (1968) 277-291. | MR | Zbl

[2] T. Bröcker: Differentiable Germs and Catastrophes. Cambridge Univ. Press. 1975. | MR | Zbl

[3] M. Van Der Put: A Problem on Coefficient Fields and Equations over Local Rings. Compositio Mathematica, Vol. 30, Fasc. 3, (1975) 235-258. | Numdam | MR | Zbl

[4] M. Raynaud: Anneaux Locaux Henséliens. Lect. Notes in Math. 169. | Zbl

[5] K. Reichard: Nichtdifferenzierbare Morphismen differenzierbare Räume. Manuscripta Math. 15 (1975) 243-250. | MR | Zbl

[6] B. Malgrange: Ideals of differentiable functions. Oxford Univ. Press. 1966. | MR | Zbl

[7] M. Shiota: Some results on formal power series and C∞-functions. In Publ. R.I.M.S. Kyoto Univ. 12, 1976. (to appear). | Zbl