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1. Introduction

The axiomatic study of the substitutive algebra of functions has its
roots in the works of Schonfinkel [16], Curry [2] and Menger [8].
In 1959, Menger [12] introduced a set of axioms designed to describe
the algebra of ordinary functions under addition, multiplication or
composition. During the 1960’s this work was continued, notably,
by Schweizer and Sklar [ 17, 18, 20, 2 1 ]. Their initial paper [17] discusses
a set of five axioms which, together, are equivalent to the six axioms
given by Menger [12]. Their later articles focus attention on the axiomatic
study of composition. The algebra of functions III culminates in two
representation theorems, one of which gives sufficient conditions for
a function to be represented as a union of minimal functions called
atoms [20]. The purpose of this paper is to axiomatically describe the
substitutive or additive behavior of atoms.

2. Preliminaries

An a-system is an ordered triple (A, °, ’) such that :
Al. (A, o, ’) is an inverse semigroup with null element p.
A2. If a, b ~ A and Ø ~ a 03BF b b 03BF b’ = a’ 03BF a.

EXAMPLE (2.1): Let A consist of all restrictions of the identity function
on the set S(|S| ~ 2). If "o" represents composition and, for any f E S,
f = f ’, then (A, 0,’) is an inverse semigroup (with null element Ø)
violating axiom A2.

* Some of thèse results appeared in a thesis written by the author under the guidance of
Prof. A. Sklar.
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EXAMPLE (2.2): Let S be any non-empty set and let A = S x S ~ {Ø}.
Define (a, b) 0 (c, d) = (c, b) if a = d ; otherwise (a, b) 0 (c, d) = 0. Then
(A, o, ’) is an a-system where (a, b)’ = (b, a).

EXAMPLE (2.3): Let (G, +) be any group. Let A = G x G u {Ø}, where
(a, b) o (c, d) = (a, b + d) if a = c; otherwise (a, b) 0 (c, d) = 0. Also, for any
(a, b) E A, Ø03BF (a, b) = 0 = (a, b)03BFØ. Then (A, o, ’) is an a-system where

(a, b)’ = (a, - b).

EXAMPLE (2.4): Let (R, + ,·) be any division ring. Let

where 0: R - R is given by 0(x) = 0 for all x ~ R. Define f 03BF g by:
(f 0 g)(x) = f(x) · g(x). Then (A, o, ’) is an a-system where f ’(x) = (f(x))-1
and 0=0.

In the sequel, (A, o, ’) denotes an a-system.

LEMMA (2.5): If a E A, then the following are equivalent:

The other

identity is proved similarly.

LEMMA (2.7) : Let a(~ Ø), b(~ Ø) ~ A. Then either a 0 b 0 b’ = 0 or

a 0 b 0 b’ = a. The latter case occurs if and only if a 0 b =/= 0.

Dually, we have

PROOF : Suppose a 0 b =
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LEMMA (2.10) : If a, b E A and 0 =1= b = a 0 b then a = b 0 b’. Dually,
if Ø + b ~ b 03BF a then a = b’03BFb.

PROOF: 0 + b = a 0 b implies a’ 0 a = b 0 b’ whence (from Lemma 2.7)
0 + b 0 b’ = a 0 b 0 b’ = a.

For any a ~ A, let La = a 03BF d, Ra = a03BF a.

THEOREM (2.11) : (A,o,L,R) is a function system; i.e., (A,o,L,R)
satisfies :

PROOF : See [21; theorem 23].

3. Categorical semigroups and Brandt semigroups

If a, b are elements of any function system then a ~ b means

a = b 0 Ra[21].

THEOREM (3.1): In any a-system, "~" is trivial; i.e., a, b E A, a ç b
implies a = b or a = 0.

PROOF : If a ~ b then a = boa’ 0 a. If a =1= Ø then, by Lemma 2.7, a = b.

COROLLARY (3.2) : (A, o, L, R) is a categorical semigroup; i.e., (A, 0, L, R)
possesses a zero element 0 satisfying Ro = Ø and
1. (A, 0) is a semigroup.
2. For all elements a E A,

(a) LRa = Ra, RLa = La;
(b) La 0 a = a = a 0 Ra.

3. For all a, b in A, a 0 b =1= Ø if and only if a =1= Ø, b ~ Ø and Ra = Lb[21].

PROOF : See [21; theorem 25].
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EXAMPLE (3.3): Let

For any f(~ 0) E C, let L f, Rf E C be defined by : Lf(x) = Rf(x) = 0
for all x E 9t. Then (C, +, L, R) is a categorical semigroup violating
axiom Al.

LEMMA (3.4): Let (C, 0, L, R) be a categorical semigroup. If, for any
a E C there exists x E C such that x 0 a = Ra, then a 0 x = La.

PROOF : Let x 0 a = Ra =1= 0. Then Rx = La and

whence a 0 x =1= Ø. Hence Ra = Lx. Now, there exists y E C such that
y 0 x = Rx. Thus Ry = Lx and Ly = Rx. Hence y 0 x = La which

implies that y 0 x 0 a = La 0 a = a. Thus y 0 Ra = y o Ry = y = a.

L,EMMA (3.5) : If (C, 0, L, R) is a categorical semigroup such that for
any a E C there exists a’ E C such that a’ 0 a = Ra then C is cancellative; i.e.,

and

PROOF : Ø ~ b03BFa = c03BFa implies Rb = La = Rc whence by Lemma 3.4,
b = b 0 Rb = b o La = boa 0 a’ = c03BFa03BFa’ = c03BFLa = coRe = c.

THEOREM (3.6): Let (C,o,L,R) be a categorical semigroup. Then C is
an a-system if and only if for any a E C there exists a’ E C such that
a’ 0 a = Ra.

PROOF : Suppose that C is a categorical semigroup having the above
property. Then, for any a E C, a’ 0 a c a’ 0 a = a’ 0 a 0 Ra = a’ 0 a. By
cancelling, we get:

and

Notice that a’ must be unique (by the cancellative property). Thus
(C, 0,’) is an inverse semigroup with null element 0. Let a, b E C. If

Ø ~ a03BFb then Ra = Lb; i.e., a’03BFa=b03BFb’.
Conversely, let (C, 0, L, R) be a categorical semigroup which is also
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an a-system. Let a(~ Ø) E C. Then Ø =1= a = a 0 Ra and the result follows
from Lemma 2.10.

THEOREM (3.7) : Let (A, 0, ’) be an a-system. If, for any two idempotents
a, b E A there exists x E A such that a 0 x 0 b =1= Ø then A is a Brandt semi-
group and conversely, where a Brandt semigroup i,s defined to be a semigroup
(B, .) with zero element Ø satisfying:
1. If a,b,cEBand,if ac = bc ~ Ø or ca = cb ~~~~~~~~~~~~~~~~~~~~~~~
2. If a, b, c E B and if ab 0 and bc =1= 0 then abc =1= 0.
3. For each a(~ Ø) in B there exists a unique e E B such that ea = a,

a unique f E B such that af = a and a unique a’ E B such that a’a = f.
4. If e, f are non-zero idempotents of B, then there exists a E B such that

eaJ =1= 0[l].

PROOF : Let (A, 0, ’) be an a-system. Let a(~ Ø) E A. Let e = a 0 a’ and
f = a’ 0 a. Then e 0 a = a = a 0 f. Moreover, x 0 a = f implies x = a’
since A is cancellative.

Conversely, let (B,o) be a Brandt semigroup. Then B is an inverse
semigroup with null elements [1 ; page 102]. Let a 0 b. Then there
exists e E B such that e 0 a 0 b = a 03BF b. Thus

Hence

COROLLARY (3.8): Every Brandt semigroup is a categorical semigroup.

Then (A, o, ’) is an a-system which is not a Brandt semigroup.

4. Functions over A

Let a, b be distinct elements of (A, o, ’). Then a and b are inconsistent
if a’ 0 a = b’ o b (cf. [11 ; page 169]).
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If a and b are distinct elements of A and a - Rb = b 0 Ra then either
Ø = a 03BF Rb or a = a 03BF Rb. In the former case a’ 03BF a ~ b’ o b and in the
latter case a = b. In either case, a and b are consistent. Conversely,
let a and b be distinct consistent elements. Then a’ 03BF a ~ b’ 0 b. Hence
a03BFb’03BFb = a o Rb = Ø. Similarly, b o Ra = Ø. Thus we have proved:

LEMMA (4.1): Let a, b ~ A. Then a and b are consistent if and only if
a 0 Rb = b 0 Ra[20].

LEMMA (4.2) : For any a E A, a and 0 are consistent.

PROOF :

LEMMA (4.3): For any a, b E A, a o a’ and b 0 b’ are consistent.

COROLLARY (4.4) : If a, b E A, then a 0 a’, a’ 0 a, b’ 0 b, b 0 b’ are pairwise
consistent.

If 0 E f - A and a, b E f implies that a and b are consistent then f
is a function over A. Let F denote the set of functions over A. For any
f, g E F, define :

THEOREM (4.5): (F, 03BF) is a semigroup.

PROOF : Let f, g E F, a, c E f, b, d E g. Suppose that a 0 b, coud are

inconsistent. Then a 03BF b ~ Ø ~ c03BFd and (a - b)’ 0 (a - b) = (c 0 d)’ - (c 0 d) ;
i.e., b’ 03BF b = d’ 03BF d. But b and d are consistent whence b = d. Thus a ~ c.
Since a and c are consistent, then a’ 0 a =1= c’ 0 c. Thus a’ 0 a = b 0 b’ and
d 03BF d’ - c’ 0 c whence a’ 0 a = c’ 0 c. This contradiction shows that

f 0 9 E F. It is obvious that "o" is associative.

THEOREM (4.6): (F, 0) contains an identity j.
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PROOF: Let j = {a03BFa’|a ~A}; obviously, j ~ F. Let a ~ f ~ F. Then
a’ 03BF a, a 03BF a’ ~ j whence a 03BF (a’ 03BF a) = a E f 0 j. Hence f z f o j and

f ~ j03BFf.
In the other direction, let a E f, b 0 b’ E j. Then either a 0 b 0 b’ = Ø or

a03BFb03BFb’=a. In either case, a o b o b’ e f ; i.e., f 03BFj ~ f. Similarly,
j 03BF f ~ f.

THEOREM (4.7): (F, o, L, R) is a function system.

PROOF: 

(a) For any f E F, LRf = {a03BFa’|a~Rf} = {b’03BFb03BFb’03BFb|b~f} = Rf.
Similarly, RL f = L f.

(b) For any f EF, Lf03BFf = {a03BFa’03BFb|a,b~f}. But a03BFa’03BFb = Ø or
a - a’ o b = b. Hence Lf 03BF f z f But if a e f then a - a’ o a E Lf03BF f
whence f z Lf 03BF f Similarly, f = f - R f.

(c) Let f, g ~ F, a ~ f, b ~ g. Then

whence L(J 0 g) = L( f o Lg). Similarly, R( f o g) = R(Rf 03BF g).
(d) Let a E f, b E g. Then

or

whence a’ 03BF b’ ~ Ø which implies b 03BF a ~ 0. Then

Consequently Lf 03BF Rg £; Rg 0 L f. The reverse inclusion is similarly
established.

(e) Let a E f, b E g. Either a’ 03BF a 03BF b = Ø ~g03BFR(f03BFg) or

Hence Rf03BFg £; 9 0 R( f o g). In the opposite direction, let a E f,
b, c E g. Suppose c 03BF (a 03BF b)’ 03BF (a 03BF b) ~ 0. Then C 0 (a o b)’ 0 (a o b) = c
and b’ 0 b = c’ 0 c. Since b and c are consistent, b = c. Thus
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a - c ~ P whence, by lemma 2.8, c = a’ 03BF a 03BF c ~ Rf 03BF g. Thus

THEOREM (4.8) : If "~" denotes set inclusion (not the partial order of
section 3) then (F, c, ~) is a function semigroup; i.e.,

1. F is partially ordered by "£;".
2. (F, 0) is a semigroup with identity j.
3. (a) For all a, b E F, if a z b then F contains an element j1 ~ j such that

a=b°jl.
(b) If j2(~ j) E F, then for all a E F, a 03BF j2~ a and j 2 0 a £; a.

4. For every a E F there exist La and Ra in F such that

(a) La o a = a = a ° Ra.
(b) L(a - b) z La, R(a 0 b) z Rb.
(c) If a - j then La ~ a and Ra £; a[18].

PROOF: Let g g e F, f z g. If a ~f then aoa’oa = a ~ g 03BF R f ; i.e.,
f z g o R f. Conversely, if Ø ~ b 03BF a’03BFa’ ~g 03BF R f then b’ 03BF b = a’ 03BF a. Since

f £; 9 then a and b are consistent whence a = bo. Thus b 03BF a’ 03BF a = a ~ f.
Hence J £; 9 implies f = g - R f.

Conversely, let a(~ Ø) ~ f. Then there exist b g, c6/ such that
a = b o c’ o c. Hence a = b. Thus f gigif and only if f = g o R f The
result now follows from [21; theorem 16].

5. Representations

Let S be any set. Then AS will denote the atomic semigroup on S;
i.e., si s consists of the empty set and all functions f:S ~ S such that
Idom f = Iran f| = 1 where the semigroup operation is composition
[20].

THEOREM (5.1): Let (A,o,’) be an a-system. Then (A, 0) can be homo-
morphically embedded in (AA, 0).

PROOF : Let f : A ~ AA be defined by: f (a) = (Ra, La) for any

a(~Ø)~A and f(Ø)=Ø. Let a, b E A. If Ø ~ La ~ Rb ~ Ø, then

b 03BF a 0. Hence f(b o a) = Ø. Also, f(b) o f(a) = 0. On the other hand,
if La Rb + 0 then b 03BF a ~ 0. Hence

Thus f is a semigroup homomorphism.
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COROLLARY (5.2): If Ra = Rb, La = Lb imply a = b then (A, 0) can
be monomorphically embedded in si A.

Let (A, 03BF, ’) be an a-system. If, for any a(~ 0), b(+ Ø) ~ A there exists
a unique c E A such that Le = La, Rc = Rb then A is a composition
system (c-system).

THEOREM (5.3): For any c-system (A, 0, ’) there exists a set S such that
(A, 0) is isomorphic to the atomic semigroup (si s’ 0).

PROOF: Let S = {Ra|a~A}. Notice that La = RLa E S for all a E A.
By corollary 5.2, the mapping f defined in theorem 5.1 is a mono-

morphism. Let (Ra, Rb) E S x S. Then there exists c E A such that

Rc = Ra, Lc = LRb, whence f(c) = (Ra, Rb).

Let k be a function over A. Then k is a constant if for every function

f over A, k o f = k - R f [17; page 380]. If k is a constant and Rk = j
then k is a proper constant.

Let a, b E A. Then aLb means La = Lb. Obviously "L’is an equivalence
relation on A. The L-equivalence class containing a will be denoted aL.

THEOREM (5.4): Let (A, o, ’) be a c-system. Then k is a proper constant
if and only if there exists a( ~ 0) E A such that k = aL u {Ø}.

PROOF : Let k = aL ~ {Ø}. Let b(+ 0), c(+ P) e k. Then Lb = La = Lc.
Now if Rb = Rc, then, since A is a c-system, b = c. Thus b and c are
consistent whence k is a function over A.

Next, let c E A. Then there exists x E A such that Rx = Rc, Lx = La.
Thus x E k, whence Rk = j.
Now, let f be any function over A. Let x 03BF b ~ k 03BF f. If x 03BF b ~ Ø then

L(x 0 b) = Lx. Then there exists y e k such that x 0 b = y. Obviously,
x = y 03BF b’ whence x 03BF b = y 03BF b’ 03BF b ~ k 03BF R f ; i.e., k 03BF f ~ k 03BF Rf. In the
opposite direction, let 0 + x 0 (b’ 0 b) e k o R f. Then there exists y E A
such that Ry = RLb, Ly = Lx; thus y - b ~ 0. Then R(y 0 b) = Rb = Rx
since x 0 b’ ~ Ø. Since y - b and x are consistent, y 03BF b = x = x 03BF b’ 03BF b.
Hence k - Rf gi k - f.

Conversely, let k be a proper constant and let a(~Ø) ~ A. Let

kl = aL U {Ø}. Then Rkl = j and k - k1 = k 03BF Rkl = k 0 j = k. Now, let
Xl (=1= P)? x2(~ Ø) ~ k. Then there exist x, y e kl, z, w E k such that

Z 0 x = Xi and W 0 y = x2. Thus Lx = Rz and Ly = Rw. However,
x, y E kl ; i.e., Lx = Ly. Hence Rz = Rw. Since z and w are consistent,
z = w. Thus z o x = x1 ; z 03BF y = x2. Therefore, Lxi = Lz = Lx2 ; i.e.,
x 1 Lx2. Since (A, 0, ’) is a c-system it follows that k = x1L ~ {Ø}.
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If Q is a collection of functions over A satisfying;
i) /e0 implies Rf = j ;
ii) If f, g ~ Q and f ~ g then f ~ g = {Ø};
iii) f~Q f = A
then Q will be called a partition of A into proper functions. Notice that
for any c-system A there exists a partition Q of A into proper functions;
to wit, the partition of A into proper constants.

THEOREM (5.5): Let A be any c-system and let Q be a partition of A
into proper functions. Then (A, o) is isomorphic to (AQ, 0).

PROOF : Let r( ~ 0) E A. For any a(~ P) E A there exist unique elements
x, y E A such that Rx = Rr, Lx = La’; Ry = Rr, Ly = La. Moreover
there exist unique f, g ~ Q such that x E f, y ~ g. Define h: A ~ ç/Q by
h : a ~ ( f, g) and h(o) = Ø. Notice first that h(a’) = (g, f ). Next, let

a, b ~ A and let h(a) = ( fl, gl), h(b) = (J2, g2). There are two cases to
consider:

Case 1 : a 0 b = Ø. Then Lb ~ Ra. Suppose g2 = fl. Let Y21 x, be the
unique elements satisfying Rx, = Rr, Lx, = La’; Ry2 = Rr, Ly2 = Lb.
Then x 1 E f1, y2 E g2, Rx 1 = Ry2 imply (since x 1 and Y2 are consistent)
that x 1 Y2. Hence Ra = Lb. Thus a 03BF b ~ 0. This contradiction shows
that g2 ~ f1 whence h(a 0 b) = 0 = h(a) 0 h(b).

Case 2 : a 03BF b ~ Ø. Then Lb = Ra = La’ whence g2 = fl. Thus

However, L(a 0 b) = La and R(a 0 b) = Rb. Therefore h(a 03BF b) = ( f2, gl).
Thus h is a homomorphism.
Now, let f, g E Q. Since f, g are proper functions, there exist unique

elements x E f, y E g such that Rx = Rr, R y = Rr. Also, there exists
a unique element z E A such that Rz = Rx’, Lz = Ly. Then h(z) = ( f, g);
i.e., h is an epimorphism.

Finally, suppose h(a) = h(b) ~ 0. Then there exist x, y E A such that
Rx = Rr, Lx = La’ = Lb’ and Ry = Rr, Ly = La = Lb. Hence a = b.

COROLLARY (5.6): (Menger’s representation by constant functions)
[8; page 13]. Let (A, 0,’) be a c-system. Let Q = {ka|a ~ AI. Then
h: A ~ si Q given by h: a H (k’a, ka) if a =1= 0 and h(o) = 0 is an isomorphism.
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