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A-SYSTEMS*

R. Gorton

1. Introduction

The axiomatic study of the substitutive algebra of functions has its
roots in the works of Schonfinkel [16], Curry [2] and Menger [8].
In 1959, Menger [12] introduced a set of axioms designed to describe
the algebra of ordinary functions under addition, multiplication or
composition. During the 1960’s this work was continued, notably,
by Schweizer and Sklar [17, 18, 20, 21]. Their initial paper [17] discusses
a set of five axioms which, together, are equivalent to the six axioms
given by Menger [12]. Their later articles focus attention on the axiomatic
study of composition. The algebra of functions III culminates in two
representation theorems, one of which gives sufficient conditions for
a function to be represented as a union of minimal functions called
atoms [20]. The purpose of this paper is to axiomatically describe the
substitutive or additive behavior of atoms.

2. Preliminaries

An a-system is an ordered triple (4, ¢, ') such that:
Al. (4,-,) is an inverse semigroup with null element 0.
A2. Ifa,be Aand D #+ acbthenbob' =d ca.

ExaMPLE (2.1): Let A consist of all restrictions of the identity function
on the set S(|S| = 2). If “o” represents composition and, for any f €S,
f = f', then (4,-,') is an inverse semigroup (with null element )
violating axiom A2.

* Some of these results appeared in a thesis written by the author under the guidance of
Prof. A. Sklar.
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EXAMPLE (2.2): Let S be any non-empty set and let 4 = Sx S U {0}.
Define (a, b) > (c,d) = (c,b) if a = d; otherwise (a,b)o(c,d) = @. Then
(A4, 0,’) is an a-system where (a, by = (b, a).

ExaMmpLE (2.3): Let (G, +) be any group. Let 4 = G x G U {0}, where
(a,b) o (c,d) = (a,b+d) if a = c; otherwise (a, b) ° (¢, d) = . Also, for any
(a,b)e A, Qo (a,b) =0 = (a,b)oP. Then (A,0,’) is an a-system where
(a, b)Y = (a, —b).

ExAMPLE (2.4): Let (R, +, ) be any division ring. Let

A= {f:R—> R| for any xeR, f(x) # 0} U {6}

where 6: R —» R is given by 6(x) = 0 for all xe R. Define fog by:

(f °g)(x) = f(x)* g(x). Then (4, o, ") is an a-system where f'(x) = (f(x))~*
and 0 = 6.
In the sequel, (4, o,’) denotes an a-system.

LeMMA (2.5): If a€ A, then the following are equivalent:

(i)a=0.

(i) aca = 0.
(i) a’ = 0.
(iv)d oa = 0.

Lemma (2.6): If a,be A, O+ aob then (acb)c(aob)=>b'ob and
(@aeb)o(aob)y =a-d.

PrOOF:(aob) e(aeb) =b"cd cach =bobob ob = b"ob.Theother
identity is proved similarly.

Lemma (2.7): Let a(# 9), b(# 0)e A. Then either acbob =0 or
aobob’ = a. The latter case occurs if and only if a-b # 0.

Proor: If aobob’ # 0, then aob # @ whence bo b = a oa. Thus
aobob =acdoa=a
Dually, we have

LemMA (2.8): Let a(# 0), b(+ 0)e A. Then either d cacb =0 or
a oaob = b. The latter case occurs if and only if a-b # 0.

LemMa (29): If a(# 0), b(#+ 0)e A and bob' = d oa then a-b #* (.

PrOOF : Suppose acb = 0. Then a-bob" = () whence a = §.
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Lemma (2.10): If a,be A and O + b =a-b then a = bob'. Dually,
if9Q+b=>boathena=>b-b.

PROOF: ) # b = a~ b implies a’ - a = b - b’ whence (from Lemma 2.7)
DFbob =achob =a.

Foranyae A,let La =a-d,Ra=d -a.

THEOREM (2.11): (A,°,L,R) is a function system; i.e., (A,°,L,R)
satisfies:

1. (4, °) is a semigroup.

2. For all elements a€ A,
(a) LRa = Ra, RLa = La;
(b) Laca=a=a-Ra.

3. For all elements a,be A,
(a) L(ao b) = L(a~ Lb), R(a>b) = R(Ra-b);
(b) Lao Rb = Rbo La;
() Raob = boR(a-b)[21]

PRrOOF: See [21; theorem 23].

3. Categorical semigroups and Brandt semigroups

If a,b are elements of any function system then a & b means
= bo Ra[21].

THeOREM (3.1): In any a-system, “<” is trivial; i.e., a,be A, a< b
impliesa=b ora=0.

Proor:Ifa = bthena = boa' - a.If a + ( then, by Lemma 2.7,q = b.

CoOROLLARY (3.2): (4, ¢, L, R) is a categorical semigroup; i.e., (A, o, L, R)
possesses a zero element O satisfying RO = 0 and
1. (4, °) is a semigroup.
2. For all elements a€ A,
(a) LRa = Ra, RLa = La;
(b Laca = a = a-Ra.
3. Foralla,bin A,a~b # Qif andonlyif a # 0,b #+ Qand Ra = Lb[21].

ProOF: See [21; theorem 25].
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ExampLE (3.3): Let
C={f:R - R|dom f = R, f is constant, fix) = 0} U {P}.

For any f(#+ 0)eC, let Lf, Rf € C be defined by: Lf(x) = Rf(x) =0
for all xeR. Then (C, +,L,R) is a categorical semigroup violating
axiom Al.

LemMa (3.4): Let (C,o, L, R) be a categorical semigroup. If, for any
a € C there exists x € C such that xca = Ra, then a> x = La.

ProoF: Let xoa = Ra # 9. Then Rx = La and
acxoa=acRa=a+0

whence ao x # (). Hence Ra = Lx. Now, there exists ye C such that
yox = Rx. Thus Ry = Lx and Ly = Rx. Hence yox = La which
implies that yoxoca = Laca = a. Thus yoRa =y Ry =y = a.

Lemma (3.5): If (C,o,L,R) is a categorical semigroup such that for
any a € Cthereexistsa’ € C suchthat a’ - a = Rathen C is cancellative; i.e.,

O+achb=aoc implies b=c
and

D#boa=coa implies b=c.
PROOF:Q # boa = coaimplies Rb = La = Rc whence by Lemma 3.4,
b=boeRb=boLa=boacd =coacad =coLa=coRc=c.

THEOREM (3.6): Let (C, <, L, R) be a categorical semigroup. Then C is
an a-system if and only if for any ae C there exists a’' € C such that
a -a= Ra.

ProoF: Suppose that C is a categorical semigroup having the above
property. Then, for any aeC, a'caca'ca=doacRa=d-a By

cancelling, we get:
& g acdoa=a

and ) / /
deacad =d.
Notice that ' must be unique (by the cancellative property). Thus
(C,o,") is an inverse semigroup with null element 0. Let q,be C. If
@ #* aobthen Ra= Lb;ie,aca=>bob.
Conversely, let (C,o, L, R) be a categorical semigroup which is also
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an g-system. Let a(# @) e C. Then § # a = a o Ra and the result follows
from Lemma 2.10.

THEOREM (3.7): Let (A, o,’) be an a-system. If, for any two idempotents
a, b e A there exists x € A such that ac x o b + ( then A is a Brandt semi-
group and conversely, where a Brandt semigroup is defined to be a semigroup
(B, ) with zero element Q satisfying:
1.If a,b,ce B and, if ac = bc #+ 9 or ca = cb # Q) then a = b.
2.If a,b,ce B and if ab + 0 and bc + 0 then abc + 0.
3. For each a(+ Q) in B there exists a unique e € B such that ea = a,
a unique f € B such that af = a and a unique a’ € B such that d'a = f.
4. If e, f are non-zero idempotents of B, then there exists a € B such that

eaf # O[1].

Proor: Let (4, o,") be an a-system. Let a(# Q)€ A. Let e = a- a’ and
f =do-a Then eca=a = a- f Moreover, xoa = f implies x = a'
since A is cancellative.

Conversely, let (B, ) be a Brandt semigroup. Then B is an inverse
semigroup with null element @ [1; page 102]. Let @ # a b. Then there
exists e€ B such that ecaob = aob. Thus

e=aca =(acb)e(ach) =aobob od.
Hence

a=doaod =doaobobod.

Thus, dca=d cacbob’;ie, a=aobob'. But a =ao-a oa. Hence
doa=bob.

COROLLARY (3.8): Every Brandt semigroup is a categorical semigroup.
EXAMPLE (3.9): Let A = {0, a, h}. Define
aca=a; bob=b; achb=0=boa; a =a; b =bh.
Then (4, -,’) is an a-system which is not a Brandt semigroup.

4. Functions over A

Let a, b be distinct elements of (4, ¢,’). Then a and b are inconsistent
ifa’ ca=>"ob(cf [11; page 169)]).
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If a and b are distinct elements of 4 and a - Rb = b o Ra then either,
@ =ao-Rb or a =ao-Rb. In the former case a’ca # b’ b and in the
latter case a = b. In either case, a and b are consistent. Conversely,
let a and b be distinct consistent elements. Then a’' o a # b’ o b. Hence
aob'ob =aoRb=. Similarly, bo Ra = (. Thus we have proved:

LemMa (4.1): Let a,be A. Then a and b are consistent if and only if
aoRb = bo Ra[20].

LemMmA (4.2): For any a€ A, a and () are consistent.
PROOF: a°oR) = 0 = Qo Ra.
LemMa (4.3): For any a,be A, a-a’ and b b" are consistent.
ProoF: If (aoa’) o(aca’) = (bob') o(bob’) then
acd oacd =aod =bob obob =bob.

COROLLARY (4.4): If a,be A, thenaod,a o a, b ob, bob’ are pairwise
consistent.

If e f < A and a,be f implies that a and b are consistent then f
is a function over A. Let F denote the set of functions over 4. For any
f,g € F, define:

feg={acblac fbeg};
Lf={a-dlae f};
Rf ={d' oalae f}.

THEOREM (4.5):(F, ©) is a semigroup.

Proor: Let f,gcF, a,ce f, bdeg. Suppose that aob, cod are
inconsistent. Then acb # 0 % cod and (a°b) o(a>b) = (cod) o (c-d);
i, b’ ob = d od. But b and d are consistent whence b = d. Thus a # c.
Since a and ¢ are consistent, then a’'ca # ¢'oc. Thus @’ea = bo b’ and
dod = c oc whence da'oa=c oc. This contradiction shows that
f ogeF. It is obvious that “o” is associative.

THEOREM (4.6): (F, ©) contains an identity j.
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Proor: Let j = {acdae A}; obviously, jeF. Let ae f € F. Then
dca, acdej whence ac(dca)=ae foj Hence f < foj and
feiof

In the other direction, let ae f, bo b’ €. Then either acbo b’ = @ or
aobob =a. In either case, achob'e f; ie, foj< f Similarly,

jefsf

THEOREM (4.7): (F, o, L, R) is a function system.

ProOF:

(a) For any feF, LRf ={acd|acRf} ={bobob oblbe f} = Rf.
Similarly, RLf = Lf.

(b)For any feF, Lfo f ={acd obla,be f}. But acd’ ob=9 or
acd ob=b.Hence Lfo f < f Butifae fthenaoa caeLfo f
whence f < Lf o f. Similarly, f = foRf.

(c) Let f,geF, ac f,beg. Then

(aob)o(aob) =(aobob)o(@aobob’

whence L(f o g) = L(f o Lg). Similarly, R(f cg) = R(Rf - g).
(d) Let ae f, beg. Then

acd ob'ob=0eRgoLf

or
acd ob'ob=bob#0
whence a’ o b’ # () which implies bo a # (. Then
bob=0>boboacdeRg-Lf.
Consequently L f o« Rg = Rg o Lf. The reverse inclusion is similarly
established.
(¢) Letae f,beg. Either ad caocb =0egeoR(f - g) or
doacb=b=bobob=bo(acb)-(aeb)egeR(f °yg).
Hence Rfog < goR(f ~g). In the opposite direction, let ac f

b,ceg. Suppose co(aob)o(aob)#+ 0. Then co(ach) c(acb)=c
and b’ o b = ¢’ o c. Since b and c are consistent, b = ¢. Thus
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aoc # ) whence, by lemma 2.8, ¢c = a'ca-ce Rf og. Thus
geR(fo9)=Rf-g

THEOREM (4.8): If “<” denotes set inclusion (not the partial order of
section 3) then (F,<, €) is a function semigroup; i.e.,
1. F is partially ordered by “<”.
2. (F, o) is a semigroup with identity j.
3.(a) Foralla,beF,if a = bthen F contains an element j, < j such that
a=boj,.
(b) If j,(c j)eF, then forallaecF,a-j, Saandj,ca < a.
4. For every a€ F there exist La and Ra in F such that
(@) Laca=a=a-°Ra.
(b) L(a~b) < La, R(a°b) = Rb.
(c) If a < j then La < a and Ra < a[18].

Proor: Let figeF,f < g. If ae f then acd'oca=aego-Rf; ie,
f € g-Rf Conversely,if) + bea' caego Rf thenb'ob = a’ - a. Since
f & g then a and b are consistent whence a = b. Thus boed’ ca = a€ f.
Hence f < gimplies f = goRf.

Conversely, let a(+# 0)e f. Then there exist beg, ce f such that
a=boc oc. Hence a = b. Thus f = g if and only if f = go Rf. The
result now follows from [21; theorem 16].

5. Representations

Let S be any set. Then /¢ will denote the atomic semigroup on S;
ie., &/ consists of the empty set and all functions f:S — S such that
|dom f| = |ran f| = 1 where the semigroup operation is composition

[20].

THEOREM (5.1): Let (A,°,") be an a-system. Then (A, °) can be homo-
morphically embedded in (< ,, °).

Proor: Let f:A— o/, be defined by: f(a) = (Ra, La) for any
a(+0)eA and f@) =0. Let a,beA. If @+ La+ Rb+# 0, then
boa = 0. Hence f(boa) = 0. Also, f(b)o f(a) = 0. On the other hand,
if La = Rb # () then boa # (. Hence

f(boa) = (R(bea), L(bea)) = (Ra, Lb) = f(b)° f(a).

Thus f is a semigroup homomorphism.
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COROLLARY (5.2): If Ra = Rb, La = Lb imply a = b then (A, ) can
be monomorphically embedded in o .

Let (4, ,’) be an a-system. If, for any a(s 0), b(# @) € A there exists
a unique c€ A such that L¢c = La, Rc = Rb then A is a composition
system (c-system).

THEOREM (5.3): For any c-system (4, o,') there exists a set S such that
(A, ) is isomorphic to the atomic semigroup (<, °).

ProOF: Let S = {Ralae A}. Notice that La = RLae S for all a€ A.
By corollary 5.2, the mapping f defined in theorem 5.1 is a mono-
morphism. Let (Ra, Rb)e SxS. Then there exists ce A such that
Rc = Ra, L¢ = LRb, whence f(c) = (Ra, Rb).

Let k be a function over A. Then k is a constant if for every function
f over A, ko f = koRf [17; page 380]. If k is a constant and Rk = j
then k is a proper constant.

Leta, b e A. Then alLb means La = Lb. Obviously “I is an equivalence
relation on A. The L-equivalence class containing a will be denoted a;.

THEOREM (5.4): Let (A, °,") be a c-system. Then k is a proper constant
if and only if there exists a(# Q) € A such that k = a, U {0}.

PrOOF: Let k = a, U {@}. Let b(+# ), c(# P)e k. Then Lb = La = Lc.
Now if Rb = Rc, then, since A4 is a c-system, b = c. Thus b and ¢ are
consistent whence k is a function over A.

Next, let ¢ € A. Then there exists x € 4 such that Rx = R¢, Lx = La.
Thus x € k, whence Rk = j.

Now, let f be any function over A. Let xobeko f. If xo b # ( then
L(x o b) = Lx. Then there exists y €k such that x o b = y. Obviously,
x =yob whence xob=yob obekoRf; ie, ko f = koRf. In the
opposite direction, let @ # xo(b'ob)eko Rf. Then there exists ye 4
such that Ry = RLb, Ly = Lx;thus yob # (. Then R(yo b) = Rb = Rx
since xo b’ # Q. Since yo b and x are consistent, yob = x = xob'ob.
Hence ke Rf S ko f.

Conversely, let k be a proper constant and let a(s @) € A. Let
k, = a, U {p}. Then Rk, = jand kok, = ko Rk, = koj = k. Now, let
x,(#0), x,(+0)ek. Then there exist x,yek,,z,wek such that
zox =x, and woy = x, Thus Lx = Rz and Ly = Rw. However,
x,y€k,; ie., Lx = Ly. Hence Rz = Rw. Since z and w are consistent,
z=w. Thus zox = x,; zoy = x,. Therefore, Lx, = Lz = Lx,; ie,
x,Lx,. Since (4, °,’) is a c-system it follows that k = x,, U {@}.
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If Q is a collection of functions over A4 satisfying;
i) feQ implies Rf = j;
i) If fgeQand f # gthen f ng = {p};
i) (Jsepf = 4
then Q will be called a partition of A into proper functions. Notice that
for any c-system A there exists a partition Q of 4 into proper functions;
to wit, the partition of A into proper constants.

THEOREM (5.5): Let A be any c-system and let Q be a partition of A
into proper functions. Then (4, °) is isomorphic to (< y, °).

ProOF: Let r(+# 0) € A. For any a(+ 0) € A there exist unique elements
x,y€ A such that Rx = Rr, Lx = La’; Ry = Rr, Ly = La. Moreover
there exist unique f,ge€ Q such that xe f, yeg. Define h: 4 > o/, by
h:aw(f,g) and h(@) = 0. Notice first that h(a’) = (g, f). Next, let
a,be A and let h(a) = (f},9,), h(b) = (f,,g,). There are two cases to
consider:

Case 1: aob = (. Then Lb # Ra. Suppose g, = f;. Let y,, x; be the
unique elements satisfying Rx, = Rr, Lx, = La’; Ry, = Rr, Ly, = Lb.
Then x, € f,y,€49,, Rx, = Ry, imply (since x, and y, are consistent)
that x; = y,. Hence Ra = Lb. Thus a- b # §. This contradiction shows
that g, # f; whence h(a-b) = 0 = h(a) - h(b).

Case 2: acb# Q. Then Lb= Ra= La whence g, = f,. Thus

h(a) > h(b) = (fp gl)(fz’ gz) = (fz’ gl)'

However, L(acb) = La and R(a - b) = Rb. Therefore h(a-b) = (f,,9,).
Thus 4 is a homomorphism.

Now, let f,ge Q. Since f,g are proper functions, there exist unique
elements x€ f, yeg such that Rx = Rr, Ry = Rr. Also, there exists
a unique element z € A such that Rz = Rx', Lz = Ly. Then h(z) = (f, 9);
i.e., h is an epimorphism.

Finally, suppose h(a) = h(b) # 0. Then there exist x, ye A such that
Rx = Rr, Lx = La’ = Lb’ and Ry = Rr, Ly = La = Lb. Hence a = b.

For any a(# 9)€ 4, let k, = a, L {0}.
CorOLLARY (5.6): (Menger's representation by constant functions)

[8; page 13]. Let (A,0,") be a c-system. Let Q = {k,ae A}. Then
h:A — of ,givenby h:a v (k,, k) if a # @ and h(P) = @ is an isomorphism.
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