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CHEVALLEY-JORDAN DECOMPOSITION FOR A

CLASS OF LOCALLY FINITE LIE ALGEBRAS

Ian Stewart

COMPOSITIO MATHEMATICA, Vol. 33, Fasc. 1, 1976, pag. 75-105
Noordhoff International Publishing
Printed in the Netherlands

In a series of papers [11, 12, 13] we have developed analogues of the
classical structure theory of finite-dimensional Lie algebras over a field
of characteristic zero for certain classes of infinite-dimensional locally
finite Lie algebras. In [11, 12] the class under consideration comprised
those algebras generated by a system of finite-dimensional ascendant
subalgebras. We discussed radicals and the existence of Levi subalgeb-
ras (semisimple complements to the radical), together with certain
results on the conjugacy of Levi subalgebras. Extensions of these
results to the broader class of Lie algebras generated by a system of
finite-dimensional local subideals may be found in Amayo and Stewart
[1] chapter 13 pp. 256-273. In [13] we took up the conjugacy question
anew for the more restricted class of ideally finite Lie algebras,
generated by a system of finite-dimensional ideals: for technical

reasons the ground field was assumed algebraically closed of charac-
teristic zero. Algebras in this class may be thought of as analogues of
periodic FC-groups (which are generated by a system of finite normal
subgroups, cf. Scott [10] theorem 15.1.12 p. 443), for which there exists
a projective limit technique for proving ’local conjugacy’ theorems (cf.
Kuros [8] p. 169, Tomkinson [19] pp. 682-686). By using elementary
results on algebraic groups we were able to adapt this method to prove
conjugacy, under suitable groups of automorphisms, of Levi, Borel,
and Cartan subalgebras of ideally finite Lie algebras. The existence of
Cartan subalgebras was also proved.

In the present paper we wish to extend to such algebras the

technique of ’nilpotent-semisimple splitting’, otherwise known as the
Chevalley-Jordan decomposition (Humphreys [6] p. 17) and to use this
to extend the results of Mal’cev [9]. As a byproduct we obtain an
alternative proof of the existence of Cartan subalgebras in ideally finite



76

Lie algebras, which does not require the projective limit methods of
[13].

In §2 we develop simple properties of the Fitting and Chevalley-
Jordan decompositions (the former relating to ’weight spaces’, the
latter to ’nilpotent-semisimple splitting) and introduce ’cleft’ algebras,
generalizing Mal’cev’s concept of ’splittable’ algebras. In §3 we define
a ’torus’ and show that in any cleft ideally finite Lie algebra the
centralizer of a maximal torus is a Cartan subalgebra. As a corollary we
obtain a conjugacy theorem for maximal tori in the spirit of [13]. In §4
we use an embedding process, similar to Mal’cev’s, to show that every
locally soluble ideally finite Lie algebra has a Cartan subalgebra: it then
follows from a result of [13] on Borel subalgebras that the hypothesis
of local solubility may be removed. The content of §5 is a technical
result weakening the requirements for an algebra to be cleft. It is used
in §6 to prove that every ideally finite Lie algebra embeds in a cleft
ideally finite Lie algebra, a result underlying everything in Mal’cev [9]
in the finite-dimensional case. The proof given here makes no use of
Lie group techniques and provides an alternative to Mal’cev’s proof in
finite dimensions. In §7 we make this construction more precise by
introducing the ’cleft envelope’ (called the ’splitting’ by Mal’cev) of an
ideally finite Lie algebra L. It is in some sense a ’minimal’ cleft ideally
finite algebra É containing L. It always exists, and is unique up to
isomorphism. The properties of L and Ê are closely related: in

particular L2 = L 2 and both algebras have the same centre. In §8 this
construction is applied to describe the conjugacy classes of maximal
locally nilpotent subalgebras.

This work was done with the support of a Forschungsstipendium
from the Alexander von Humboldt-Stiftung, at the University of
Tübingen.

1. Notation

Our notation will be consistent with that of [11, 12, 13] and of the
book [1], which should be consulted for any unexplained terminology.
In particular we shall use S and  to denote the subalgebra and ideal
relations; L n and (n (L) will denote the nth terms of the lower and

upper central series of the Lie algebra L (with L 1 = L and 03B61(L) = the
centre of L); and CL(X) and IL(X) will denote the centralizer and
idealizer of the subset X of L. The Lie algebra of derivations of L is
written Der(L). For any x E L we write x * for the adjoint map
y ~ [y, x] 1 (y E L ): to avoid ambiguity we may also write x*L. Com-
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mutators are left-normed, so that

We write

(n factors y) ; similarly for subspaces X, Y of L we let

(n factors Y). Triangular brackets denote the subalgebra generated by
their contents.

The Hirsch-Plotkin radical p(L) is the unique maximal locally
nilpotent ideal of L (cf. Hartley [5]).

In dealing with linear transformations of a vector space V we shall
confuse a field element À with the corresponding scalar multiplication
03BB1v, where 1v is the identity on V. In particular if f : V - V is linear,
we write (f - 03BB)" instead of ( f - 03BB 1v)n.
As in [13], throughout the paper 9 denotes an algebraically closed

field of characteristic zero. This convention will be used to shorten
statements of theorems.

A Lie algebra is ideally finite if it can be generated by a system of
finite-dimensional ideals. The class of ideally finite algebras is denoted
by % in [13] but we will avoid this notation here. If L is ideally finite
over R then Y(L) is the group of locally inner automorphisms
introduced in §6 of [13].

2. The fitting and Chevalley-Jordan decomposition

Although a suitable choice of hypotheses allows the extension of
many of the results of this section to a non-algebraically closed field,
we shall state them only in the algebraically closed case since this is
simpler and is the only case we need for applications. Most of the
proofs are routine extensions of the finite-dimensional case

(Freudenthal and de Vries [3] p. 88, Humphreys [6] p. 17, Jacobson [7]
pp. 37, 61) and will be referred back to it. Nonetheless we state the

results in full to provide a solid foundation for subsequent sections.
The traditional terminology with regard to the Chevalley-Jordan de-
composition is confusing and conflicts with some of our previous
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terminology (words like ’semisimple’, ’split’, ’algebraic’ all being used
in at least two different senses) and we shall modify it along the lines
suggested by Freudenthal and de Vries [3].

Let V be a vector space (usually of infinite dimension) over R, and
f : V - V a linear map. We say that f is pure if V has a basis of

f-eigenvectors (or equivalently if V is spanned by f-eigenvectors), and
f is nil if every v ~ V is annihilated by some power of f (perhaps
depending on v ). If there exists a polynomial q(t) ~ R[t] for which
q(t) ~ 0, such that q(f) = 0, then f is algebraic. There is then a unique
monic q of smallest degree such that q (f) = 0, the minimum polyno -
mial of f. We say that f is cleft if we can write

where fp is pure, fn is nil, and fpfn = fnfp.

LEMMA (2.1): If f : V ~ V is algebraic, then f is cleft, fp and fn are
unique, and there exist polynomials q, r E R[t] with zero constant term
for which fp = q(f), fn = r(f). Hence fp and fn leave invariant any

subspace of V which f leaves invariant, annihilate any subspace of V
which f annihilates, and commute with any linear transformation of V
with which f commutes.

PROOF: For all but the uniqueness assertion, mimic Humphreys [6]
p. 17 proposition, but use the minimum polynomial instead of the
characteristic polynomial. To prove uniqueness argue as in

Freudenthal and de Vries [3] p. 89 proposition 18.1.1. The argument in
Humphreys [6] for uniqueness cannot be used because it assumes the
polynomial property of fp, fn : but this will not follow for every choice
of fp and fn until after uniqueness is proved.

If f is algebraic we call fp and fn (now known to be unique) the pure
and nil parts, respectively, of f. The decomposition f = fp + fn is called
the Chevalley -Jordan decomposition of f, following Humphreys [6], or
the cleaving of f, following Freudenthal and de Vries [3].

If L is a Lie algebra over ? and x E L we say that x is ad-algebraic,
ad-pure, or ad-nil according as the adjoint map x * is algebraic, pure, or
nil on L. If there exist Xp, xn E L such that x = xp + xn, for which

[xp, xn] = 0 and the decomposition x * = x p + x n is a cleaving, then we
say that x is ad-cleft in L. It follows from lemma 2.1 that if x is

ad-algebraic and ad-cleft then x * and x*n are unique, that is, xp and xn
are unique modulo the centre of L. If every x E L is ad-cleft we say
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that L is cleft. If M is an L-module we say that L is M-cleft if every
x E L can be written as x = xp + xn (xp, xn E L ), [xp, xn ] = 0, in such a
way that the maps induced on M by xp and xn constitute a cleaving of
that induced by x. Thus if L is cleft then it is L-cleft, the action of L on
itself being the adjoint action.
Next we turn to the Fitting decomposition. Let L be a Lie algebra

over U with dual space L *. Let M be any L-module. For any linear

form À E L * define

We refer to À as a weight of M, and call M, its weight space. There is
of course no reason in general to suppose that any non-zero weight
spaces of M exist. However, define M to be locally finite if every finite
subset is contained in a finite-dimensional L-submodule. (The most

important example for us is an ideally finite Lie algebra under the
adjoint action of a subalgebra.) We have:

LEMMA (2.2): Let L be a locally nilpotent Lie algebra over U and M a
locally finite L -module. Then M is the direct sum of its weight spaces,
and these are all L-submodules.

PROOF: Every finite-dimensional L -submodule X of M is a module
for the finite-dimensional nilpotent algebra L/CL(X) and hence a
direct sum of weight spaces under the L /CL (X)-action by Jacobson [7]
p. 42 theorem 6. Since the L-action factors through the L /CL (X)-
action, it follows that X is the direct sum of weight spaces for L. Since
M is the sum of all such X’s it follows that M is the sum of its weight
spaces. That this sum is direct can be shown either by adapting the
usual argument or by looking at the system of finite-dimensional
submodules. That the weight spaces are all L-submodules follows from
the corresponding statement for finite dimensions (Jacobson [7] p. 42
theorem 6).

If N is a submodule of a locally finite module M it is trivial to verify
that for each À E L *
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Further, if L is thought of as an H-module under adjoint action, where
H is a locally nilpotent subalgebra, then as in Jacobson [7] p. 64

corollary we obtain

for all À, JL E L * .
The expression of M as a direct sum of weight spaces,

is the Fitting decomposition of M.
If m E M spans a 1-dimensional L -submodule then mx = 03BB(x)m for

all x E L, where À E L *. We call m an L -eigenvector with eigenvalue
03BB.

LEMMA (2.3): Let f : V - V be a linear map such that V is a locally
finite (f)-module and f is pure. Then every weight space VA consists
entirely of f-eigenvectors with eigenvalue À.

PROOF: Let x EVA. Since f is pure, x is a sum of f-eigenvectors.
Each f-eigenvector lies in some weight space, and the sum of the
weight-spaces is direct; hence x is an f-eigenvector and À is its

eigenvalue.

COROLLARY (2.4): Let f : V ~ V be a linear map such that V is a
locally finite (f)-module, and let W be a submodule.

(i) If f is pure then it induces pure maps on W and on V/W.
(ii) If f is nil then it induces nil maps on W and on V/W.
(iii) Each cleaving of f on V induces cleavings on W and V/W.

PROOF: Part (i) follows from lemma 2.3 together with equations (1)
and (2) above. Parts (ii) and (iii) are obvious.

3. Toral structure of cleft algebras

A torus in a Lie algebra L over Û is a subalgebra T of L such that
every element of T is ad-pure (in its action on L).

LEMMA (3.1): Every torus of a locally finite Lie algebra over U is

abelian.
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PROOF: Let L be locally finite, T a torus. We argue as in Humphreys
[6] p. 35, and show that t*T = 0 for all t E T. Since t*T is pure by
corollary 2.4 (L being a locally finite (t)-module and T being a
submodule) it is sufficient, by lemmas 2.2 and 2.3, to show that t*T has
no non-zero eigenvalues. Suppose on the contrary that ut*T = Au where
0 ~ u ~ T, 0 ~ 03BB ~ R. Now

where the ti are linearly independent elements of T such that [ ti, u ] =
03BBiti (À, ~ R), since u T is also pure. Now

so that A, = 0 for all i, and [t, u ] = 0. But this contradicts 03BB ~ 0.

A maximal torus in L is a torus not properly contained in another
torus. A Zorn’s lemma argument shows that maximal tori exist in any
Lie algebra. Obviously every maximal torus contains the centre.
We recall some definitions from [13]. A Cartan subalgebra (or

locally nilpotent projector in the language of formation theory) of a Lie
algebra L is a subalgebra C such that

(i) C is locally nilpotent,
(ii) If C ~ H ~ L, K  H, and H/K is locally nilpotent, then H =

K + C.

A subalgebra Q of L is quasiabnormal if for all U, Q ~ U ~ L
implies U = IL ( U).
A result of Stonehewer [18] p. 526, or part of lemma 5.6 of Gardiner,

Hartley, and Tomkinson [4] p. 203, translates with only verbal altera-
tions to yield:

LEMMA (3.2): A subalgebra of a Lie algebra is a Cartan subalgebra if
and only if it is locally nilpotent and quasiabnormal.

This leads us to the main theorem of this section:

THEOREM (3.3): Let L be a cleft ideally finite Lie algebra over R. If T
is a maximal torus of L then CL(T) is a Cartan subalgebra of L.

PROOF: By lemma 3.2 it is enough to prove C = CL(T) locally
nilpotent and quasiabnormal.
By the ’annihilation’ statement in lemma 2.1, C is L -cleft. Since T
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is abelian we have T ~ C. Now T contains every c E C for which c * is

pure on L, for [T, C] = 0 and therefore T + c&#x3E; is a torus for such c.
Now for any c E C we have c* = c*p + c*n, an ad-cleaving: the above
remark shows that c*p annihilates C; and c*n acts nilpotently. Therefore
c * is nil on C. Engel’s theorem, applied to a local system of finite-
dimensional subalgebras of C, shows that C is locally nilpotent.
Next suppose that C --5 U S L and, for a contradiction, that

U ~ IL(U). Then there exists x E L B U such that [U, x ] ~ U. Let
V = U + x&#x3E;, so that C ~ U  V ~ L. Each of U, V is a T-module,
and dim V / U = 1. Decomposing U and V into weight spaces for T it
follows from (1) that there is a unique weight À E T* for which
U, 0 VA, and for this À we have dim V03BB/U03BB = 1. If we pick x’ E V03BBB U,
then V = U + x’&#x3E; and x’ is a T -eigenvector with eigenvalue À by
lemma 2.3. Now for all t E T,

so 03BB(t) = 0. Hence x’ E CL(T) = C, a contradiction. So C is quasiab-
normal.

In [9] Mal’cev proves a conjugacy theorem for maximal tori, which
we generalize as:

THEOREM (3.4): Let L be a cleft ideally finite Lie algebra over R.
Then any two maximal tori of L are conjugate under the group Y(L) of
locally inner automorphisms.

PROOF: Let T and T’ be maximal tori of L. Their centralizers C and

C’ are Cartan subalgebras of L, so by [13] theorem 7.9 there exists
a E Y(L) such that C" = C’. Now the proof of theorem 3.3 shows that
T is precisely the set of ad-pure elements of C, and similarly for T’ ;
and since automorphisms of L preserve ad-purity it follows that

Ta = T’.

4. The existence of Cartan subalgebras

In this section we use an embedding process, suggested by that of
Mal’cev, to construct in any ideally finite Lie algebra a Cartan

subalgebra. The first step involves a property of linear transformations
of finite rank. Let V be a vector space over R and let F(V) be the Lie

algebra of all linear transformations of V of finite rank (i.e. having
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finite-dimensional image). It is well known and easy to prove that F(V)
is locally finite. It is obvious that each f E F( V) is algebraic as a linear
transformation of V.

LEMMA (4.1): The Lie algebra F(V) is cleft.

PROOF: Obviously F( V) is V-cleft: from this we shall deduce that it
is cleft. For each f E F(V) there exists, by lemma 2.1, a unique
V-cleaving f = fp + fn, where fp and fn are polynomials in f without
constant term. We claim that

is an ad-cleaving in F(V). Since [f*p, f*n] = [fp, fn]* = 0 all that is

required is that f*p be pure on F( V) and f*n nil. Now if g, h E F( V) then
an easy induction shows that

so that if h r = 0 then h *2r = 0. Now an algebraic nil transformation is
nilpotent (consider its minimum polynomial) so it follows that f n is nil
on F(V).

If g E F( V) is pure on V we can choose a basis {vi}i~I of V consisting
of g -eigenvectors, so that vig = Xivi (Ai ~ R). The elementary transfor-
mations eji (i, j Ei I) defined by

(k El), where 03B4ki is the Kronecker delta, form a basis for F(V). A
simple computation shows that

hence the eij are g *-eigenvectors and g * is pure. Hence f*p is pure. The
lemma follows.

COROLLARY (4.2): Any Lie subalgebra of F(V) which contains the
pure and nil parts of each of its elements (considered as transforma -
tions of V) is cleft.

LEMMA (4.3): Let d be a derivation of the Lie algebra L over R, such
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that d is algebraic on L. Then the pure and nil parts dp and dn are
derivations of L.

PROOF: It is easy to see that L is a locally finite (d)-module, so
lemma 2.2 applies. Using (3) we can mimic Humphreys [6] lemma B p.
18 to obtain the result.

Let L be any ideally finite Lie algebra over R, and let lKi be the
set of all finite-dimensional ideals of L. Let L1 (L ) be the subalgebra of
Der(L ) consisting of those derivations which fix setwise every ideal of
L, so that 0394(L) ~ Inn(L), the latter being the algebra of inner

derivations. For each i E I define Di to be the set of all d E L1 (L ) such
that

It is clear that inner derivations induced by elements of Ki lie in Di.

LEMMA (4.4): With the above notation, each Di is a finite-
dimensional ideal of à (L).

PROOF: Since Ki has finite dimension, CL (Ki) has finite codimen-

sion, so there exists a finite-dimensional vector space complement Wi
to CL (Ki) in L. Each d E Di is (by condition (ii)) uniquely determined
by its restriction to W. Since Wid C Ki by condition (i) we have

dim Di ~ dim Hom(Wi, Ki)  ~.

Hence Di  0394(L).
Hence we can define 0393(L)  0394(L) by
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If i, j, k E I and Kk = Ki + Kj then obviously Di + Dj ::; Dk, so in fact

We then have:

THEOREM 4.5: Let L be ideally finite over 9. Then T(L) is a cleft
ideally finite Lie algebra. The adjoint representation of L induces a
homomorphism

whose kernel is 03B61(L) and image Inn(L).

PROOF: By lemma 4.4, 0393(L) is ideally finite. If dEF(L) then
condition (i) shows that d has finite rank, hence 0393(L) ~ F(L ). Now d
is algebraic, so there exists a cleaving d = dp + dn by lemma 2.1. By
lemma 4.3 each of dp, dn is a derivation of L. By the polynomial
property and other assertions of lemma 2.1 it is easy to check that dp
and dn belong to 0393(L). Now corollary 4.2 shows that 0393(L) is cleft.
The remaining assertion is obvious.

Thus there is an embedding L/03B61(L) ~ 0393(L). For our purposes,
where central extensions cause no trouble, this is quite good enough.
The question of embedding L, rather than a central quotient, in a cleft
ideally finite algebra will be dealt with in §6.
IThe definition of the Di above suggests a method for constructing

ideally finite algebras (ensuring an adequate supply of objects to which
the theory applies). Namely, take a vector space V, a family {Vi}i~I of
finite-dimensional subspaces, and a corresponding family {Wi}i~I of
subspaces of finite codimension. For each i E 1 let Ai be the Lie

algebra of all linear maps V - V which leave invariant each V; and
Wj(j El), map V into Vi, and annihilate Wi. The sum of all the Ai is an
ideally finite Lie algebra. If for all i, j E I there exists k E I with
Vi + Vj ~ Vk and Wk ~ Wi n wi then this algebra is even cleft.

Further, every ideally finite algebra is a subalgebra of a central
extension of some algebra constructed in this way.1
We return to 0393(L) and the map T. If J is an ideal of L, j E J, and

d ~ 0394(L) then

so that 03C4(J) is an ideal of 0393(L). We wish to use Mal’cev’s idea [9] of
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selecting a ’minimal’ cleft subalgebra of 0393(L) containing 03C4(L). Be-
cause of the ambiguity (up to centre) of ad-cleaving the existence of
such a subalgebra is not immediately obvious, and we can manage with
a less precise statement. (The existence is in fact a corollary of the
more general results to be proved in §7.) All we need is that 03C4(L) can
be embedded in a cleft ideally finite algebra Ê with some of the
properties listed by Mal’cev [9] pp. 248-250, namely:

LEMMA (4.6): If L is an ideally finite Lie algebra over R then there
exists a cleft subalgebra Ê of r(L), with 03C4(L) ~ , such that

If L is locally soluble so is L.

PROOF: Let r = r(L). We define an increasing sequence of sub-
algebras

of r, as follows: each L i+1 is the subalgebra of T generated by all Xp and
xn for x E Li. The polynomial property of cleavings (lemma 2.1) shows
that each Li is an ideal of T. Now define L = U~i=0Li. We claim that
L2i+1 = L2i. For x E Li the polynomial property implies that

and similarly

Therefore

A repetition of this argument shows that

so that L 7 = L’ 0 for all i. But 2 = U 7=o L 7 = L20. It is clear that L is
T-cleft, hence cleft. The last assertion of the theorem is obvious.

The task of proving existence of Cartan subalgebras is lightened by
the following theorem.
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THEOREM (4.7): If L is ideally finite over R and C is a subalgebra of L
then the following are equivalent :

(i) C is a Cartan subalgebra of L.
(ii) C is locally nilpotent and quasiabnormal in L.
(iii) C is locally nilpotent and self-idealizing.
(iv) C is equal to the 0-weight space of its adjoint representation on

L.

PROOF: We have proved (i) ~ O (ii) in lemma 3.2. It is obvious that
(i) ~ (iii). We shall show (iii) ~ (iv) ~ (ii), from which the result
follows.

(iii) ~ (iv): Let C be locally nilpotent, so that C ~ Lo (the 0-weight
space), and suppose C = IL (C). If L0 ~ C choose x E LoBC. Now x is
contained in a finite-dimensional ideal X of L, and Xo = Lo n X is the

0-weight space of X as C-module, or equivalently as a module for the
finite-dimensional nilpotent algebra C/CL(C). It follows from Jacob-
son [7] theorem 1 p. 33 that there exists an integer r such that

Choose m maximal subject to

Then

so that

a contradiction. Therefore C = Lo as claimed.

(iv) ~ (ii): Suppose C = Lo. Then Engel’s theorem, applied on a
local system of finite-dimensional subalgebras, shows that C is locally
nilpotent. To prove C quasiabnormal suppose

where x E IL ( U). Then U and U + x&#x3E; are C-modules. Since C = Lo it
follows that x E U + L03BB for a non-zero weight A. Hence the coset
U + x is a C-eigenvector in (U+x&#x3E;)/U with eigenvalue À. But since



88

[x, C] C [x, U] C U in fact U + x has eigenvalue 0. This contradiction
shows that U = IL ( U), hence C is quasiabnormal and (ii) holds.
Had this result, which depends on lemma 2.2, been known at the time

[13] was written, it would perhaps have been better to use the more
familiar (iii) as a definition of ’Cartan subalgebra’ and to prove (i), or
what amounts to the same thing, homomorphism invariance of Cartan
subalgebras, as above. We would still need (i) to prove conjugacy of
Cartan subalgebras, which result we need for the existence proof as
will emerge in due course.

A final preliminary result which we need is a generalization of a
theorem of Stitzinger [17].

LEMMA (4.8): Let L be a locally soluble ideally finite Lie algebra over
R, and C a subalgebra. Then the following are equivalent :

(i) C is a Cartan subalgebra of L.
(ii) C is a maximal locally nilpotent subalgebra of L, and L =

p(L) + C.

PROOF: That (i) ~ (ii) is clear from the projector property, since
L/03C1(L) is abelian by [11] ] lemma 3.12 p. 86. To prove (ii) ~ (i) it is

sufficient, by theorem 4.7, to show that C is self-idealizing under
hypothesis (ii). If not, then I = IL(C) &#x3E; C. Suppose if possible that
I ~ 03C1(L) = C ~ 03C1(L). Then

a contradiction. Therefore i fl p (L ) &#x3E; C fl p (L ). Pick x E (I n p (L ))B
C, and consider M = C + x&#x3E;. Now x * is nil and of finite rank, hence
nilpotent. From [15] lemma 3.3.4 p. 319 it follows that

Hence if x1, ..., xs E C then x1, ..., xs E Çm (C) for some m, and then

03B6m(C) + x&#x3E; is nilpotent by [16] lemma 2.1 p. 15. Therefore M is locally
nilpotent. Also L = p (L ) + M, which contradicts maximality of C.

Hence in fact C = IL (C) and (ii) ~ (i).

We may now give an existence proof for Cartan subalgebras,
different from corollary 7.5 of [13].
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THEOREM (4.9): Every ideally finite Lie algebra over R has a Cartan
subalgebra.

PROOF: Let L be ideally finite over Sf, and let B be a Borel

subalgebra. The map 03C4 : B ~  embeds B = B/03B61(B) in a locally
soluble cleft ideally finite algebra Ê. Let C be a Cartan subalgebra of Ê,
which exists by theorem 3.3. Since /2 is abelian, the projector
property implies that Ê = 2 + C. By lemma 4.6 (ii) 2 = 03C4((B))2, so
that

Intersecting with 03C4(B) and using the modular law, it follows that

Using r-’ to pull back to B we have

where D is locally nilpotent. Now B2  p (B ) by [11] lemma 3.12 p. 86.
Since 03BE1(B) ~ p (B ) and local nilpotence is preserved by central exten-
sions, it follows that

where E is locally nilpotent. By Zorn’s lemma there is a maximal

locally nilpotent subalgebra M of B, containing E, and B = p (B ) + M.
Lemma 4.8 implies that M is a Cartan subalgebra of B. Since B is a
Borel subalgebra of L, we may invoke lemma 8.1 of [13] (whose proof
does not depend upon the existence of Cartan subalgebras) to conclude
that M is a Cartan subalgebra of L.

5. Semicleaving

The object of this section is to prove a useful technical result. Say
that a linear transformation f of a vector space V is semicleft if

f = g + h where g, h are linear transformations of V, g is pure, and f is
nil. This differs from a cleaving only in that g and h need not commute.
Call a Lie algebra L semicleft if each x E L can be written x = p + n
where p, n E L, p * is pure, n * nil. We may now state a generalization
of theorem 2 of Mal’cev [9] p. 233. The proof is essentially Mal’cev’s
but several minor modifications are needed.
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THEOREM (5.1): A locally soluble ideally finite Lie algebra over R is
cleft if and only if it is semicleft.

Before giving the proof, we extract a small part which will be used
often:

LEMMA (5.2): Let L be a locally soluble ideally finite Lie algebra over
R. Then x E L is ad -nil if and only if x belongs to the Hirsch -Plotkin
radical p (L ).

PROOF: The assertion is well known for L finite-dimensional (cf.
Mal’cev [9] p. 233) and the lemma follows by considering a local
system of finite-dimensional ideals and using lemma 3.18 of [11].

PROOF OF THEOREM 5.1: Obviously cleft implies semicleft. Let L be
semicleft, locally soluble, and ideally finite over ?. Put Z = C,(L),
R = p (L ). Since L /Z is residually finite by [13] lemma 7.2 it follows
that R /Z is residually nilpotent, so that

Let x E L, with

where p, n E L, p * is pure, n * nil. Let X be a finite-dimensional ideal
of L containing p and n (and hence also x). Decomposing X into
weight spaces for p&#x3E; we obtain

where ni ~ X for all i = 0, ..., s and

for distinct eigenvalues 03BBi ~ R. We choose notation so that Ào = 0;
possibly no = 0; but n,, ..., n., 0 0. If s were zero, we would have

[n, p ] = 0 and hence an ad-cleaving x = p + n. Our aim will be to
modify the semicleaving (6) until this situation obtains.
Since X is finite-dimensional the decreasing chain
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must stop, say at X n RN. From (5) it follows that

Lemma 5.2 implies that n E R. Suppose that in (7) we have

for some integer k &#x3E; 0. The elements n,, ..., ns also lie in X ~ R B for
this is a (p )-submodule, and we may use the weight space decomposi-
tion in X rl Rk to write u as a sum of p *-eigenvectors, and then plead
uniqueness. (Alternatively one may argue as in Mal’cev [9] p. 234.)
Now

belongs to Rk, so is ad-nil; we may define the automorphism

of L. Now

where n’ ~Kk+1~X and xaEX. Decomposing n’ into p*-
eigenvectors in Kk+1 rl X we have

where the subscripts correspond to the same eigenvalues 03BB0 = 0,
03BB1, ..., Às as before. Each E Rk+1 ~ X. Now we have

where p 
* is pure, (no + n’0)* is nil and centralizes p, and (n + ··· + n’s)

belongs to X n Kk+1.
Repeating this process until the superscipt k has been raised to N,

and using (8), we are led to a decomposition
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where n"0 is ad -nil, [p, n"0] = 0, and z ~ X ~ RN ~ Z; while 13 is an

automorphism of L. Then the decomposition

is an ad-cleaving, since n 0 " + z is ad-nil and centralizes p ; so that

is an ad-cleaving of x. Hence L is cleft as required.
It should be noted that the automorphism f3, by construction, belongs

to the group 6(L ) generated by exponentials of strongly ad-nilpotent
elements of L, defined in [13] §3; and hence in particular to the group
0(L ) of locally inner automorphisms of [ 13] §6. Hence any semicleav-
ing x = p + n yields a cleaving of the form p03B3 + n’, y E E(L).

6. The embedding theorem

In this section we show that every ideally finite Lie algebra over n
embeds in a cleft ideally finite Lie algebra. A partial result in this
direction was proved in §4. Our arguments, though based on Mal’cev
[9], are somewhat différent : in particular we do not have available the
apparatus of Lie groups. We do not use Mal’cev’s results directly, so
our proofs, when specialized to finite dimensions, provide alternatives
to his not relying on Lie group methods.

LEMMA (6.1): Let L be a semisimple ideally finite Lie algebra over 9,
and let M be a locally finite L -module. Then every submodule of M is
complemented, and M is a direct sum of finite-dimensional irreducible
L -submodules.

PROOF: Each finite-dimensional submodule F of M is a module for

the finite-dimensional semisimple algebra L/CL(F), hence a direct sum
of irreducible L -modules (Jacobson [7] p. 79). Thus M is a sum of
irreducible L -modules. Easy Zorn’s lemma arguments now establish
the desired results.

Next we need a generalization of Barnes [2] theorem 2.1 p. 278:

LEMMA (6.2): Let L be an ideally finite Lie algebra over Sf, with
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H L and C a Cartan subalgebra of H. Then

PROOF: Let I = IL (C) and consider L /I as C -module. If I + a E L /I
is annihilated by C then [a, C] c I ~ H = IH (C ) = C. Hence a E I, and
L /I contains no non-zero element annihilated by C. Now L /I is a

locally finite C-module. If the 0-weight space of C on L /I were
non-zero then C would act on some finite-dimensional submodule by
zero-triangular matrices (Jacobson [7] pp. 34-35) and hence annihilate
a non-zero element. Thus the 0-weight space on L /I is zero. On the
other hand, C acts trivially on L /H. A contradiction can be avoided
only if H + I = L, as claimed.

Using this lemma we obtain a substitute for the Lie group argument
of Mal’cev [6] p. 247 lines 1-14:

LEMMA (6.3): Let L be an ideally finite Lie algebra over R, with S its
radical, A a Levi subalgebra. Then A idealizes some Cartan subalgebra
of S. If further S is cleft then A also idealizes the maximal torus

corresponding to such a Cartan subalgebra.

PROOF: Let C be any Cartan subalgebra of S. Then lemma 6.2
implies that L = S + IL(C). If llo is a Levi subalgebra of IL (C) it is

clear that A0 is also a Levi subalgebra of L, idealizing C. By theorem
4.1 of [13] there is an automorphism a of L, leaving all ideals of L
invariant, such that  . Then C03B1 is a Cartan subalgebra of S
idealized by A.
Now suppose S is cleft. Then C = CS(T) where T is the unique

maximal torus of S contained in C and consists of those c E C for

which c * is pure on S. (This follows from the proof of theorem 3.3.)
Since A is a direct sum of finite-dimensional simple algebras it is cleft
(Humphreys [6] p. 24). The preservation of Chevalley-Jordan decom-
position of semisimple algebras by representations (Humphreys [6] p.
29) applied in the usual way to a local system shows that if x E rl is

ad-nil on  then x * is nil on L. Now for each integer n, the

automorphism exp (nx *) of L leaves C invariant, since idealizes C,
and hence leaves T invariant because automorphisms preserve ad-
purity. By Hartley [5] lemma 2 p. 262 we have [T, x] C T. But ad-nil

l elements x generate A, since they do in finite dimensions (pick
elements corresponding to non-zero roots in a Cartan decomposition),
hence [r,7l]C T.



94

The next lemma asserts the possibility of a ’global semicleaving’ in a
locally soluble ideally finite algebra.

LEMMA (6.4): Let L be a cleft locally soluble ideally finite Lie algebra
over R. Then

for any maximal torus T, and

If To is any vector space complement to 03B61(L) in T then

and every non-zero element of To has a non -zero eigenvalue on L.

PROOF: Let C = CL(T), a Cartan subalgebra of L. Since L / p (L ) is
abelian the projector property implies that L = p (L ) + C. The ad-nil
elements of C lie in p (L ) by lemma 5.2, the ad-pure elements in T.

Hence L = p (L ) + T. The remaining assertions are clear.

The next lemma allows us to concentrate on the locally soluble case.

LEMMA (6.5): Let L be an ideally finite Lie algebra over MI. Then L is
cleft if and only if its radical is cleft.

PROOF: It is not hard to see that if L is cleft then so is a-(L ). Now let
S = o-(L) and suppose that S is cleft. Let ^ be a Levi subalgebra of L.
By lemma 6.3 there exists a maximal torus T of S idealized by A, and
by lemma 6.4 S = R + T where R = p (S) = p(L). By lemma 6.1 there
exists a ll -module complement To to R n T in T, and then S = R + To
and To is a torus. Further,

from [1] corollary 3.15 p. 87. So A centralizes To. Now

and To is a torus of L since it is a torus of S and centralizes A. If x E L
then x = r + t + 1 where r E R, t E To, l E A. Now A is L -cleft by the
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remarks on preservation of Chevalley-Jordan decomposition in lemma
6.3, so we can write l = p + n where p * is pure on L, n * nil (potent),
and [p, n ] = 0. Since t * and p * commute, t + p is ad-pure. We claim

firstly that r + n is ad-nil. It is clear that if n*k = 0 then L (r + n )*k C R.
By [16] lemma 2.1 p. 15 R + n&#x3E; is locally nilpotent, so r + n is ad-nil on
R. Since (r + n)* has finite rank, we have R (r + n )*j = 0, hence
L (r + n )*k+’ = 0 and r + n is ad-nil.

Thus we have a semicleaving

We apply theorem 5.1 to the locally soluble algebra

Now J2 ~ R. There exists, by the remark after theorem 5.1, an

automorphism a ~ E(J) such that

is an ad-cleaving on J. Now a extends to an automorphism of L by the
obvious argument (cf. §3 of [13], or Winter [20] p. 93). Since « is a

product of elements exp (j *) where j is in a non-zero weight space on J,
hence in J2 (look at eigenvectors), hence in R, we have

and hence

The argument that showed n + r ad-nil shows n’ad-nil. Since a is an

automorphism (t + p)03B1 is ad-pure. Since (9) is an ad-cleaving of J,
[n’, (t + p)03B1] = 0. Thus (9) is also an ad-cleaving on L. This completes
the proof.

Next we give a criterion for a split extension to be ideally finite.

LEMMA (6.6): Let L = H+ K where H  L, H and K are ideally
finite, H is a locally finite K -module, and K acts on H by maps of finite
rank. Then L is ideally finite.

PROOF: Let I be a K-submodule of H. Then
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Hence the ideal

is also a K-module. Hence every element of H is contained in a

finite-dimensional ideal of L. It remains to prove the same for every
element k E K. Now k E J  K where J is finite-dimensional. Since K

acts by finite rank maps, [H, J] is finite-dimensional. There is a

finite-dimensional K -invariant ideal I of H containing [H, J], and I + J
is an ideal of L of finite dimension containing k.

Finally we come to the main result:

THEOREM (6.7): Every ideally finite Lie algebra over 9 can be
embedded in a cleft ideally finite Lie algebra.

PROOF: Let L be ideally finite, and consider the algebra of finite rank
derivations (plus a few other properties) called T(L ) in §4, and the map
T : L ~ 0393(L) whose kernel is Z = 03B61(L) and image Inn (L). Let T =

r(L) and denote images under T by bars. Let ,S = 03C3(L), and choose a
Levi subalgebra ll of L. Then

and S ~ S /Z. Now f is ideally finite and cleft by theorem 4.5. Further
S  T so S ~ 03C3(0393), and (r(r) is cleft. By lemma 6.3 there is a maximal
torus T of 03C3(T) idealized by ̂ . By the definition of T, T acts as a Lie
algebra of derivations of S, and we may form the split extension

(the subscript r indicating the action of T on S). To make matters
clear we shalll adopt the notation (s, t) for an element of Y, where
s E S, t E T. We claim that Y is cleft. Now if s E S then s * ~ 03C3(T). By
lemma 6.4 we can write s * = r + t where r E p r), t E T. Now r is nil
in its action on S ~ S /Z, so acts nilpotently on S. The element (s, - t )
of Y acts trivially on Y/S, and acts on S as s * - t which is nilpotent.
Hence (s, - t ) is ad-nil on Y. For any u E T we have

and (0, u + t ) acts purely on S and centralizes T, so acts purely on Y.
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Hence (10) is a semicleaving, and by theorem 5.1 Y is cleft. (By lemma
6.6 Y is ideally finite.)

Since ̂  idealizes T it follows that T + Ã is a subalgebra of T. The

split extension

is ideally finite by lemma 6.6, and obviously its radical is Y. By lemma
6.5 X is cleft. The subalgebra S + is easily seen to be isomorphic to
L = S + ^, so that L embeds in X. This completes the proof.

7. The cleft envelope

Let L be ideally finite. A cleft envelope of E is a cleft ideally finite
Lie algebra E 2:: L, such that if E’ is a subalgebra with E &#x3E; E’ 2:: L

then E’ is not cleft. In [9] Mal’cev shows that finite-dimensional

(soluble) algebras over ? have a cleft envelope (called a ’splitting’ by
Mal’cev) which is unique up to isomorphism. The existence is obvious
in finite dimensions once an embedding theorem is proved: in infinite
dimensions more work is required. We shall in fact establish unique-
ness first, which allows us to use the existence proof to investigate the
structure of a cleft envelope in general.

LEMMA (7.1): Let H1 ~ K1, H2 ~ K2 be ideally finite Lie algebras over
R, with an isomorphism 0 : H1 ~ H2. Suppose that x E Hl is ad-cleft in
K1, x = xp + xn, xp ~ H1; and y = ~(x) is ad-cleft in K2, y = yp + yn,
yp ~ H2. Then there exists an isomorphism

extending 0.

PROOF: We have [x., xp ] = 0, xn = x - x,, and x*p is a polynomial in
x 
* with zero constant term. Hence

and H, a H1 + xp&#x3E;. Similarly

and H2  H2 + yp&#x3E;. Let H1," be the A-weight space of x * on H1. Then
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for h E Hl,A we must have

because the linear transformation so defined is pure, commutes with

x *, and differs from x * by a nil transformation by the definition of H1,,,.
Now ~(H1,03BB) = H2," where the latter is the 03BB-weight space of y * in H2.
Further, similar reasoning shows that

Since the H,,, span Hl it is now clear that if we set cp (xp) = YP and
make cp IHI = 0 then ’P is an isomorphism of the required kind.
An easy consequence of this, using a Zorn’s lemma argument, is:

THEOREM (7.2): Let Hl be ideally finite over R, 0 : H1~H2 be an
isomorphism, and K, and K2 be respectively cleft envelopes of Hl and
H2. Then 0 extends to an isomorphism ’P : K1 ~ K2. In particular cleft
envelopes are unique up to isomorphism.

To obtain the existence of a cleft envelope for an ideally finite Lie
algebra L over U we start with the cleft ideally finite algebra containing
L which is constructed in the proof of theorem 6.7. This is of the form

where S = u(L), A is a Levi subalgebra of L, T is a torus of S+ T, and
[T, ^] ~ T. We find a subalgebra of this which is a cleft envelope. By
lemma 6.1 we can find a ll -invariant complement To to CT(S) in T.

Then S + To is cleft since it is isomorphic to (S + T)/CT(S). Since
[^, T0] is contained in p (S + T) by [11] corollary 3.1 S p. 87 and is also
contained in To, we have [A, To] = 0. Then K = S + T0 + A is a Lie

algebra containing S + A = L. Its radical is S + To which is cleft, so K
is cleft. Since [S + To, K] ~ S it follows that any subspace between S
and S + To is an ideal.
We now resort to a transfinite induction process. Well-order S + To,

and for ordinals a define So = S ; S03BB = U03B103BB S« if À is a limit ordinal;
and S,,,+, = ,Sa if Sa is cleft, S03B1+1= Sa + xp&#x3E; where x is the least element
of Sa in the well-ordering such that x * is not cleft on Sa, x = xp + xn
being a cleaving in S + To. On set-theoretic grounds we have S03B2+1 = SI3
for some ordinal 03B2. Obviously Sp is cleft and contains S. We show that
S03B2 is a cleft envelope of S and Sp + ̂  is a cleft envelope of L.
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We claim that 03B61(S03B1+1) = 03B61(S03B1) for all a  03B2. For let z E 03B61(S03B1+1). If
z ~ S03B1 then z = s + 03BBxp (0 ~ 03BB ~ R) . On Sa we have s* = -03BBx*p.
Consider the decomposition

in Sa. Then -03BB -’s * = x P is pure, and (x + À -1s)* = x n is nil. Therefore
x is semicleft in S03B1, and by theorem 5.1 x is ad-cleft in Sa. This
contradicts the choice of x. Therefore z E Sa so z E 03BE1(S03B1). Since x*p is
a polynomial in x* with zero constant term, it follows that (1(SOl)
centralizes xp. Therefore (1(SOl+1) = 03B61(S03B1) as claimed. It follows that
03B61(S03B2 )=03B61(S). The same argument about x p being a polynomial in x *
shows that if u E CK (SOI.) then u E CK (SOl+1): in particular CSI3 (S) =
03B61(S).
Now we show that no subalgebra H of S03B2 with S S H  Sp is cleft.

Let y be the least ordinal ~ 03B2 such that S03B3 ~ H. Then y is not a limit
ordinal, so y = a + 1 for some ordinal a, and we have S03B1 ~ H,
SOl+1:$; H. Let x = hp + hn be an ad-cleaving in H, where x = xp + xn
is the cleaving used to obtain S03B1+1 from S«. Now

are two cleavings of x *, thought of as a linear transformation of Sa.
Therefore

so that hp E S,,,,,, and S03B1+1 ~ H. This is a contradiction. Therefore S(3 is
a cleft envelope for S.

Finally suppose that J is a subalgebra of Sp + A with L = S + ^ ~
J ~ S03B2 + ^. If J is cleft then u(J) is cleft and S ~ 03C3(J) ~ S03B2, so

03C3(J) = Sa. Hence J = S/3 + A, and the latter is a cleft envelope for L.
This proves:

THEOREM (7.3): Every ideally finite Lie algebra over R possesses a
cleft envelope.

From the uniqueness assertion of theorem 7.2 we may define the
cleft envelope L of L, and both L and the map L - L are unique up to
isomorphism.

THEOREM (7.4): Let L be an ideally finite Lie algebra over R with



100

cleft envelope L. Then :
(i) Every ideal of L is an ideal of L.

(vi) a(1 ) is a cleft envelope for u(L), and Ê = 03C3(L) + A where A is
any Levi subalgebra of L.

(vii) Every automorphism of L extends, uniquely modulo 03B61(L), to an
automorphism of .

PROOF:

(i) The subalgebra (I) is cleft, by the polynomial property of
cleavings, and contains L. Hence by minimality it equals L. Alterna-
tively, note that F(L) leaves invariant every ideal of L, by definition.

(ii) Let L be defined in terms of the Sa above. By transfinite
induction we have Si = S2 and [S03B1, ^] = [S, A ]. Then Ê = S(3 + ll so

L2 = L2.
(iii) This has already been established for S(3.
(iv) We claim that p(f) + L is cleft. For if r ~ 03C1(L), x E L, then

x = r’ + t where r’Ep(f) and t is ad-pure; and then r + x =

(r + r’) + t is a semicleaving of x in 03C1(L)+L. Minimality implies
Ê = p(L)+L.

(v) This follows from (iv).
(vi) This is true for the cleft envelope constructed above.
(vii) Existence follows from theorem 7.2 and transfinite induction.

Uniqueness modulo the centre follows from uniqueness, modulo the
centre, of ad-cleavings.

Note that in [9] Mal’cev asserts that automorphisms extend uniquely
from L to L, but the translator appends an example (credited to
Mostow, Chevalley, and Jacobson) to show that this is not the case.

8. Maximal locally nilpotent subalgebras

In this section we classify the 0(L )-conjugacy classes of maximal
locally nilpotent subalgebras of an ideally finite algebra L, starting with
the cleft locally soluble case. We begin by sharpening lemma 6.4.

LEMMA (8.1): Let L be cleft locally soluble ideally finite over R, and
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H an L -cleft subalgebra. If U is any torus of L, maximal with respect to
U - H, then

and

If Uo is any vector space complement to H ~ 03B61(L) in U then

and the non-zero elements of Uo have non-zero eigenvalues on L.

PROOF: For every h E H we can write

where

for distinct eigenvalues 03BBi: U ~ R, with Ào = 0. If i &#x3E; 0 then (11) implies
that hi ~ H ~ L2 ~ H ~ 03C1(L). Since 03BB0=0 we have h0 ~CH(U).
Hence

Suppose that

Choose c E CH(U)BH1, and let c = c, + cn be an ad-cleaving in L, such
that cp, cn E H. Then cn E 03C1(L) fl H. If cp E Hl then c E HI, a con-
tradiction. Therefore cp ~ H1. But c * is a polynomial in c * with zero
constant term, so cp E CH(U). But now U + cp&#x3E; is a torus of L,
contained in H, and larger than U. This is a contradiction, so H = Hl as
required. The rest is obvious.

THEOREM (8.2): Let L be a cleft locally soluble ideally finite Lie
algebra over R, with L = R  To where R = 03C1(L) and To is a torus.

Then up to Y(L)-conjugacy every maximal locally nilpotent subalgebra
M of L has the form

where T,:5 To is such that CT0(CR(T1)) = T,.
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PROOF: It is not hard to show that any maximal locally nilpotent
subalgebra M is L -cleft, taking care to distinguish M-cleaving and
L -cleaving, since adding on the pure or nil part of an element of M
leads to a locally nilpotent algebra. Hence by lemma 8.1,

for a torus Uo of L. Let T = To + Z, where Z = 03B61(L). Then T is a
maximal torus of L. There exists a E 0(L ) such that U03B10 ~ T, and

Now M 2:: Z (since M + Z is locally nilpotent) so we can choose Uo so
that U03B10 ~ To. Put Fi = Ui. Then M" = (R n M" ) + Fi for T, - To.
Now Tl is a torus, and since M" is locally nilpotent its eigenvalues are
all zero on M", so [M", T1] = 0. Thus the (obviously locally nilpotent)
subalgebras

contain M03B1. Maximality implies firstly that M03B1 = CR(T1) + T1 and

secondly that CT(CR(T1)) = T1, as claimed.
It is clear that algebras of the stated form are maximal locally

nilpotent.

Before making a further study of the cleft case, we show that the
general locally soluble case reduces to it.

THEOREM (8.3): Let L be a locally soluble ideally finite Lie algebra
over U with cleft envelope Ê. Then every maximal locally nilpotent
subalgebra of L is contained in a unique maximal locally nilpotent
subalgebra of L. The Y(L )-conjugacy classes of maximal locally
nilpotent subalgebras of L are in bijection with a set of Y(L)-conjugacy
classes of maximal locally nilpotent subalgebras of É.

PROOF: First note that, in the terminology of [13] where Y(L) is
defined, the strongly ad-nilpotent elements of L lie in L 2. By theorem
7.4(ii) we have £2 = L 2, and it is easy to see that the strongly
ad-nilpotent elements of L and L coincide. This allows us to identify
the groups Y(L) and Y(L).

Next, let L = R + T0, as usual, and let H be a maximal locally
nilpotent subalgebra of L. There is a unique minimal L -cleft sub-
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algebra H1 of Ê containing H (by an argument similar to that of
theorem 7.2, and noting that 03B61(L) = 03B61(L) ~ H). It is not hard to verify
that Hi is locally nilpotent (by a transfinite induction argument). Hence
Hi is contained in a maximal locally nilpotent subalgebra H2 of L. By
theorem 8.2 we have

where, for some a ~ Y(L), T? s To.
Let t E Tt. We can find r E R such that t + r E L, by theorem

7.4(iv). Put

where

for all u E T1, where the 03BBi : Ti - R are distinct eigenvalues, and Ào = 0.
Now r1, ..., rs ~ L2 = L 2, so ro + t E L. Hence ro E CR(Ti), and ro +
t E H2 ~ L = H by maximality. Therefore t E H, by definition of Hi,
and T1 ~ H1.
We claim that there is a unique torus U of L maximal subject to

U ~ Hi. For if U, U’ have this property then U, U’:5 C,(Hi) since Hi is
locally nilpotent. Therefore [ U, U’] = 0, from which it follows easily
that U + U’ is a torus of L. Hence by maximality U = U’.
Now it is easy to see that Tl + 03B61(L) is a torus of L, maximal subject

to being contained in Hi. The above remark shows that Tl is unique
modulo 03B61(L), from which it follows that H2 is unique.

Since H2 ~ L = H by maximality, we have an injection from the set
of maximal locally nilpotent subalgebras of L to that of L. The
identification of 0(L) and Y(L) allows us to define an induced

injection on the corresponding conjugacy classes.
The argument (or even the result) of Mal’cev [9] theorem 5 p. 238

shows that if t is ad-pure, y E 5t(L), and [t, 03C403B3] = 0, then t = r. Hence
for a fixed maximal torus T, every torus is 0(L )-conjugate to a unique
subtorus of T. Hence the description given in theorem 8.2 yields
inconjugate subalgebras provided that it yields unequal ones. Thus, for
a complete description, we have only to classify the subtori Tl of To
with the property CTo(CR(TI)) = T,. It is easy to see that these are

precisely the subtori of To of the form CT0(N), for N - R. In f act there
is a ’Galois correspondence’ between the lattice of subalgebras of R
and the lattice of subalgebras of To, with maps
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which restrict to a bijection between the set of tori of the form CTo(N)
and the set of N of the form CR(T).

This opens the way to a more useful description using Mal’cev’s
concept of ’type’. If L is cleft, locally soluble, and ideally finite over n
then it has an ascending series of ideals (L03B1)03B1~03C3 whose factors L03B1+1/L03B1
are 1-dimensional. This follows by applying Lie’s theorem (Jacobson
[7] p. 49) to the L /CL (F)-action on a finite-dimensional ideal F, and
using transfinite induction. Further, if we decompose L as usual,
L = p (L ) + To, then there is a basis of To-eigenvectors adapted to this
séries.

Fix such a series. Each x E L acts on L03B1+1/L03B1 by scalar multiplica-
tion 03BB03B1(x) . For x, y E L we say that x ~ y if for all 03B1, 03B2 ~ 03C3,
03BB03B1(x) ~ 03BB03B2(x) implies 03BB03B1(y) ~ 03BB03B2(y). The relation - defined by

is an equivalence relation: the type of x E L is its equivalence class.
The partial semiorder ~ induces a partial order on the set of types,
which we also denote by ~.
By considering a basis of To-eigenvectors adapted to the series (La ),

it is easy to see that for x E To the centralizer CL (x ) depends only on
the type. Hence for N :5 R the subtorus T1 = CTo(N) is a union of

types, and contains along with each type all larger types. Hence we
obtain:

THEOREM (8.4): Let L be cleft locally soluble ideally finite over R.
With the above notation, two subtori Tl and T2 of To define Y(L)-
conjugate maximal locally nilpotent subalgebras if and only if each type
in T2 is ~ some type in T1, and conversely.

Finally we consider passage from the locally soluble case to the
general case. If we fix a Borel subalgebra B of L it is clear that every
maximal locally nilpotent subalgebra M of L has some 0(L)-
conjugate M" :5 B. Now elements of Y(B) extend to give elements of
Y(L), so 0(B)-conjugacy implies Y(L)-conjugacy, and there is a

surjection from the set of Y(B)-conjugacy classes of maximal locally
nilpotent subalgebras of B to the set of 0(L )-conjugacy classes of
maximal locally nilpotent subalgebras of L. All that remains is the

possibility of fusion: non-injectivity of this map. We have not been
able to solve this problem in general. However, it is clear that fusion
does not occur in the two extreme cases: Cartan subalgebras, and
Hirsch-Plotkin radicals of Borel subalgebras.
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