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ON QUOTIENTS OF Lp WHICH ARE
QUOTIENTS OF lp

W. B. Johnson*

Abstract

The main result is that a quotient of Lp (2  p  ~) which is of type
p-Banach-Saks is a quotient of lp. This is used to solve a problem left
open in a paper of Odell and the author [4].
The techniques used also yield, for example, that every operator

from Lp (2  p  ~) into a subspace of a quotient of lp factors through
lp, and that every quotient of a space which has a shrinking uncondi-
tional finite dimensional decomposition contains an unconditionally
basic sequence.

COMPOSITIO MATHEMATICA, Vol. 34, Fasc. 1, 1977,
NoordhofF International Publishing
Printed in the Netherlands

1. Introduction

A natural problem which arises in an attempt to relate the structure
of Lp (= Lp [0,1]) to that of e, (we always assume 1  p  oo, p 0 2) is:

A. Give a Banach space condition so that if X is a subspace of Lp
which satisfies the condition, then X embeds isomorphically into t,.

For p &#x3E; 2, a good answer to A was given in [4]; the condition on X is
that no subspace of X is isomorphic to t2. A reasonable solution to A
for p  2 was given when X has an unconditional finite dimensional
decomposition (f.d.d.); the condition on X is that there is À  oo so that
every normalized basic sequence in X has a subsequence which is

03BB-equivalent to the unit vector basis for e,. (This really is a Banach
space condition, since it can be reformulated as: there is À  oo so that

every normalized weakly null sequence has a subsequence whose
closed linear span is À-isomorphic to t,.) One consequence of our main

*Supported in part by NSF-MPS72-04634-A03.
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result here is that the hypothesis that X have an unconditional f.d.d. is
superfluous.

It happens that it is more convenient to consider the equivalent dual
problem to A, which we now state:

B. Give a Banach space condition so that if X is a quotient of Lp
which satisfies the condition, then X is isomorphic to a quotient of lp.

Of course, since we are interested in A for p  2, B is of interest for

p &#x3E; 2.
Before stating our main result we need a definition. A Banach space

X is said to be of type p Banach-Saks if there is a constant À so that

every normalized weakly null sequence in X has a subsequence (xn )
which satisfies ~ni=1 xi~ 03BBn l/p (n = 1, 2, ...). It follows from, e.g., [5],
that quotients of tp are of type p Banach-Saks. Our main result,
Theorem 111.2, yields that a quotient of Lp (2  p  oo) which is of type
p Banach-Saks is isomorphic to a quotient of e,. Actually, Theorem
111.2 gives an analogous result for quotients of subspaces of Lp, as long
as the subspace of Lp has the approximation property.
Another problem which arises when one is trying to relate Lp to tp is

that of classifying operators from Lp which factor through lp. In
Theorem III.1 we prove that every operator from Lp (2  p  oo) into a

subspace of a quotient of tp factors through tp. (We do not know
whether this is true for 1  p  2.)1 Another way of stating this result is
that every operator from a subspace of a quotient of lp (1  p  2) into

Lp can be factored through t,. We should mention that it is known (cf.
[10] for 1  p  4/3, [11] for p &#x3E; 2, and [1] for 1  p  2) that there is a

subspace X of ep (1  p  00, p 0 2) which is isomorphic to ep and an
isomorphism from X into Lp which does not extend to an operator
from tp into Lp. However, it might be true that if X embeds into tp
then every isomorphism from X into Lp factors as X ---&#x3E;,ep --&#x3E; Lp with
the map tp ---&#x3E; Lp an isomorphism.
The main technique used in the proofs of the above mentioned

results is the blocking method developed in [5] and [4]. The simplest
application of this technique given in this paper is presented in

Theorem II.1, which says that every operator from a space with

shrinking block p-Besselian f.d.d. (1  p oo) into a subspace of a
space with block p-Hilbertian f.d.d. factors through a space of the form

(~ En)lP with dim En  00. (Recall that an f.d.d. (Fn) is called block

p-Besselian (respectively, block p-Hilbertian) provided there is a

positive constant À so that for any blocking Ei = Fn(i) + Fn(i)+l + ... +
’ Recently we have shown that this is also true for 1  p  2; cf. J. London Math. Soc. (2)

14 (1976).
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The blocking method in its simplest form can be described as
follows: Suppose (En ) is a shrinking f.d.d. for X and T is an operator
from X into a space Y which has an f.d.d. (Fn). Then there is a

blocking (En) of (En) and a blocking (F’) of (Fn) so that TE’ is
essentially contained in F’n+ F’n+1 (n = 1, 2,...). The "overlap" be-
tween TE’ and TE n+1 in F’+, causes difhculties which, however, one
can get around in certain situations (cf. [5] and [4]).
The main new idea in the present paper involves the use of a

technique for "killing the overlap" after employing the blocking
method when T is a quotient map. This killing the overlap technique is
most simply exposed in the proof of Theorem II.7, which yields, in
particular, that every quotient of a space which has a shrinking
unconditional f.d.d. contains an unconditionally basic sequence.
We use standard Banach space theory terminology, as may be found,

for example, in the book of Lindenstrauss and Tzafriri [7].

II. General results

The first result we present uses a simple application of the blocking
method of [5].

THEOREM II.1: Suppose X has a shrinking block p-Besselian f.d.d. (En),
Y embeds into a space Z which has a block p-Hilbertian f.d.d. (Fn), and
T is an operator from X into Y. Then T factors through a space W of
the form (L Wn )l’p, where Wk = [E ]m‘mk-1’ for some sequence 1 =

m (1)  m (2) ... o f integers.

PROOF: Since (En ) is shrinking, the technique of Lemma 1 of [5]
applies to yield a blocking Wk = [Ei]mmk ’ of (En) and a blocking
Gk = [F ]n nk ’ of (Fn ) so that TWk is essentially a subspace of
Gk + Gk+1; i.e., for each x E Wk, there exists g E Gk + Gk+1 so that

IITx - gll:5 2-kllxll. (For a complete proof of an extension of this, see
Lemma II.3 and the proof of Theorem II.4 below.)

Define S:X--&#x3E;(~ Wk)l’p by S(~ Wk ) = (Wk ) (where wk E Wk ). If (En )
is block p-Besselian with constant À, then IISII:5,k-1.

Define U: (Y- Wk),,, --&#x3E; Y by U((w)) = ~ TWk. (More precisely we
first define U on the linear span of the Wk’s in (E Wk)l’p. The argument
below shows that U is bounded there and hence can be extended to all

of (L Wk)l’p.) Suppose wk E Wk- Choose yk E Gk + Gk+1 so that ~Twk -
yk~ 2-k Ilwk Il and let 8 be the block p-Hilbertian constant of (Fn). Then
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REMARK II.2: The hypothesis in Theorem II.1 that (Bn) is shrinking
is necessary. Indeed, if X = él, p = 2, Y = t4, and T is a quotient
mapping from X onto Y, then T does not factor through any space of
the form (~ Wn)t’2 with dim Wn  00.

We would like to weaken the hypothesis on Y in Theorem II.1 to " Y
is a subspace of a quotient of a space which has a block p-Hilbertian
f.d.d." In preparation for this we need a version of Lemma 1 in [5]. We
include a proof for the convenience of the reader.

LEMMA II.3: Suppose that X has a shrinking f.d.d. (En), Y is a

subspace of M, Q is a quotient mapping of Z onto M, (Fn ) is an f.d.d.
for Z, and T : X ---&#x3E; Y is an operator. Then given any integer n and E &#x3E; 0,
there exists an integer m = m(n, E) so that if 0 # x E [Ek]k=m, then there

PROOF: If the conclusion is false, then there are unit vectors

xm E [Ei ]i~ m for m = 1, 2, ... so that d (Txm, Q(2 + E)I/ TII Ball [Fi ]° n) &#x3E;_
E. Thus by the separation theorem, there are norm one functionals fm
on M so that for each m and each

Choose and so that

m --&#x3E; 00. Thus by passing to a subsequence of (zm ) and the correspond-
ing subsequence of (xm ), we can assume that fk (Qzm )  E /2 for k  m.

Letting Pn be the natural projection from Z onto [Fi ]n-1, we can
assume by passing to a further subsequence that Pn,zm norm converges

fm (Txm ) - E, which contradicts the choice of fm. This completes the
proof.

THEOREM II.4: Suppose X has a shrinking block p-Besselian f. d. d.
(En), Y is a subspace of M, M is a quotient of a space Z which has a
block p-Hilbertian f.d.d. (Fn), and T is an operator from X into Y. Then
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T factors through a space W of the form (~ Wn)lp, where Wk =
Ei ]mm,k-1 for some sequence 1 = m (1)  m (2)  ... of integers.

PROOF: As in the proof of Theorem II.1, we want a blocking
Wk = [Ei ]m‘mk of (En) and a blocking Gk = [Fi ]7ikn-1 of (Fn) so that
TWk is essentially contained in Q(Gk + Gk+1); i.e.,

(*) for each 0 # x E Wk, there exists g E Gk + Gk+1 so that

Once we have (*), we finish the proof by mimicing the proof of
Theorem II.1. Indeed, define S: X ~ (L Wk )t’p by S (~ wk ) = ( wk )
(where wk E Wk). If (En ) is block p-Besselian with constant À, then

Ils Il :5 À -1.
Define U : (E Wk )ep - M by U(wk ) = ~ Twk. Suppose wk E Wk. Using

Letting Q be the block p-Hilbertian constant of

US = T, this will complete the proof.
It remains to produce the blockings ( Wk ) and (Gk). For this we apply

Lemma II.3 and use the argument of Proposition 1 of [5]. By induction
we choose increasing sequences 1 = n (1)  n (2)  ... and 1 = m (1) 

and, using Lemma II.3, choose
m (2) &#x3E; m (1) so that (B) holds for k = 2. (B) obviously is true for k = 1,
so choose n (3) &#x3E; n (2) to make (A) valid for k = 1. Now select

m (3) &#x3E; m (2) so that (B) holds for k = 3. Using (B) for k = 2 choose
n (4) &#x3E; n (3) to make (A) true f or k = 3. Continue in this way to define
(m (k)) and (n(k)) by induction.
Of course, (A) is equivalent to (*) and thus the proof of the theorem

is complete. By duality we obtain:

THEOREM II.5 : Suppose X is isomorphic to a subspace of a quotient
of a space which has a shrinking block p-Besselian f.d.d., T is an
operator from X into Y, and Y is isomorphic to a subspace of a reflexive
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space Z which has a block p-Hilbertian f.d.d. Then T factors through a
subspace of (1 Wk)Rp for some sequence ( Wk ) of finite dimensional
spaces.

PROOF: Use Theorem II.4 to factor through (1 W*),lp,
(p -1 + q -1= 1) with dim Wk  oo, where Q is the natural quotient
mapping from Z* onto Y*. Then obviously T**, consider as an

operator from X** into Z** = Z, factors through (E Wk)lp, hence T,
considered as an operator from X into Y, factors through a subspace
of (~ Wk )£p.

REMARK II.6: The reflexivity of Z is used to insure that the natural
block p-Besselian f.d.d. for a subspace of Z* is actually a shrinking
block p-Besselian f.d.d. for Z*, so that T*Q factors through (1 W*k)lp.
After this paper was submitted, J. Arazy proved that the reflexivity
condition on Z can be dropped. It might be possible to improve further
Arazy’s version of Theorem II.5 by weakening the hypotheses on Y to
" Y is a subspace of a quotient of a space which has a block

p-Hilbertian f.d.d."

THEOREM II.7: Suppose that X has a shrinking unconditional f.d.d.
(En ) with unconditional constant À, Q is a quotient mapping from X
onto Y and the identity operator on Co does not factor through Q (i.e., if
Z is any subspace of X which is isomorphic to co, then QIZ is not an
isomorphism ). Then for each E &#x3E; 0, every normalized weakly null

sequence in Y has a subsequence which is an unconditionally basic
sequence with unconditional constant at most À + E.

REMARK II.8 : Maurey and Rosenthal [8] have recently given exam-
ples of normalized weakly null sequences which have no uncondition-
ally basic subsequences.

PROOF OF THEOREM II.7: Suppose ; 
regard Y as embedded in a space Z which has an f.d.d. (Fn ) (e.g.,
Z = C[0, 1]). By passing to a small perturbation of a subsequence of
(yn ), we can assume that (Yn) is a block basic sequence of (Fn ). Thus by
replacing (Fn ) with a blocking of (Fn ), we can assume that yn E Fn for

We apply the blocking method to get blockings (
of (Fn) so that QE’ k is essentially contained in

assume, by passing to a further subsequence of (yn ), that
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n = 1, 2, .... Further, in order to avoid complicated notation, let us
assume that

We would now like to outline the rest of the proof. We will pass to a
subsequence (Yn(k» of (Yk) so that (n (k)) is very lacunary and show that
(Yn(k» is unconditionally basic. For that, we need show that if

for all choices of ± signs.

that Q (Xn(k)-l + Xn(k» = CYkynck)· This is not quite right, since the overlap
between QEk and QE’+, in F’+, might produce cancellation. How-
ever, we will show that, if (n(k)) is sufficiently lacunary, there is-

0. Suppose that we can guarantee that 

hence

Actually we cannot guarantee that QXi(k) = 0, but we will be able to

To complete the proot, we need to produce the n (k ys and i (k)’s. For
this it is obviously sufficient to prove the following lemma.

LEMMA II.9: Suppose (En) is an unconditional j 
is an operator, and TIZ is not an isomorphism for any subspace Z of X
with Z isomorphic to co. Then for each integer m and E &#x3E; 0, there is

PROOF: If the conclusion is false for a given m and E, then there is a
sequence (xk) of unit vectors in X, xk = LJ=l X  with x; E E;, and

Since dim Ej  00, we can assume by

sup. IIj=m xi Il  00, and (xj)î .- is unconditional, so (xi) is equivalent to
the unit vector basis of c,,. Since (TXj)j=m’-;O and infj Il Txi Il E, (TXj)
has a basic subsequence, which is, necessarily, equivalent to the unit
vector basis for c,,. This contradicts the hypothesis on T and completes
the proof of the lemma and hence also the proof of Theorem II.7.
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REMARK Il.10: Of course it is immediate from Theorem II.7 that

every quotient space of a space which has a shrinking unconditional
f.d.d. contains an unconditionally basic sequence.

REMARK II.11: The (probably superfluous) hypothesis in Theorem
II.7 that the identity on co does not factor through Q is, of course,
satisfied whenever Y is reflexive. Actually, this hypothesis probably
implies that Y is reflexive, but we did not check this out.

III. Operators on Lp (2  p  oo)

We begin with applications of the results in section II to Lp.

THEOREM III.I: Let 2  p  00 and let Y be a subspace of a quotient
of a space which has a block p-Hilbertian f.d.d. (e.g., Y can be a
subspace of a quotient of lp).

(a) Every operator from Lp into Y factors through tp.
(b) Every operator from a subspace X of Lp which has the approxi -

mation property into Y factors through a space of the form (L Wn)ep
with each Wn a finite dimensional subspace of e,.

(c) If Y is a subspace of a reflexive space which has a block
p-Hilbertian f.d.d. (e.g., by [6], Y can be a subspace of a quotient of tp),
then every operator from a subspace of Lp into Y factors through a
subspace of tp.

PROOF:

(a) It is known that the Haar functions (hn ) form an unconditional
basis for Lp and that every unconditional basis for Lp is block

p-Besselian (cf., e.g., [12]). Thus by Theorem II.4, every operator from
Lp into Y factors through a space W of the form (2 Wk)ep’ where (Wk)
is a blocking of ([hk ]). Since the Wk’s are uniformly complemented in
Lp, (1 Wk),,, is isomorphic to a complemented subspace of lp and
hence by [9] to e,.

(b) Since X has the approximation property, the technique of the
appendix to [3] yields that W = X@(Z En)ep has an f.d.d. for some
sequence (En ) of finite dimensional subspaces of t,. Since Lp has a
block p-Besselian f.d.d., the blocking method of Proposition 1 of [5]
yields that W also has a block p-Besselian f.d.d. Thus if P is a

projection from W onto X, we have from Theorem II.4 that TP factors
through a space of the desired form, hence T does also.

(c) Since Lp has a block p-Besselian f.d.d., (c) is a special case of
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Theorem II.5. (By the result of Arazy’s mentioned in Remark II.6,
"reflexive" can be omitted in the statement of (c).)
We now state the main result of the paper.

THEOREM 111.2: Suppose X is a subspace of Lp (2  p  00) which has
the approximation property and Y is a quotient of X which is of type p
Banach-Saks. Then Y is isomorphic to a quotient of a subspace of e,.

REMARK 111.3: Of course, by Theorem 111.1, if X = Lp then Y is
isomorphic to a quotient of e, and every operator from Lp into Y
factors through e,. Actually, the proof below shows directly that the
quotient mapping from Lp onto Y factors through t,.

PROOF oF THEOREM 111.2: As mentioned in Theorem 111.1, X is

isomorphic to a complemented subspace of a subspace of Lp which has
a block p-Besselian f.d.d. so without loss of generality we may assume
that X has a block p-Besselian f.d.d. (En). Let P :X~[E,]=i be the
natural projections. We can assume, by perturbing (En ) slightly (cf.,
Lemma 111.5 below), that the Pn’s are continuous on X in the L2 norm.
Let Q be the quotient mapping from X onto Y.
As in the proof of Theorem II.1, it is sufficient to produce a blocking

( Wn ) of (En) so that if x E X, x = ~ Wn (Wn E Wn), then IIQxll:5
constant (1 Ilwnllp)l/p. What we shall do is produce a blocking ( Wn ) of
(En ) so that if wn E W4n and Il Qw,, Il is not essentially zero, then there is
a vector vn E W4n-1 + W4n + W4n+1 which has about the same norm as

wn, Qvn = Qwn, and Ilvnlh=(flvnI2)1/2 is small relative to Ilwnll. This
means that vn is essentially supported on a set of small measure. The
construction will be made so that in fact the supports of (vn ) are

essentially pairwise disjoint, so that
Since Q 1 vn ~ Q L wn, we will have that Il Q 1 wn Il:5 constant
(L Ilwn IIp )l/p. (For wn E W4n+1 or wn E W4n+2 or wn E W4n+3 the blocking
will work in a similar fashion.)

In the construction of the blocking of (En), we make use of the
following lemma:

LEMMA 111.4: Suppose X is a subspace of Lp, Y is of type p-Banach-
Saks with constant a, and Q is a quotient mapping from X onto Y. Then
there is a constant À so that for every E &#x3E; 0 and every weakly null

sequence (Yk) of unit vectors in Y, there is an integer n = n (E ) so that
for all k &#x3E; n, there is Xk E X so that Ilxk Il  A, QXk = Yk, and Ilxk 112 
E 1IXk IIp.
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We shall postpone the proof of the lemma, and return to the proof of
Theorem 111.2. Observe that Lemma 111.4 yields

(*) For each E &#x3E; 0 and 8 &#x3E; 0, there is an integer n so that

Indeed, if and unit vectors

Using (*) and standard properties of Lp, we choose a sequence Ek ! 0
with El = 4P and a sequence 1 = m (1)  m (2)  ... of integers to

satisfy for each k,

(where 13 is the basis constant for the f.d.d. (En)).

To see that this is possible, let m (1) = 1 and m (2) = 2, so that (1), (3),
and (4) are satisfied for k = 1. (Observe that 2-2pE = 1, so (3) is trivially
satisfied f or k = 1, while (1) and (4) are vacuous f or k = 1.) Now choose
E2 so that (1) and (4) are satisfied for k = 2. We would like to choose
m (3) large enough so that (3) is true for k = 2. Given T &#x3E; 0, we can by

Finally, we can guarantee that if T is sufficiently small,
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since

We have thus verified that (3) holds for k = 2. Now we choose E3
small enough so that (1) and (4) hold for k = 3. Observe that, since (3)
holds f or k = 1, (2) will automatically be true f or k = 1 if m (4) is chosen
sufficiently large. Now we can repeat the argument of the preceeding
paragraph to choose m (4) so that (3) holds for k = 3. Clearly we can
continue in this way and select m (k) and Ek to satisfy (1)-(4).

standard fact that this last inequality and (4) mean qualitatively that the

Observe that by (2) and Schwartz’s inequality,

Returning now to the wk’s we have that
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This completes the proof that U : W ---&#x3E; Y is

bounded. Since clearly Q = US, this completes the proof that Q
factors through a subspace of e,.
We turn now to the proof of Lemma 111.4. Since we used Lemma

111.4 only when X has an f.d.d., we assume X has a block p-Besselian
f.d.d. (En ) with p-Besselian constant.8. (In section IV we will indicate
how this restriction can be removed.) We can use the blocking method
and assume, by replacing (En ) with a blocking of (En ), that for each n,
[Ei 1 in=-l’ and [Ei ] =n+1 are disjointly supported relative to the Haar basis
(hi) for Lp ; more precisely, we can assume that for each n, there is

disjointly supported relative to the Haar basis for Lp and thus is

orthogonal.
Let us assume that Y is embedded into C[0,1] isometrically. We can

get a blocking (Bn ) of a monotone basis for C[0,1] and a blocking (E n)

order to avoid keeping track of approximations, we assume that
QEn C Bn + Bn+1 for n = 1, 2, ....
Now suppose that the conclusion of Lemma 111.4 is false for À,

where À &#x3E; 2afl -1. Then there are E &#x3E; 0 and a weakly null sequence (Yn)

perturbation of a block basis of (Bn). Thus by replacing (Bn ) with a
blocking of (Bn ), we can assume that some subsequence (Yn(k» of (yn )

is as big as we want.
Since Y is type p Banach-Saks, we can also assume that

is large enough, such a j(ï) must
exist.
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and for

Finally, we need to count the set 

We claim that if k is large enough then
i E B. Suppose not. Now the ui’s are or-

thogonal by the remarks at the beginning of the proof of this lemma,

inequality is impossible f or k sufficiently large.

completes the proof of Lemma 111.4.

REMARK: The constant À in Lemma 111.4 appears to depend on
a and also on the p-Besselian constant of an f.d.d. for X. Actually, the
proof in Section IV shows that À depends only on a and p.

In the proof of Theorem 111.2 we made use of the following lemma,
which is probably known.

LEMMA 111.5: Let (En ) be an f.d.d. for a subspace X of Lp (p &#x3E; 2).
Then there is an f. d. d. (Fn) for X with (Fn ) equivalent to (En ) and
[Fi ]n=1= [Ei]n i =1 for n = 1, 2, ... so that for each n, the natural projec -
tion from X onto Fn is continuous when X is given the L2 norm.

PROOF: Let Qn be the natural projection from X onto [Bi]7=1. It is
sufhcient to show that for any sequence En t 0, there is a sequence ( Tm )
of operators on X, each continuous in the L2 norm, so that TnTm =

n(l)  n(2) .... Indeed, a standard perturbation argument shows

(Gm ) to produce the desired f.d.d. (Fn ).
Given 03B4m t 0, we can find projections Pn from X onto [E]ni=i which

are continuous in the L2 norm and which satisfy IIQn - Pn Il  03B4n. Indeed,
since L2 is dense in Lq = Lp*, this is a special case of
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SUBLEMMA: If P is a bounded projection from X onto a finite-
dimensional subspace E, Y is a norm dense subspace of X*, and E &#x3E; 0,
then there is a projection Q from X onto E so that IIP - Q Il  E and Q is
03C3(x, Y) continuous

PROOF oF SUBLEMMA: Write Px = ~ni x *(x ) ei, where (ei)ni=1 is a

normalized basis for E and x *i E X *. Since Y is separating over X,
there are (fi)ni=1 in Y so that (ei, t )7=1 is biorthogonal. Let A = max ]]f; ]]
and let 0  8 = 8 (E, n, 03BB. ) be small. Since Y is dense in X*, we can

Let T = P 1. We will show that n(1)  n (2) ... can be defined so

conditions.

Finally, we need to show that Il

Let us say that a Banach space X satisfies the q basic sequence
condition with constant À if every normalized basic sequence in X has

a subsequence which is À -equivalent to the unit vector basis for tqo Let
X be a subspace of Lq (1  q  2) which satisfies the q-basic sequence
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condition. In [4] it was shown that X embeds isomorphically into ’e,
provided X has an unconditional f.d.d. In his dissertation, E. Odell
proved that if X satisfies the q basic sequence condition with constant
À for every À &#x3E; 1, then X embeds into lq. Here we show that X* is of
type p Banach-Saks (p -1 + q -1 = 1), so that by Theorems III.1 and
111.2, X embeds into lq.
We begin with a lemma.

LEMMA 111.7: Suppose X is reflexive, Y is a subspace of X, (En ) is an
f.d.d. for X, and Pn : X --- &#x3E; [El]n-1 are the natural projections. Given E &#x3E; 0

and an integer m, there is an integer n = n (m, E ) so that if y E Y then
d(Pmy, Y):5 max (211(Pn - P-)y ll,,E)Ily Il.

PROOF: Suppose not. Then there are unit vectors (Yn) in Y for

This contradiction completes the proof.
In order to simplify the computations in Theorem 111.9, we want to

show that the type p Banach-Saks property follows from a formally
weaker condition. Actually, the observant reader will notice that only
the weaker condition was needed for the proof of Theorem 111.2.

LEMMA 111.8: Suppose that À is a constant so that for any normalized
weakly null sequence (Xi) in X and any integer k, there is a subsequence
(Yi) of (xi ) ((yi ) depends on k) so that ]]£Î=i y; ]] s Àk l/p. Then X is of type
p Banach-Saks with constant À + 1.

PROOF: Let (xi) be a normalized weakly null sequence in X. We say
that a length k subsequence (Yi)ki=l of (Xi) is k-good provided ]]£Î=i ydl 
Ak 1/p. Our hypothesis on X yields that every subsequence of (xi )
contains a further subsequence whose length k initial segment is

k-good. Thus by Ramsey’s theorem, there is for each fixed k a

subsequence of (xi ) all of whose k element subsets are k-good. By a

diagonal process, we extract a subsequence (yj of (xi) so that for every
k, every k element subset of (yi)î =,,(k) is k-good, where n (k) = [2-1 k 1/P].
Then for each k,

This completes the proof.
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THEOREM 111.9: If X is a subspace of Lq (1  q  2) which satisfies
the q-basic sequence condition, then X* is of type p Banach-Saks

PROOF: In the first step of the proof we find a blocking (En ) of the
Haar basis for

proof that we can do this is essentially contained in the proof of
Theorem 2 of [4]. As in that proof, we have from the truncation lemma
of [2] that for each k  00 and 8  À -1, there is an integer m so that if
x E [h;]7=m (where (hi) is the Haar basis for Lq ), llxll = 1, and x E X,
then IIkX - x Il &#x3E; 03B2. Here

and X satisfies the q-basic sequence condition with constant À. The
same kind of argument yields that there is E &#x3E; 0 and m so that if

x E [ y ]i° =m, llxll = 1, and d (x, Y)  E, then jl’x - xll &#x3E; 03B2. The further

argument from Theorem 2 of [4] then yields the desired blocking (En )
of (hn ). For the convenience of the reader, we sketch this argument.

have that meas

Since (Bi ) is pairwise disjoint and (yi) is a block of the Haar basis, we
get from Lemma 2 of [4] that there is a constant a &#x3E; 0, depending only
on 03B2 and the unconditional constant of the Haar system, so that

/IL Yi Il &#x3E; a(L /lydlq)l/q. This completes the first step of the proof.
Using Lemma 111.7 and the first step of the proof, we can, for any

fixed E &#x3E; 0, define a blocking (Fn ) of the Haar basis with natural

projections Pn : Lq --&#x3E; [Fi]ni=i, a constant a &#x3E; 0, and a sequence E &#x3E; To &#x3E;
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(5) If y EX then d (Pny, X  max

Suppose that (fi) is a weakly null sequence of unit vectors in X* and
k is a fixed positive integer. We claim that, given any E &#x3E; 0,

(6) there is a subsequence (gi) of (fi) and integers t(l)  r(l) 

To see this, observe first that we can find hi EL*q with
and (hi lx) a subsequence of (fi). Indeed, let

condition. Next observe that, since hi --; 0, some subsequence of (hi ) is

thinning the subsequence 
fast as we want.) This last inequality means that

for

Therefore (

satisfies (6).
is the desired subsequence of (fi) which

Finally, we wish to show that, if E &#x3E; 0 is small enough relative to k,
then (4), (5), and (6) imply that IIL=lgdl:55a-1k1/P. In view of Lemma
111.8 this will complete the proof.

Since for each i, we have from (4) that
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Also, since 

sufficiently small, so by (6) we have and therefore

if E is small enough relative to

This completes the proof.

IV. Concluding remarks and open problems

PROBLEM IV-1: If X is a quotient of a space which has a shrinking
unconditional f.d.d., then does every normalized weakly null sequence
in X have an unconditionally basic subsequence?

PROBLEM IV.2: Give an intrinsic characterization of reflexive
Banach spaces which embed into a space with block p-Hilbertian
(respectively, block p-Besselian) f.d.d. In particular, if there is a

constant À so that every normalized weakly null sequence in the
separable reflexive space X has a block p-Hilbertian subsequence
(respectively, block p-Besselian subsequence), with constant À, then
must X embed into a (reflexive) space which has a block p-Hilbertian
(respectively, block p-Besselian) f.d.d.?
The results of [6] suggest that the following restricted version of

Problem IV.2 may have a positive solution.

PROBLEM IV.3: For a reflexive space X, are the following equival-
ent ? 1. X is a subspace of a reflexive space which has a block

p-Hilbertian f.d.d. 2. X is a quotient of a space with block p-Hilbertian
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f.d.d. 3. X is a subspace of a quotient of a space with block

p-Hilbertian f.d.d.

PROBLEM IV.4: Prove Theorem III.Ib without the assumption that X
has the approximation property.

PROBLEM IV.5: Prove Theorem 111.2 without the assumption that X
has the approximation property.

We think that Problem IV.5 is the most significant problem men-
tioned so far and would like to make some further comments on it. One

natural approach on IV.5 is to embed Y into C[0,1] in such a way that
the quotient mapping Q:X---&#x3E;Y extends to an operator T : Lp ~
C[0,1]. We can get a blocking (En) of the Haar basis for Lp and a
blocking (Fn) of a basis for C[O, 1] so that TEn is essentially contained
in Fn + Fn+l. Lemma 111.4 is proved below in the case when X fails the
approximation property, so that a version of the (*) condition of
Theorem 111.2 will hold; namely, there will be n so that if z E [E,]F=n
and d (z, X) is small enough, then there is x E X with Ilx 112 small relative
to Ilx IIp and Qx = Tz. Using this and, probably, a version of Lemma
111.7, it should be possible to define a blocking (En) of (En ) so that if
x E X, x = 1 en (en E E n), then ]]Qx ]] ~ constant (1 Ile,, JIP)"P. Of course,
Ilx Il &#x3E; constant (~ lien IIp )l/p, since the Haar system is unconditional and
thus block p-Besselian, so this would show that Q factors through a
subspace of (~ En)lp.

Actually, the approach just suggested is used in the

PROOF oF LEMMA 111.4: First observe that we can embed Y into

C[0,1] in such a way that Q extends to a norm one operator from Lp
into C[0,1]. Indeed, regard Y as a subspace of loo and let T : Lp -&#x3E; l~ be
a norm one extension. Then since TLp is separable, it can be embedded
isometrically into C[0,1]. Now define a blocking (En ) of the Haar
system and a block (Fn ) of a monotone basis for C[0,1] so that TEn is

essentially contained in Fn + Fn,,. For simplicity of exposition, we
assume that TEn C Fn + Fn+1.

By Lemma 111.7, given any El &#x3E; E2&#x3E; ... &#x3E; 0, we can find a blocking
(E n) of (En ) with natural projections Pn : Lp --&#x3E; [E]7=1 so that if x E X,
then d (Pnx, X):5 max (21IPn+lx - Pnxll, En)llxll. Let (Bn) be the corres-
ponding blocking of (Fn ), so that TE n Ç Bn + Bn+1.
Suppose that the conclusion of Lemma 111.4 is false for À, where

À &#x3E; 2a{3 -1, and f3 is the block p-Besselian constant for the Haar basis
of Lp. Then there are E &#x3E; 0 and a normalized weakly null sequence (yn )
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Since yn ~ 0, some subsequence of (Yn) is a small perturbation of a
block f.d.d. of (Bn ), so by replacing (Bn ) with a blocking of (Bn ), we
can assume that some subsequence (Yn(k» of (Yk) satisfies

d(Yn(kh Bn(k» ~ 0. For simplicity, assume that Yn(k) E Bn(k). By the type
p-Banach-Saks condition, we can also assume that ~ki=1 Yn(i)/I:5 ak ’IP
for each k = 1, 2,.... (Actually, as in the proof of the special case of
111.4 given in Section III, we need this only for one value of k which is
sufficiently large relative to E.)
So far we have just repeated the proof of Lemma 111.4 given in

Section III, except we assumed for simplicity that, in the notation of
the proof in Section III, y.(i) = Zi. As in that proof, we let x E X so that
llx 11  ak l/p and Qx = lk=l Yn(i). As in that proof, we have (if n (i + 1) -
n(i) grows fast enough) that for each 1  i :5 k, there is j(i), n(i) + 1 

Theorem 111.9, we have by the use of Lemma 111.7 that
is almost in X ; i.e., d (ui, X)  Ej(i), if En ! 0 fast enough. Just as in the
proof of Lemma 111.4 in Section III, it follows that ]]u; ]]2  2-1E/ludl for
some i such that /lUi Il  2-1 À. Since TUi ~ Yn(i) and d (Ui, X)  Ej(i), we

have (if the Ei’s are chosen small enough relative to E ) as in the

argument in Section III that there are wi E X with Ilwill  À, Il Wi 112  Ellwill,
and such that QWi = Yn(i). This contradiction completes the sketch of
the proof of Lemma 111.4.

In the present paper we have been concerned with quotients of Lp
which are quotients of e,. It is also natural to ask what quotients of Lp
are quotients of le, @él2.

PROBLEM IV.6: Give a condition on X so that if X is a quotient of Lp
(2  p  oo) and X satisfies the condition, then X is a quotient of
tp ffit2.

PROBLEM IV.7: Does every operator from Lp (2  p  oo) into a

quotient of p@2 factor through p@2?

If Problem IV.7 has an affirmative answer, it would follow that the

only Y, subspaces of lP ~ l2 for 1  p  2 are tp, é2, and lP ~ l2. For

p &#x3E; 2, this is not the case (cf. [ 11 ]).
In this paper and in [4], we studied Lp for p &#x3E; 1. It would also be nice

to have a condition on a subspace of L1 which would guarantee that the

subspace embeds into l1.
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PROBLEM IV.8: Suppose X is a subspace of Li such that there is a À
so that every basic sequence in X has a subsequence whose closed
linear span is À-isomorphic to e,. Then must X embed into ei? (One
should note that subspaces of é, do satisfy the given condition for X.)

REMARK IV.9: The proof of Theorem 2 in [4] shows that Problem
IV.8 has an affirmative answer in case X has an unconditional f.d.d.
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