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Let X be a nonsingular projective algebraic surface over the

complex numbers. We use the standard notations

Kx = Canonical bundle of X

Pg = dim F(X, Kx)

rc = Kodaira dimension X = dim Proj ~ F(X, Kx~n).
n&#x3E;0

Alb (X) = (group of C-points of) the Albanese variety of X.

In addition, we denote by T(X) the group of zero cycles of degree zero
on X which map to zero in Alb (X), modulo those rationally equivalent
to zero. Bloch’s conjecture [7] asserts that pg = 0 implies T(X) = 0.
Mumford [3] has shown p, 0 0 implies T ~ 0. See also Roitman [4]. We

verify the conjecture under the assumption that the Kodaira dimen-
sion, K, satisfies K  2. If X is an Enriques surface we find that any two

points are rationally equivalent, contradicting Severi’s assertion that
this condition should imply H1(X, Z) = 0. The conjecture is clearly
birational in X.

Note that if K  0 then X is either rational, or is birational to C x P’
where C is nonsingular and is the image of X ~ Alb (X). In the former
case every degree zero cycle on X is rationally equivalent to zero. In
the latter case every zero cycle on C x P’ is rationally equivalent to a
cycle on C x 101 and the rational equivalence class (on C ) of this cycle is
completely determined by its degree and its image in Alb (X) =
Alb (C).
Hence we may assume 0 ~ 03BA  2. A rapid glance through the

classification of surfaces will reveal that in this range the hypothesis
* Appendix: Zero cycles on abelian surfaces by S. Bloch.
** Research partially supported by Sloan Foundation Fellowship and NSF grant
GP-28323A3.
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pg = 0 implies that X is in fact elliptic. We verify below that the
associated Jacobian fibration J also satisfies pg = 0 and that the

conjecture for X is implied by that for J. The irregularity q is

necessarily 0 or 1. In the former case we show that J is rational and in
the latter case we employ the classification of surfaces with pg = 0,
q = 1 to complete the proof. These surfaces all provide counter
examples to assertions made in [4b] and [8]. The authors acknowledge
helpful conversations with A. Roitman, T. Suwa, P. Murthy, R. Swan,
and D. Mumford. The results in this paper have been independently
obtained by A. Roitman. The results for the Enriques surface were
sketched to us by M. Artin. His remarks form an integral part of the
present argument.

REMARK 1: In general our proofs show that given X there exists an
integer N ~ 0 such that N . T = 0. The result T = 0 then follows from:

PROPOSITION 1: The group T(X) is divisible.

(Hence given N ~ 0 such that N - Z = 0 for all Z e T, then since any
W E T is of the form N-Z, Z E T it follows W = N · Z = 0.)

PROOF: Let z(X) denote the cycles of degree zero modulo rational
equivalence. Note that  z(X) is divisible, indeed given W ~ z(X) there
exists a curve C and a correspondence Y on C x X such that W lies in
the image of Y : Pico (C) ~ z(X) (e.g. take C to be a nonsingular curve
on X passing through all points of W and Y to be the graph of the
inclusion.) Noting that Pico (C) is divisible, one can "divide" W, in

Y(Pico (C)), hence in ¡(X).
In view of the exact sequence

and the divisibility of e and Alb, the asserted divisibility of T is

equivalent to the assertion that N-torsion in z(X) maps onto N-torsion
in Alb (X) for all N. Now let C C X be a smooth hyperplane section of
X. Note that for any compact Kahler manifold M, one has a canonical

isomorphism Alb (M) ~ H1(M, R/Z), (by the usual identification of

Alb (M) as the cokernel of H,(M, Z) ~ H1(M, R).) The N-torsion in Alb
is therefore identifiable with the image of H,(M, Z/NZ) ~ H1(M, R/Z)
(induced by the exact sequence 0 ~ Z/NZ~ R/Z ~N R/Z ~ 0.) The
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natural diagram

has surjective rows (Lefschetz Theorem), hence the N-torsion in

Alb (C) maps onto that in Alb (X). Our required surjectivity now
follows immediately from the commutative diagram

REMARK 2: The above proposition is valid for X of arbitrary
dimension. The argument also shows that the group of codimension p
cycles algebraically equivalent to zero modulo those -- equivalent to
zero is divisible where -- denotes any adequate equivalence relation (in
the sense of Samuel [6]). Indeed, all such cycles come via correspon-
dences from jacobians of curves, and the jacobians are divisible. We
assume in the sequel that pg = 0, 0:5 K  2 and employ the standard
notations: K = canonical divisor, q = irregularity; Pr = h°(rK); X =

2 - 4q + h 1,1 denotes the topological Euler characteristic.

PROOF: Indeed if K2  0 then K  0, ([5], VIII, § 1 ) while if K2 &#x3E; 0
and 03BA ~ 0 then the Riemann-Roch estimate shows Pr grows quadrati-
cally in r whence K = 2.
The Noether formula K2 + ~ = 12(1- q + Pg) becomes

which combines with the definition of X to yield

whence either (a) q = 1, h 1,1 = 2, X = 0 or (b) q = 0, h 1,1 = 10, X = 12.
One has the well known

PROPOSITION 3: If K = pg = q = 0 then 2K = 0 and X is an Enriques
surface.
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PROOF: See, for example, [5], VIII, § 1.
The Enriques surface is known to be elliptic, (Kodaira [2] refers for

this result to [5], Chapter X, although the result is not explicitly stated
there). On the other hand all surfaces with K = 1 are known to be
elliptic. Moreover, if q = 1 then since X = 0 the Albanese mapping
X ~ E either is a (locally analytically trivial) fibration of X with fibre F
a curve of genus &#x3E; 1 (in which case K = 1), or has general fibre a curve
of genus 1 and nonreduced special fibres, (c.f. [5], IV, §7). Thus in
every case X admits an elliptic fibration 03C0 : X ~ B. Let J ~ B denote

the associated Jacobian fibration, ([5], VII, §5, or [1], II).
Fixing a "multisection" Y C X for the map X - B (i.e. a divisor on

X mapping finitely to B ) one may construct a rational dominant map
f : X - J as follows. Let Y ~ 03C0-1(b) = ~ni=1, pi (b) and map X x B X x B

.XBX ~ J by

where the qi are points of a single general fibre Xb, b = 03C0(qi). Define f
by composing with the multidiagonal. Since f is dominant we see that
Pr (J) S Pr (X), in particular pg (J) = 0.

PROOF: Note that the map f has a "quasi inverse." Namely given
any point a E J lying over b E B there is a unique point qi(b) on X

such that qi(b) - pi(b) represents a E Pico (7T-1(b )). The correspon-
dence 03BB : 03B1 - ~ni=1 1 qi satisfies

Now given any degree zero cycle Z on X notice that the cycle
n2· Z - 03BB (f* (Z)) is carried on a finite number of fibres of 7r and the
portion of the cycle carried on a single fibre is rationally equivalent to
zero on that fibre (Abel’s Theorem).

Indeed, if we fix a fibre 03C0-1(b) = F ~ X and let E C J be the

corresponding elliptic curve, F is a principal homogeneous space
under E. We have 03C11, ..., 03C1n ~ F, and the correspondences f* and À
are given f or q E F, a E E, by
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Thus

the last equality being Abel’s Theorem on the genus 1 curve F (i.e.
,4(F) ~ E). Hence n2Z - 03BB (f*(Z))~ 0. If Z vanishes in Alb (X) then

f *(Z) vanishes in Alb (J), and if T(J) = 0 we conclude f*(Z) ~ 0, and

03BB(f*(Z)) ~ 0. Thus n2Z ~ 0. Consequently n2 · T(X) = 0 and we apply
remark 1.

To conclude the analysis we study separately the cases q = 0 and

q=1.
q = 0: "Recall the criterion of Castelnuovo that a surface is rational

if P2 = q = 0."

We prove J is rational by showing P2 = 0, employing an argument
of Kodaira [ 1 ], III. We have 03C0 : J ~ B = P1 together with a section
0" : B ~ J. The fact that B = P1 follows, e.g. because Alb (J) maps onto
Alb (B). Noting that the canonical class KJ is an integral combination
of fibres of 7r [5], VII, §3, one has KJ = 1T*(KJ . u(B». By the

adjunction formula, KJ · a(B) = KB - N, where N is the class of the
normal bundle of B in J. Thus ho(J, r · Kj) = ho(J, 1T*(r(KB - N))) =
h°(B, r(KB - N)). However, since pg = 0 we see h°(B, (KB - N)) = 0.
Since B = PB necessarily KB - N is negative. Therefore h°(B, r(KB -
N)) = 0 if r &#x3E; 0 and Pr(J) = 0.
q = 1: Let E = Alb (X). If the genus of the fibres 11’ : X ~ E exceeds

1 then, as noted earlier, w is smooth and in fact X = F x E / G where G
is a finite group of translations on E acting on F x E by g (f, e) =
(cp(g)f, e + g) for a suitable homomorphism cp : G -Aut (F). If the

genus of the fibres is 1 then replacing X by its Jacobian fibration we
may assume that 11’: X ~ E has a section, and hence is necessarily
smooth and of the form F x EIG as above, (c.f. [5], VII, §9).

Since G acts without fixed points, the global 2-forms on X will be
the G invariant global 2-forms on F x E, i.e. the tensors of cp (G)
invariant 1-forms on F with global 1-forms on E. Since ~(G) invariant
1-forms are precisely 1-forms on F/cp(G), we see that pg(X) = 0 is

equivalent to ¡pl == FI cp (G).
Now let Z be any degree zero cycle in T(X). Lifting Z back to Z

on F x E we have
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However since F/G is rational the equivalence class Y of

~g~G~(g) · qi is independent of i. Hence nZ~~iri (Y x pi). Finally
since X ripi = 0 we have nÉ -- 0. However n 2 - Z is the image of nZ
under F x E ~ X. Thus n2 · Z ~ 0 and n2 · T(X) = 0, as required.
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Appendix-Zero cycles on an abelian surface

Spencer Bloch

In contrast to the above, it is amusing to see what can be said about
the structure of 0-cycles on surfaces with Pg ~ 0. In this appendix, 1
consider the case of abelian and Kummer surfaces.

THEOREM (A.1): Let A be an abelian surface over an algebraically
closed field k of characteristic 0. Let a, b, c E A(k) be points, and
write (a) for the rational equivalence class of a. Then the zero cycle

is rationally equivalent to zero. In particular, the map
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is bilinear, and defines a surjection

THEOREM (A.2): With hypotheses as above, intersection of divisors
defines a surjective map

THEOREM (A.3): Let X be the Kummer surface associated to an
abelian surface A. Then e(X) is isogenous to T(A).

These theorems give some indication what sort of structure one
can expect T(X) to have (in particular, what sort of boundedness
conditions one can hope for) when Pg &#x3E; 0. A general référence for the
results abelian varieties needed is [9]. For example the rigidity lemma
used in (A.4) is found on page 43. For X C A ample divisor, the fact,
used in (A.5) that 03B1~ Xa 2014 X defines an isogeny A - Pico (A) follows
from Corollary 4, page 59, and theorem 1, page 77. The fact that any
abelian variety is isogenous to a principally polarized abelian variety
is essentially the Corollary on page 231.

Some lemmas

It will be convenient to write CH(X) for the group of zero cycles
on a surface X modulo rational equivalence. We have exact

sequences

Let 03BC : Pic(X)~Pic(X)~CH(X) denote the intersection map, and
z

let ii. be the restriction to Pico (X) ~ Pico(X).
z

PROOF: Clearly Image 03BCo ~ Z(X). Composing with the map Z(X) ~
Alb (X) we obtain a family of maps i~ : Pico (X) ~ Alb (X) i~ (e) = q - e
parameterized by ~ ~Pico (X). By rigidity, this family is constant,
hence equal to io = 0-map. Q.E.D.
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LEMMA (A.5): Let f : A’ ~ A be an isogeny of abelian surfaces.
Assume Image 03BC0,A’ = T(A’). Then Image 03BCo,A = T(A).

PROOF : Let d = deg f so f* f* = multiplication by d on CH(A). The
functor T(.) is covariant and also contravariant for finite maps. Since
T(A) is divisible (proposition 1 of the paper) we get a surjection
f* : T(A’) -» T(A).

Let X be a non-degenerate (ample) divisor on A, X’ = f*(X) on A’ .
Then X’ is non-degenerate, so every element in Pico (A’) can be

written in the form

For any y’ E Pico (A’) we have by the projection formula

LEMMA (A.6): Let A be a principally polarized abelian surface,
p E A a point. Let

be the intersection map. Then 2(p) ~ Image g.

PROOF: A principally polarized abelian surface is either a product
of two elliptic curves or the jacobian of a genus 2 curve. In the
former case the assertion is clear. In fact if A = A 1 x A2 and p =
(p 1, p 2) then (p) = 03BC[(A1 x {P2})~({P1} x A2 )].
Suppose now A = J(C) for C a genus 2 curve. The Image of 1£ is

stable under translation by points a E A, so we may assume p E
C 4 J( C). Let (p)c E Pic (C) denote the class of p as a divisor on C.
Since Pico (J(C)) ~ ~Pico(C) and (C - C) = 2, we get 2(p)c E Image
(Pic (J(C)) ~ Pic (C)) so 2(p) = C - (something in Pic (J(C ))). Q.E.D.

LEMMA (A.7): Let A be an abelian surface. Then T(A) is generated
by cycles (a + b) 2014 (a) 2014 (b) + (0).
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PROOF: This is clear if one thinks of T(A) = Ker (Z(A ) ~ Alb (A )).
Q.E.D.

LEMMA (A.8): Let A be an abelian surface, and let F E Image
(g : Pic (A )~Pic (A ) ~ CH(A )). Let a, b ~ A and write Fa = Ta (F) for
the translation of F by a. Then

(i) Fa+b - Fa - Fb + F e Image (03BC0 : Pico (A)OPic,, (A ) ~ T(A))
(ii) The map A x A - T(A ), (a,b) ~ Fa+b2014 Fa - Fb + F

is bilinear.

PROOF: Both assertions are linear in F so we may assume F = D - E

for divisors D and E. Note for example that Db - D is square

equivalent to zero so Ta (Db - D ) is rationally equivalent to Db - D.
Thus we have

so

Since e.g. Da - D is linear in a (Theorem of the square) we get (ii) as
well. Q.E.D.

The theorems

THEOREM (A.2): Let A be an abelian surface over an algebraically
closed field k of characteristic 0. Then the map 03BCo : Pico (A ) 0 Pico (A) -
T(A) is surjective.

PROOF: By (A.5) we may assume A is principally polarized. By (A.6)
we have 2(0) e Image g, and by (A.8) (i) we get 2[(a + b) - (a) -
(b) + (0)] Image li,,. By (A.7) we conclude that the quotient

T (A )/Image p,o

is killed by multiplication by 2. Since. T(A) is divisible (proposition 1 of
the paper) we get Image 03BCo = T (A ). Q.E.D.
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COROLLARY (A.9): Let n8 : : A ~ A be the isogeny multiplication by n

for some n ~ Z. Then the maps (n8)* and (n8)* on T(A) are both

multiplication by n 2.

PROOF: The map (n8)* ois multiplication by n on Pico (A), so the

assertion for (n8)* follows from (A.8) together with the compatibility
of products with pullback. In particular (n8)* is surjective. Since

(n03B4)*(n03B4)* = multiplication by n 4

we get that (n8)* = multiplication by n 2 also Q.E.D.

COROLLARY (A.10): Let A be an abelian surface and let X = A /± 1

(with singularities resolved) be the Kummer surface of A. The rational
map f : A ~ X induces a surjective isogeny

Since these cycles generate T(A), it follows that f * is surjective.
f * f * = 2 ~ f* an isogeny.

REMARK (A.11) (i): Roitman has recently announced a result which
implies T(X) is torsion-free for any surface X. Using this, one gets an
isomorphism between T (Kummer Surface) and T (A).

(ii) Theorem (A.3) follows from (A.10) plus the fact Alb (Kummer) =
(0).

THEOREM (A.1): Let A be an abelian surface, and let a, b, c be points
of A. Then the cycle

is zero in T(A) . Equivalently, the map 0394 : A x A ~ T(A), à (a, b) =
(a + b )2014 (a)2014 (b) + (0) is bilinear and defines a surjection
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is an isogeny, then

so we may assume as before that A is either a product of two elliptic
curves or the jacobian of a genus two curve C. It follows from (A.6)
and (A.8) (ii) (applied to F = 2(0)) that 2~ is bilinear. From (A.9)

Surjectivity of L1 follows from (A.7). Q.E.D.

COROLLARY (A.12): Let X be a smooth, quasi -projective variety, and
let A be an abelian surface. Let r be a cycle of codimension p on A x X.
Let CHP (X) denote the Chow group of codimension p cycles on X.
Then the map of sets 0393 : A ~ CH’(X),

is quadratic, i.e. the expression

is linear in a and in b.
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