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A NUMERICAL CRITERION FOR THE
PERMISSIBILITY OF A BLOWING-UP

Balwant Singh

Introduction

Let @ be a noetherian local ring and p a proper ideal of @. The concept
of the permissibility of p in @ (more precisely, of Spec (¢/p) in Spec O
at the closed point) as a center for blowing-up was introduced by
Hironaka in his paper [3] on the resolution of singularities. If the center
of a blowing-up ¢ — (' is permissible in @ then the singularity of ¢’ is
no worse than that of 0. Here, as a measure of singularity, we may take
either the characters v*, t* defined by Hironaka in [3] in case 0 is given
as the quotient of a regular local ring, or the Hilbert functions of ¢ and ¢’
(See [1], [4], [6]). In this note we give a numerical criterion for the
permissibility of a blowing-up, i.e. of its center (Theorem 1) and study
the effect of an arbitrary blowing-up on the Hilbert function of a local
ring (Theorems 2 and 3). As a corollary to Theorem 1, we get yet another
criterion for the permissibility of a blowing-up (Corollary (1.4)). The
criterion in Theorem 1 leads to the definition of a numerical function
D, such that p is permissible in O if and only if D, = 0. (See Remark 2.)
A significance of this function D, is that it appears explicitly in a com-
parison between the Hilbert functions of ¢ and ¢, where 0 — (' is a
blowing-up of @ with center p. (See Theorems 2 and 3.) In Remark 3
below we indicate how the criterion in Theorem 1 compares with a
numerical criterion for normal flatness given by Bennett [1].

In order to state our results more precisely, we need some notation.
By a numerical function H we mean a map H:Z* - Z*. If H is a
numerical function, we get from H a sequence {H"},, of numerical
functions by successive ‘integration’ as follows: H”’ = H and, forr = 1,

HO%n) = }: HE= 1),
i=0
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If H,, H, are numerical functions, then by H, = H, we shall always
mean the total order inequality, i.e. H,(n) = H,(n) for every neZ*.

Let O be a noetherian local ring. For a proper ideal p of ¢ we define
a numerical function H by

Hp(n) = dim@/mpn/mpn,

where m is the maximal ideal of 0. This gives us a sequence {HY}, .,
of numerical functions. We write HY for H?, so that {HJ},., is the
usual sequence of the Hilbert functions of O. -

We denote by dim O the Krull dimension of ¢ and by emdim ¢ the
embedding dimension of 0, i.e. emdim O = HP(1).

Recall that a proper ideal p of O is said to be permissible in O (as a
center for a blowing-up) if the following two conditions are satisfied:

(i) regularity: O/p is regular
(i) normal flatness: O is normally flat along p, i.e. the graded (¢/p-algebra
gr(0) = @, p"/p" " is O/p-flat.

THEOREM 1: Let O be a noetherian local ring and p a proper ideal of 0.
Let d = dim O/p and e = emdim O/p. Then we have HY> < HY. Further,
the following three conditions are equivalent:

(1) p is permissible in O
(i) O/p is regular and HY = HY
(ili) HY = HY.

We prove this theorem in § 1.

ReMArk 1: For the implication (i) = (ii), cf. [3, Chapter II, Proposi-
tion 1].

REMARK 2: For a proper ideal p of 0, let us define D, = HY —HY,
where e = emdim ¢. Theorem 1 shows that D, is a numerical function,
and p is permissible in O if and only if D, = 0. We may therefore call
D, the permissibility defect of p. Another justification for the use of this
term is provided by Theorem 2, which states, roughly, that if O — ¢’
is a blowing-up of ¢ with center p, then HY’—H) = —D,, where J
is the residue transcendence degree of (¢ over 0. In the case when p is
permissible in O, the inequality HY”’ —HY) = 0 is already known [6].
One can thus say that under a blowing-up the singularity of ¢ can
become worse only to the extent that the blowing-up is non-permissible,
this non-permissibility being measured by the numerical function D,.
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REMARK 3: Bennett has given a numerical criterion for the permissi-
bility of p in @ in the case when (/p is regular [1, Theorem (3) and
0(2.1.2)]. He has shown that if @/p is regular of dimension d then p is
permissible in O if and only if H? = H{. Let us compare this criterion
with the one given in Theorem 1 above. Suppose that @ is excellent.
Then we have H“” < HY, where d = dim O/p. (See [1, Theorem (2)]
and [6, page 202]. ) In this case, therefore, the difference D, = HY - H“”
is a numerical function, and p is permissible in O if and only if D, = 0
However, the definition of this measure D, of the deviation of p from
being permissible requires, in the first place, that p be a prime ideal.
Even then it is apparently defined (i.e. is non-negative) only for @
excellent, it being not known whether the inequality Hg) < H ™ holds for
non-excellent 0. Moreover, in order that D, = 0 imply the permissibility
of p in ¢, we have to assume already that O/p is regular. Finally, D,
does not seem to intervene directly in a formula for the difference
HY—HY) as D, does. (Here O — ¢’ is a blowing-up as in Remark 2.)
It is interesting, however to note that if (9 is excellent and @/p is regular
of dimension d then we have

* (] (0) @)
*) HY < HY < H

and one of these inequalities is an equality if and only if the other is.
One may therefore ask: What is the relationship, in this case, between
D, = H—H{” and D, = Hy’—Hg?

ReEMARK 4: The inequalities (*) of Remark 3 yield another interesting
criterion for the permissibility of p in @. (See Corollary (1.4) in §1.)

REMARK 5: With the notation of Theorem 1, we do not, in general,
have the inequality HY?’ < H. Example: Let € be a non-regular Cohen-
Macaulay local ring of dimension 1 (e.g, O = k[[X, Y]J(Y*-X3),
where k is a field). Choose any non-zero divisor x in the maximal ideal
of 0,and let p = Ox. Thend = 0, H(n) = 1 for every n, but HO(1) = 2.

REMARK 6: With the notation of Theorem 1, the equality Hy” = HY
alone does not imply that p is permissible in ¢. Example: Let O be a
regular local ring of dimension 1. Let x be any non-zero element in the
square of the maximal ideal of @ and let p = x0.

We now proceed to state Theorems 2 and 3. Let O — @' be a blowing-up
of @ with center a proper ideal p of 0. Let e = emdim ¢/p. Choose
t,,...t, in the maximal ideal m of O such that m = p+Y ¢_,1,0. Let



18 B. Singh [4]

to€p be such that p0’ = ¢, ¢'. For such a choice of t =(t,,t,...,t,)
we define, for every i, 0 £ i < e, a sequence {a, /(n)},5, of ideals of ¢’
as follows:

i—1
a,n) = {fe0t,fem™ 1+ 3 1,0},
j=0

where m’ is the maximal ideal of @'. Clearly, a, (n) > m"+ ; })tl(O’

foreveryiandn. Let L, b 0 =i<ebethe numerical functions defined by

i—1

L, (n) = lengthya, (n)/(m™+ 3. £,0').
j=0

THEOREM 2: Let p be a proper ideal of a noetherian local ring O and let
e = emdim O/p. Let O — O’ be a blowing-up of O with center p and let 6
be the residue transcendence degree of (' over (. Then, for any choice of
t = (g t;,..t,) as above, we have

e
) _ (5) (l +5) _
H > Z D,z D,

In particular, if p is permissible in O, then

e
(0) _ [ (i+39)
Hy"—Hg' = ZL:,;' 2 0.

i=0

In the case when O — (' is residually rational, we can give a more
precise formula for the difference HY") — H{. As above, let 1, € p be such
that p@ = t,¢’. Then (' is obtained as a localization of the subring
{f/toln 2 0, f ep"} of O, . We define a sequence {b, (1)}, , of ideals of
O by

b, (n) = {fep"|f/them™ " +m0O'},

where m, m’ are the maximal ideals of O, ', respectively. Clearly,
b, (n) > mp" for every n. Let L, be the numerical function defined by

L, (n) = length, b, (n)/mp”".
THEOREM 3: Let the notation be as in Theorem 2. Assume, moreover,

that O — ' is residually rational. Then for any choice of t = (ty, t,,...t,)
as above, we have
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e
(0) 0) — 1@ (D) _
H@ _Hw' 'Lm+zlt,i Dv'
i=0

In particular, if p is permissible in O, then

e
(0) ) — (e i)
Hy'—Hy' = Lf0+ Z E:,i'

i=0

Theorems 2 and 3 are proved in § 2.

1. Proof of Theorem 1

(1.1) Let O be a noetherian local ring with maximal ideal m. For any
ideal p of @ we define

up) = dim@/mp/mp9

so that u(p) is the cardinality of a minimal set of generators of p. Note that,
if p is a proper ideal of 0, then u(p") = H{(n) for every n.
\
(1.2) Lemma:
(1) Let a, 1 < i <, be ideals of O such that u(} ,a,) = > u(a,). If S,
is a minimal set of generators of a,, then | );S; is a minimal set of generators
of Y..a;. In particular, for every j, | < j < r, we have

S;n(m(Y a)+ Y a)=90.
i it

(2) Let p, q be proper ideals of O and let a = p+4q. Let e = u(q). Then
HO < g@©

a — p

(3) With the notation of (2), suppose that H,”’ = HY. Then, for every
m,n = 0, we have

(a) pla®) = ("“_ 1)
e—1
(b) u(P™q") = pE™u@")
(© p@* ™) = u(@"* )+ pa"p).

Proor: (1) is immediate. To prove (2) and (3), we have only to observe
the following easily verified facts:

(i) pa”) < _Z e i) £ _Z H™ Hula).

i=0 i=0
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(i) (@) < ("“"1).
e—1

(iii) For any numerical function H = H® we have

oy " fite—1 i
H®n) = Z( o1 )H(o)(n i).

i=0

(1.3) LemMa : (Bennett). Let O be a noetherian local ring and p an ideal
of O such that O/p is regular. Let d = dim O/p. Then p is permissible in O
if and only if H? = Hg’:.

For a proof of this lemma, see [1, Theorem (3) and 0(2.1.2)].

Before coming to the proof of Theorem 1, we note the following
corollary to Theorem 1:

(1.4) COROLLARY : Suppose O is excellent' and O/p is regular. Then p
is permissible in O if and only if u(p") = u(@"0,) for every n = 0.

PrOOF: As mentioned in Remark 3 of the Introduction, we have
d 0 (d
Hg: <HP < Hp’.

(The second inequality follows from Theorem 1 and the first from
[1, Theorem (2)] and [6, page 202].) By Theorem 1, H? = HY if and
only if p is permissible in ¢. By Lemma (1.3), p is permissible in O if
and only if H“" = H?. Therefore, p is permissible in O if and only if
H“') = HY. Now, clearly, HY = HY if and only if H‘O) = H{”. This
proves the corollary, since ,u(pp") = ;0’(n) and p(p"0,) = “”(n)

PROOF OF THEOREM 1: Let m be the maximal ideal of @ and let k = O/m.
Since e = emdim O/p, there exists an ideal q of @ such that m = p+q
and p(q) = e. Therefore, the inequality HY’ < HY follows from Lemma

(1.2)(2).

! It was pointed out by W. Vogel that the proof of this corollary goes through also for
non-excellent 0. For it follows, from Lemma 1 of [A. Ljungstrém, ““An inequality between
Hilbert functions of certain prime ideals one of which is immediately included in the other”,
Preprint, University of Stockholm, 1975] that H® < H{® for arbitrary O if O/p is regu]ar
of dimension d. It was precisely for this mcquallfy that we assumed the excellence of .
For a more direct proof of this corollary, see [R. Achilles, P. Schenzel and W. Vogel,
“Einige Anwendungen der normalen Flachheit”, Preprint, Martin-Luther-Universitit,
1975].
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We now proceed to show that conditions (i), (i) and (iii) of Theorem 1
are equivalent.

(i) = (ii). Since p is permissible in @, we have d = e, and for every
n =0, p"/p"t! is O/p-flat, hence O/p-free. Therefore, we have

H{P(n) = dim,p"/mp"
= dim,p"/p" "' ®,,k
= rank,, p"/p"*!
= dim%/wpp’@p/p"“(ﬁp
= Hg:’)(n).

Thus H® = H g:}, so that HY) = Hg‘: = HY), the last equality by Lemma
(1.3).

(ii) = (iii). Since O/p is regular, we have d = e.

(iii) = (ii). We have only to show that O/p is regular. Choose
ty,...t,€msuch that their canonical images t,,...,t, in 0 = O/p form
a (necessarily minimal) set of generators of i = m/p. Let q = Y ¢_,£,0.
Then m = p+q and e = u(q). Therefore, the assumption HY = HY
implies, by Lemma (1.2)(3), that we have

) = ("“’_1)
e—1

n+1) —

*)
p(m 1@ )+ p(mp)
for every n = 0. Let S, = {¢*||a| = n}. (Here we have used the standard
notation: ¢* = t}'...t2 and |¢| = o, + ... +a, fora = (¢,,...,a,)€(Z "))
It follows from (*) and Lemma (1.2)(1) that the following two statements
are true for every n = 0.
(1), S, is a minimal set of generators of q".
(2), If T, is any minimal set of generators of m"p, then T, U S, is a
minimal set of generators of m"*1,

Suppose now that @/p is not regular. Then there exists re Z* and

a=(a,,...,a,)€(Z*) with |a| = r such that

#e Y PO+t
1Bl=r
Bta

This means that
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e Y xO+m*l4p.

xeS, — {t%}

We can therefore write t* = y+p with pe p and

ye Y xO+m™*L
xeS, — {t%}
If p#0, let seZ* be such that pe mp—m**!p. Then there exists a
minimal set T of generators of m®p such that pe T. If p = 0, we put
s = oo. Now consider the three cases s+1 <r, s+1 =rand s+1 > r.

Case (1). s+1 < r. Then p = *—ye m" = m** 2. This contradicts (2),,
since we may take T, = T, so that pe T,

Case (2). s+ 1 = r. In this case we have

*=y+pe Y xO+pO+m+2
xeSy — {t*}
which again contradicts (2), by taking T, = T.

r+1

Case (3). s+1 > r. In this case pe m*p < m"™*, so that we have

*=y+pe Y xO+m™*1,
xeS, — {t%}
which contradicts (2),_,.
This shows that @/p is regular and d = e, which proves (ii).
(ii) = (i). We prove this implication by induction on d. The case d = 0
is trivial. We shall now prove:
(A) The implication (ii) = (i) for d = 1.
(B) The inductive step from d—1 to d, assuming (A).
We first prove (B). Let 4 =1 and let t,,...,t;em be such that
=p+29 ,1,0. Let n=p+)9"11,0. Then m = n+t,0. Therefore
H“’) < H{", by Lemma (1.2)(2). Also H?’ < HY~", by Lemma (1.2)(2).
Therefore HY < HP < H?. Since HY? = HY, we get HY? = H\". Now
O/n is regular of dimension 1. Therefore, by (A), HY = H{" implies that
n is permissible in ¢. Hence

*) HY = HY

by Lemma (1.3). Thus Hg) = HY, which gives H{ — H@~ Y, This
implies that H(O’ = HY, 1’, since p(p"0,) < u(p”) for every n On the
other hand, by Lemma (1.2)(2), we have HY < H{g Y, since

d—1
n(pn = p(ﬁn—l- Z ti(pn

i=1
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Thus Hy) = H{, ». This implies, by induction hypothesis, that p0, is
permissible in O, since O, /p0, is regular of dimension d— 1. Therefore
H“’ D= H‘O) by Lemma (1.3). This gives H“” = Hy) = HY, by (*).
Therefore by Lemma (1.3), p is permissible in 0, and (B) is proved.

We now turn to the proof of (A). We are given that ¢/p is a discrete
valuation ring and HJ? = H{". We have to show that gr (0) is O/p-flat
or, equivalently, that p"/p"*! is O/p-free for every n = 0. Choose te m
such that its image ¢ in @/p is a uniformising parameter for O/p. It is
then enough to show that ¢ is a non-zero divisor in p"/p"*?! for every
n=0.

By the choice of ¢, we have m = p+t0. Therefore the equality
HY = H{" implies, by Lemma (1.2)3), that u(t™p") = pu(p") for all
m,n 2 0, so that u(m") = Y 7_ u(t'p" ™).

Suppose now that there exists n = 0 such that ¢ is a zero-divisor in
p"/p"* 1. Then there exists p e p"—p"*! such that tp e p"**. We consider
the two cases p ¢ mp” and p € mp™.

Case (1). p¢ mp". In this case p can be completed to a minimal set,
say S, of generators of p”. Then ¢S = {tx|xe S} is a minimal set of
generators of tp”, since u(tp") = u(p”), as noted above. But this is a
contradiction, by Lemma (1.2)(1), of the equality

n+1

,u(m'” 1) — Z y(tip"+ 1 —i)’

i=0

since tpetS np" L.

Case (2)* pemp”. Since mp" = (p+tO)p" = p"* ! +tp", we can write
p=4q,. +t° 'p, with ¢,,,ep""!, p,ep” and o, an integer = 2.
Since pé¢p"*', we may choose ¢, o, and p, to be such that
p,ep"—mp". Now tp =1q,,,+t°p, Put q,, , =1p, =tp—1iq,,,.
Then g,,, €p""'. Suppose g,,, emp"™! = p"*2+tp"*1. Then we can
write q,,, = q,,,—t"'p,,, With q,,,€p"*% o, =1 and p,,, ep"*'.
Now, if g, , ¢ p"*?, we may assume (by choosing g, , ,, %, p,, , Suitably)
that p, ., ep"" ' —mp"1 If ¢,,, €p"*? then we put ¢,,, = q,,,
P,+1 = 0ando, = a,+1. Wegetq,,, = t*p,+1*p,, . Proceeding thus,
we write

(**) qn+r+1 = taopn+talpn+1+ M +tarpn+r’

% The author wishes to express his thanks to the referee for pointing out a correction in
the proof of this case.
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n+r+1 n+i

whereq, ., . ,€P andforeveryi,0 < i < r,eitherp,,,ep"t'—mp
ando; =2 L or p,,; = 0 and a; = o, + 1. Now suppose we have obtained
d,+,+, for a given r = 0. For this r, let

a = inf{ag, 0, +1,..,0,+7r}
and let
J={jl0<j<r and @ = o;+j}.

Then J is not empty, a; = a—j for every j in J and from (**) we get

*okk — —-j nta+1
( ) qn+r+1 = zta ]pn+j(m0dm )‘
JjeJ
Now, since p,,  ep"*/—mp"*’ for every jeJ, we can complete p,. ;
to a minimal set of generators of p"*J. Therefore, since we have

nta

") = Y (et ),

i=0

we see by Lemma (1.2) that the set {t* /p, , ji€ J} can be completed to a
minimal set of generators of m"*% In particular, st A p L j is not in
m"***1 since J is non-empty. Therefore, by (***),q, ., , , isnotinm"+=*1,
Therefore, since q,,,,,, €p"* "', we conclude that n+r+1 < n+a+1,
so that r < a < «,.

This shows that the process of generating the g, ,,, cannot go on
indefinitely, i.e. we must eventually come to an r for which g, , ,, , is not
in mp"***!. For this r,q,,,,, can be completed to a minimal set of
generators of p"*"*! and hence of m"*"*! by Lemma (1.2), since by
hypothesis

n+r+1 .
ﬂ(mn+r+1) _ Z ”(tnpn+r+1—i).
i=0
Now if a > r+1 then (***) shows that g,,,.,em"* "2 which is a
contradiction. If & = r+1 then, by Lemma (1.2), the set

{qn+r+l} Y {ta_jpn+jlie J}

can be completed to a minimal set of generators of m"** This contra-
dicts (***).

Thus (A) is proved, and the proof of the theorem is complete.
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2. Proof of Theorems 2 and 3

(2.1) The proof of Theorems 2 and 3 is contained essentially in the
proof of the Main Theorem in [6]. What is needed is elaboration of
certain points. We do this in the proof below, referring frequently to [6].

(2.2) We have the following situation: p is a proper ideal of @, and
050 is a blowing-up of ¢ with center p. We have ¢ = emdim 0/p
and 6 = tr.deg, k', where k — Kk’ is the residue field extension induced by
h. We are given t = (to, t,,...,t,) with t,ep such that p0’ = t,0" and
t;em, 1 <i < e, such that m = p+)%_,1,0. The ideals a, (n) of @' and
b, (n) of @ and the numerical functions L, ,, 1 < i < e, and L, are defined
as in the Introduction. Let 0" = O0'/m(’.

With the notation of (2.2) we shall prove the following three lemmas:

(2.3) LEMMA:
HY = Herv— Z o,
(2.4) Lemma: If k = k' then HY = H))+ L, .
(2.5) Lemma: HY > H{ PO
Assume these three lemmas for the moment. Then we get an immediate
PRrOOF OF THEOREMS 2 AND 3: Since D, = HY)— H, we have
HY—HY = H9—H?®-D

=HY-HG P+ Yy 149D (Lemma (2.3))

i=0

Z L9 — (Lemma (2.5)).

This proves Theorem 2. Now, if k = k', then

e
HY—-HY = HO—Hg U+ Y IV, — D, (as above, since 6 = 0)

i=0

= ]_(‘12)4_ y 9.~ D, (Lemma (2.4)).
i=0

This proves Theorem 3.
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ProoF oF LEmMa (2.3): Since 0" = (0’/Zf=0ti(9’, the lemma follows
from [6, Theorem 1] and a straightforward induction on e.

PrOOF OF LEMMA (2.4): Let m” be the maximal ideal of ¢”'. It is enough
to show that there exists an exact sequence

*) 0 = by (m)/mp" > p"/mp" S 0" /w1 - 0
of k-vector spaces. For we have
HOn) = dim, p"/mp",  HM(n) = dim, 0"/m""*!
and
L, (n) = length, b, (n)/mp" = dim, b, (n)/mp".

To show the existence of (*) we have only to define ¢ suitably. Since
p0’ =t,0', we can identify ¢’ with a localization of the subring
{f/toln = 0, fep"} of O, . Define y:p" — O” by Y(f) = n(f/t;), where
n: 0" — " is the canonical homomorphism. Then ¢ induces a k-homo-
morphism : p"/mp"” — (0. We define ¢ to be the composite of ¥ and
the canonical homomorphism ¢ — O@”/m""* 1 1t was proved in [6, (3.3),
Proof of Lemma 2] that ¢ is surjective if k = k'. Also, it is clear from the
definition of b, (n) that ker ¢ = b, (n)/mp". Thus (*) is exact and the
lemma is proved.

PrROOF OF LEMMA (2.5): By Lemma (2.4), we already have the
inequality HY” > H{.*® in the case k = k'. The inequality in the general
case can now be proved by a standard inductive procedure used in [1],
[4] and [6]. What we do is the following: Choose an element a € k' —k.
If 6 = 1, we assume that « is transcendantal. If 6 = 0, we assume that
o is either separable or purely inseparable. Let f(Z)ek[Z] be the
minimal monic polynomial of « over k. (If « is transcendental, we take
f(Z) = 0.) Let f(Z)e O[Z] be a monic lift of f(Z) such that, for every
i = 0, if the coefficient of Z* in f(Z) is O then the coefficient of Z* in f(Z)
is also 0. Let @ be the localization of 0[Z]/f(Z)0[ Z] at the prime ideal
n = (m[Z]+ f(Z)0[Z])/f(Z2)0[ Z], where m is the maximal ideal of @.
Let 5: © — 0 be the canonical homomorphism. Let a be a lift of « to ¢’
and let 0" be the localization of O'[Z]/f(Z)0'[Z] at the maximal ideal

W = m[Z]+(Z-a0[Z]) f(2)0Z],
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where m’ is the maximal ideal of ¢'. Let #': ' - &' be the canonical
homomorphism. Then there exists a commutative diagram

h ’
—_—

N ———Q
N —

B
E—

such that

(i) k is a blowing-up of @ with center § = p;

(ii) the residue field extension induced by £ is the k-inclusion k() — k.
(See [6,(4.3),(4.6)]) Let § = tr.deg,, k. If =1, then §=6—1. If
0 =0, then [k": k(x)] < [k’ k Therefore, by an obvious induction, we
may assume that Hy O > H;. 8% where@” = @' /i, it being the maximal
ideal of @. Now, in order to complete the proof of the lemma, it is clearly
enough to prove the following three statements:

(1) HY = H.

(2)H@’>H<°> if §=6=0.

3) Hz‘” HY if §=06-1.

ProOF OF (1): Let k = k(«) be the residue field of @. For every n = 0,
we have H( n) = dimy, §" Rsk = dim; p” ®, k, since, O being O-flat,
we have p" ~ p" ®, 0. Now p" ®, k ~ (p" ®, k) ®, k. Therefore,

dimg p” @ ,k = dim, p" ®,k = H(n).

PROOF OF (2) AND (3): Let m” be the maximal ideal of (. Then
0" = 00 = 0/m0 = (0'[Z]/f(Z2)0"[Z]),» where

' = '[Z]+(Z - a0 [Z)f(2)0"[Z].

Now, if § = §—1, then « is transcendental and f(Z) = 0. Therefore the
equality H5) = HY) is clear in this case. This proves (3). If 6 = 0 and «
is separable then f(Z) being a separable polynomial, 0" — @ is etale
so that in this case we have, in fact, Hy, = H“’) Now suppose § =
and « is purely inseparable. Then fi (Z) —pB, where q is a power
of char k and B = a?€ k. This implies that f (Z) = Z%—b, where be 0
is some lift of B. Let b be the canonical image of b in O”. Since
0"[Z]/(Z2*-Db)0"[ Z] is already a local ring, we have

7" = 0'[Z)(2*~B)"[Z].
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Let a be the canonical image of a in 0" and let t = b—a“. Then te m".
Let Y = Z—a. Then 0" = 0"[Y]/(Y?—t)0"[Y]. Now, the inequality
HS) = HY follows from [6, Lemma (4.5)]. This proves (2).

REFERENCES

[1] BeNNET, B. M.: On the characteristic functions of a local ring. Ann. of Math. 91
(1970) 25-87.

[2] GROTHENDIECK, A.: Eléments de géométrie algébrique. Publications Mathématiques
(1960).

[3] HiroNAKA, H.: Resolution of singularities, Ann. of Math. 79 (1964) 109-326.

[4] HiroNAkA, H.: Certain numerical characters of singularities. J. Math. Kyoto Univ.
10-1 (1970) 151-187.

[5] NaGaTa, M.: Local Rings, Interscience, 1962.

[6] SINGH, B.: Effect of a permissible blowing-up on the local Hilbert functions. Inventiones
math. 26 (1974) 201-212.

(Oblatum 20-XII-1974 & 6-1-1976) School of Mathematics
Tata Institute of Fundamental Research
Colaba, Bombay 400005



