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0. Introduction

In this paper, we wish to show that a certain positive algebraic
two-cycle on a generic abelian variety of dimension four is not, in
general, represented by an effective algebraic subvariety. This problem
was suggested by the fact that this cycle is effectively representable if
the abelian variety is the Jacobian of a curve or the intermediate

Jacobian of a cubic threefold.

The method of proof is via a degeneration argument - we construct
(in some detail) the "generic" degeneration of a family of principally
polarized abelian varieties of dimension four, then we see what the
existence of the effective two-cycle would imply in the limit.

1. A "generie" degeneration

Our purpose in this section is to construct a "generic" proper
mapping of a holomorphic manifold J onto the unit disc Li

such that:

(i) if z ~ 0, Jz = 03C0-l(Z) is a principally polarized abelian variety [4;
Chapter 1] of dimension four;

(ii) Jo is non-singular except that it crosses itself transversely along
M, a principally polarized abelian variety of dimension three;

(iii) Jo, the normalization of Jo, is a bundle over M with fibre Pi 1
(complex projective one-space).
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To accomplish this, we begin with the set

be a holomorphic mapping of the unit disc into the group of invertible
3 x 3 matrices over the complex numbers such that:

(i) A(z) is symmetric for each z E L1 ;
(ii) (imaginary part of A(z)) is positive definite for each z G0394

Let

be the standard basis of R3 and

the columns of A (z). Let

be any holomorphic mapping,

Using L(z) and B(z) we define an equivalence relation on H as
follows. We put

if

Then K is a complex manifold and we have a natural mapping
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If Z ~ 0, K -1(z ) is a C*-bundle over a principally polarized abelian
variety

of dimension three. K -1(0) is the union of two (mutually dual) line
bundles over M =C3/L(0).
The idea now, of course, is to construct J as a quotient of K. On K

then, we define

whenever

Then "-Il generates an equivalence relation and we can define

Clearly, J is smooth and the mapping K in (1.5) induces a proper
mapping

Of the assertions (i)-(iii) following (1.1), (ii) and (iii) are clear for the
mapping 03C0 we have just constructed. Assertion (i) is, in fact, only
correct for sufficiently small values of z.
We will check this last fact by computing the period matrix for

Then we can make a mapping

which is well-defined modulo integral combinations of the vectors

(See conditions (ii) and (iii) for the equivalence relation defining K.) To
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pass from we have introduced a second equivalence
relation. Since z # 0, our equivalence is generated by the conditions

1*1 1 ,

in other words, the mapping (1.7) induces a mapping

which is well-defined modulo integral combinations of the vectors (1.8)
and the vector

So Jz is simply the quotient of C4 by the subgroup generated by the
vectors (1.8) and (1.9). If z is sufficiently small, the vector (1.9) is

clearly linearly independent (over R) from the others, so

(1.10) Jz = complex torus with period matrix f2 (z)

where

Also, if z # 0 is sufficiently small, the matrix

is positive definite. This means that Jz does indeed have the structure
of a principally polarized abelian variety. From here on, we assume
that we have adjusted the parameter z so that this is the case for all
z E (~ 2013{0}). We call the family (1.1) a generic degeneration since the
varieties Jo constructed as above make up the "largest component" of
a natural compactification of the moduli space of principally polarized
abelian varieties of dimension four [5].

Finally we will need a family of theta-functions on the varieties Jz.
We define these as functions on H (see (1.2)), but for z # 0 they will
just give the usual theta functions of characteristic

on Jz. Let N be a positive integer and let
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be a triple of integers such that 
define

where A (z ) is as in (1.3). Then for 0:5 no  N, and (u ; 0’, ’T) E H (see
(1.2)), define

where B (z) is as in (1.4). From the definition itself, nothing is clear, not
even the convergence of the series. Assume absolute convergence
uniform on compact subsets of H. Then on the subset of H given by
UT = 0, the series in (1.12) reduces to

Now, to check convergence, we use the relations UT = z and

U = e2’7TiUo, which allow us to rewrite (1.12) as follows:

where

and
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Now on a set

the series (1.14) is absolutely and uniformly convergent - this is an

immediate corollary of the proof of the uniform and absolute con-
vergence of the Fourier series of N-th order theta-functions [2; page
96]. So the series (1.12) converges absolutely and uniformly on sets
(1.15) and so on any compact subset of H.

Indeed, in the formation (1.14), the functions

for uT = z # 0 give a basis for the N-th order theta-functions on JZ with
characteristic 

Also these functions are invariant under the substitution

thus the zero set of the function (1.12) on

is invariant with respect to the identifications used to define

as a quotient space of (1.16). Also from the formulas (1.13) it is clear
that the zero set of a function (1.12) in H is simply the closure of its
zero set in (1.16). These two facts imply that the zero set of (1.12) in H
is invariant with respect to the identifications used to define J as a

quotient space of H and so defines a divisor

on J. The linear system spanned by the divisors (1.17) has projective
dimension

The rest of this section will be devoted to the study of this linear
system, which we denote by
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First of all, the formulas (1.13) immediately imply that

for any D E DN and any z EEA. Thus the algebraic cycle (with
multiplicity)

always makes sense and for any z OE à

in H6(J ; Z). Also, by [1; §5-6], the semi-group [0,1] x R acts on J in
such a way that

(i) 1T«r, 0) . x) = re2mB1T(x) for all x E J and (r, 0) E [0, 1] x R ;
(ii) (r, 0) . x = x whenever x E Jo.
So in H6(J ; Z) = H6(JO; Z):

and therefore by (1.19)

But we can explicitly compute the right-hand-side of (1.20). To do
this, notice that the real coordinates

give a set of coordinates for Jz via the mapping

where

and f2i = (j + 1)-st column of the period matrix D(z). Let y; be the
element of H1(Jz; Z) defined by fixing 03BEk for k # j and all the Tlk and

letting ei run from 0 to 1. Similarly define 03B4i E H1(Jz; Z) by letting ni
run from 0 to 1. Then

is a basis for H1(Jz; Z). From the classical theory of theta-functions we
have that if D OE ÉDN and z # 0:
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where "X" denotes Pontriagin product in the topological group Jz and
""" 

means "delete."

Next let

jo = (normalization of Jo).

We then have a P1-bundle

with fibre coordinate 03C3 (see (1 .5)-(1.6». The bundle 1£ has distin-
guished sections

which are identified (via translation by B (o)) under the normalization
mapping

Their common image, which we will denote simply by M, is the double
variety of Jo.

Topologically, for z # 0

and the "collapsing" map

is given by fixing 0 E 03B4o and collapsing

to {u} c M for each point u E M. So using (1.20) and (1.22), we can
explicitly describe

as follows. Abusing notation, let

denote the standard basis of H1(M; Z) with respect to the period
matrix A (0). Then by (1.22) and our description of the collapsing map,
we have that

is given in H6(JO; Z) by
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So by (1.20) the class of (D - Jo) for D E DN must be given by the same
formula. If P denotes a fibre of IL, then by (1.28) we have

which agrees with the formulas (1.13). (In (1.13) we can, for example,
set T = 0 and use a as the fibre coordinate of j£ : Jo ~ M.)
Now if N = 1, then DN contains a unique divisor, which we will call

For z ~ 0, (@ . Jz ) is called the theta-divisor of Jz.

THEOREM 1.31: If the mappings A and B in (1.3) and (1.4) are chosen
generically, 0 is smooth in a neighborhood of its intersection with Jo.
Also for z near 0, 0 meets Jz transversely.

PROOF: Let

be such that V(@o)=(@ J°). By elementary properties of analytic
varieties, the theorem will be proved if we can show that O° is a
smooth subvariety (of multiplicity one) in jo which intersects M° and
Moo transversely. By (1.13) (i), (0 - Jo) is given by the zero set of

is given by setting T = 0 in (1.32) and looking at the zero set of the
resulting function. If (u’, u ’) is a singular point of this zero set, then

and for

If A (0) is chosen generically, there is no common zero of O(u) and
(iJO/iJUj)(u), j = 1, 2, 3. Otherwise, for example, the Riemann sing-
ularities theorem would imply that every curve of genus three is
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hyperelliptic. So, for general A (0), the Gauss map

is a morphism and is surjective (recall that M is a Jacobian). But then
one computes immediately that

is a subvariety of dimension z5 2. If we choose B(0) outside this

subvariety (and A (0) as above) then (i) and (ii) have no common
solutions (u’, 03C3) E (Jo- M°°). Also by (1.32) (with T ~ 0), éo meets M°
tranversely whenever O(u) and the (aO /aUj )(u) have no common zeros.
Putting (r=0 in (1.32), the analogous argument works for (6,, n
(jo - M°)). This proves the first statement of Theorem 1.31. The second
statement then follows from the fact that (e n JZ ) is given locally by
the equation o, = z or by the equation UT = z.

THEOREM 1.33: Suppose N &#x3E;3 and B (0) # 0 in M. Let

be the mapping defined by the linear system 2N in (1.18). The system DN
has no basepoints so that FN is a regular mapping. In fact, the mapping

is an embedding.

PROOF: Except along Jo this is a standard classical theorem. The
same classical theorem says that the linear system spanned by the
divisors of the functions (1.12) in Mz gives an embedding of Mz.
Applying this for z = 0 and the formulas (1.13) (i), it is clear that FN
embeds M C Jo in P(N4_l). To show that GN is also an immersion at

points of M C J, it suffices to note that, given u’ E M, there exists by
(1.13) (ii) a divisor in 2N which is smooth and tangent to {(u; U, T ) : u =
0} at u’ and which contains M, as well as a divisor which is smooth and
tangent to {(u; o-,,r):,r = 0} at u’ and which contains M. (We use again
that N &#x3E; 3.) Next, recall that to study the linear system cut out by *N
on (Jo - M) we can set T = 0 in (1.13) and use OE as the fibre coordinate
of the C*-bundle
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So, by (1.13) (ii), *N has no fix-points on (Jo - M) and

and, considering the cases no = 2 and n, = 1,

so that

Finally, to show that GN is an immersion at a point of (Jo - M), it
suces to show that

is an immersion. But this follows immediately from (1.13) and the
facts:

(i) the linear system spanned by the divisors of the functions (1.12)
(in the case z = 0) embeds M;

(ii) given (u’ ; u’) E (Jo - M), there exists a vector

such that

but

(see (1.13) (i)). Notice that (ii) follows from the fact that B (0) 0 0 in M
which implies that the vectors

are not proportional.

Notice that the argument in Theorem 1.31 can be applied inductively
to show that a generic principally polarized abelian variety of dimen-
sion k has non-singular theta-divisor. The proof of Theorem 1.33 also
applies, of course, in higher dimensions.
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2. The "generic" Chow ring

On a complex torus JI of dimension four, a principal polarization is
given by an element

such that

(i) lli is a positive form of type (1,1) in the Hodge decomposition of
H2(J1; C);

(ii) fli is unimodular as a bilinear form on H1(J1; Z).
Given (JI, f2,), we can choose a basis (1.21) for Hi(Ji; Z) which is

sympletic, that is,

If

where {W)i}i =0,...,3 is a basis for H 1,0(J 1) such that

where the Ej are the standard basis for C’, then the imaginary part of

is positive definite and the associated N-th order theta-functions

(see (1.14)) have zero sets on JI whose associated homology class is the
Poincare dual of Nil1 (see (1.22)). The question we wish to treat is the
following:

(2.4) Which elements of H *(J¡; Z) are always representable by
effective algebraic cycles (i.e. subvarieties) in Jl?

From what we have said so far, the duals of

are all representable by subvarieties. In terms of a sympletic basis
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(1.21) for H1(J1; Z), we can write these homology classes in the form

It is a theorem of Matsusaka [3] and Hoyt that 1 yi x Si is representable
by an algebraic curve if and only if (Ji, nI) is the Jacobian variety of
that (possibly reducible) curve. So since not all principally polarized
abelian varieties of dimension four are (products of) Jacobians, the
cycle ~j3=o Yj x 6j is not in general representable by a subvariety.

LEMMA 2.6 (Mattuck): There exist principally polarized abelian
varieties (J,, 03A91) of dimension four such that any element of H*(J1; Z)
which is representable by an algebraic subvariety is a positive rational
multiple of one of the cycles (2.5).

PROOF: For elements of H6(J1; Z), the lemma is simply the classical
fact that the Picard number of a generic principally polarized abelian
variety is one. By duality, therefore, the lemma is also true for

elements of H2(Jl; Z). We must only examine H4(J1; Z). Suppose the
lemma is false. Then for each family (1.1) there will exist an element

for each z # 0 and a three-dimensional closed analytic subvariety

such that:

represents the homology class a ;
(ii) a is not an integral multiple of

(This is because of Theorem 1.33 and the fact that the set of algebraic
cycles in P (N4_1) of fixed degree forms a finite union of irreducible

algebraic families of cycles.) Then just as in (1.19)-(1.29), we can
conclude that there exists a finite set of cycles
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and positive integers such that:

(ii) each ai is represented by an irreducible algebraic subvariety

(see (1 .25». If M has Picard number 1, then under

Si must go to an algebraic cycle whose homology class is a positive
multiple of

We can therefore conclude that

for some ri ± 0, and so by (i) above and the topological description of
the degeneration a ~ (0, 0) . a given in (1.19)-(1.29), we have that

for some 13 E H3(Jz; Z) and some r &#x3E; 0. Now we can arrange so that

for some zo # 0, the period matrix for Jzo is given by

where each entry in f2’ has small absolute value and each entry in

has small absolute value. Therefore for each j = 1, 2, 3, Jzo fits into a

family (1.1) in which M has Picard number one and y; plays the role of
yo. Therefore by elementary algebra

This completes the proof of Lemma 2.6.
The above lemma reduces the search for the answer to the question

posed in (2.4) to the homology classes
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We have seen that, if r = 1, the cycle (2.7) (i) is, in general, not
representable by a subvariety. By an as yet unpublished result of A.
Beauville, every principally polarized abelian variety of dimension four
is the Prym variety associated to a two-sheeted covering of a (possibly
singular) algebraic curve. The image of this two-sheeted cover in its
Prym variety has homology class (2.7) (i) where r = 2. Thus the only
cycles (2.7) (i) which remain in doubt are those for which r is odd and
greater than 1. Similarly, since f2 A f2, 1 has as its dual the cycle (2.7) (ii)
with s = 2, the only cycles (2.7) (ii) which remain in doubt are those for
which s is odd. Our next project is to eliminate the possibility s = 1.
Suppose

is representable by a subvariety for all principally polarized abelian
varieties of dimension four. Then in general the representing subvari-
ety must be irreducible since no element in fourth homology which is not
a positive integral multiple of r is generically representable. Therefore,
by the general theory of the Chow ring of P(N4-i), [6], there must exist
for each sufficiently general family (1.1) a closed, irreducible, three-
dimensional analytic subvariety

such that:

where each SZ(j) represents the homology class T,
(ii) for almost all z, the varieties SZ(j) are all distinct and irreducible.
For such a general family (1.1), consider the set

The topological closure S’ of S’ intersects Jo in a union

of irreducible analytic subvarieties of dimension two. Just as in
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(1.19)-(1.29), if S(i) is a subvariety of jo such that (counting multi-
plicities)

and if S(i) has homology class ai, then

for some mi &#x3E; 0. If the double locus M of Jo is chosen suitably
generally, then for each i, the homology class of (Mo. 8(i» is a

non-negative multiple of ~3j =1 yj x 6j and the homology class of 03BC(S(i))
is a non-negative multiple of 03A31jk3 y; x 6j x yk x sk. Then the only
possibilities in (2.11) are:

(i) r = 1 and m, = 1;
(ii) r = 2, rn 1 = m2 = 1 and

Assume that possibility (ii) holds for a general family (1.1). It is

impossible that S(1) C M, the double locus, because the multiplicity of
any component of (S n Jo) which lies in M must be greater than one.
Thus

and so

This implies that the bundle

is trivial when restricted to the theta-divisor 1 of M, since (up to
translation)

and

in IL -1(L:). Since the mapping
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is an isomorphism for non-singular 1, possibility (ii) is ruled out unless
Jo is the trivial bundle over M which is in general not the case. Thus we
can conclude that for our general family:

(2.12) So is irreducible and lifts to a cycle So in Jo with homology class

Using (2.12), up to translation

Also the homology class of

in H2(M ; Z) is

Also we can suppose that

the Jacobian of a non-singular, non-hyperelliptic curve C of genus
three and that M has endomorphism ring Z. Also 03BC(So ~ M°°) and
li (So n M°°) are homologous in the second symmetric product

With the help of the theorem of Matsusaka mentioned previously, we
can therefore conclude that there are only two possibilities:

(i) there exist Po, Poo E C such that

(ii) there exist ’ such that

is a canonical divisor of C for some

Furthermore, since
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in li -1(~), So gives a meromorphic section of the line bundle

whose associated divisor is

However since the natural mapping

is bijective, our assumption that the cycle r in (2.8) is always
representable by a subvariety forces a contradiction. For if we choose
B (0) in (1.4) sufficiently generally, the line bundle

will not restrict over 1 to a line bundle belonging to the two-parameter
family of line bundles whose associated divisor has the form (2.13).
Thus we have proved the following theorem.

THEOREM 2.14: There exist principally polarized abelian varieties
(J,, 03A91) of dimension four such that the cycle r = ~0jk3 Yi x 5j X

yk X 5k is not representable by a subvariety of J,.

Notice that the two possibilities for the families of divisors (2.13)
correspond to the degenerations of D;2) and - DZ(2) respectively where Dz
is a curve of genus four which acquires a double point as z H 0 and Jz
is the Jacobian of Dz.

Left open is the very intriguing question as to the odd values of r and
s &#x3E; 1 in (2.7) for which the corresponding homology classes are always
carried by subvarieties. Of course, if we find a value of r such that the
cycle (2.7) (i) is carried by an algebraic curve D, the cycle (2.7) (ii) with
s = r2 will be carried by the image of D(2) in JI so the representability of
the cycles (2.7) (i) and the cycles (2.7) (ii) are related. If it turns out, for
example, that there exists an abelian variety JI on which no odd
multiple of Y-’=o y; x Si is representable by a subvariety, one would
have a new type of counter-example to the (false) Hodge conjecture
over Z, one that did not involve torsion cycles.
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