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SYMMETRIC BASES IN MINKOWSKI SPACES
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Noordhoff International Publishing
Printed in the Netherlands

An analog of a well-known property of symmetric bases in infinite
dimensional Banach spaces is established for finite dimensional spaces.
It is shown that if a finite dimensional space E has a basis with the

property that each permutation of indices naturally induces an iso-
morphism of norm at most À, then E has a (possibly different)
903BB-unconditional basis. Restated in terms of symmetry parameters this
answers a question posed by Gordon [2], which is implicit in the paper
of Gurarii, Kadec and Macaev [4]. Some examples are given to show
the non-isometric nature of the result.

Let B = (bJieI be a basic sequence (finite or countably infinite) in a
normed space E. For 03C0 a permutation of I with 03C0(i) ~ i only finitely
often, g03C0 is the isomorphism of E defined by g03C0(bi) = b03C0(i), i8I; and for

(8JieI a sequence of scalars with 18il = 1 for all i03B5I and 8i =1= 1 only finitely
often, ge is the operator defined by gibJ = 8ibi. Three symmetry param-
eters of B are defined as follows:

the unconditional basis constant of B is x(B) = sup03B5~g~03B5;
the diagonal symmetry constant of B is ô(B) = sup03C0~g03C0~;

and the total symmetry constant of B is t(B) = sup03B5,03C0~g03C0g03B5~.
Clearly x(B) ~ t(B) and 03B4(B) ~ t(B) for every basis B, and it is known

that x(B) ~ 203B203B4(B)2, where fl is the basis constant of B (cf. [7]). But
also observe that no inequalities of the form x(B) ~ f(03B4(B)) or

03B4(B) ~ f(x(B)) are valid for all bases, where f indicates a real function
independent of the particular basis. A simple sequence of examples
showing that the first relation cannot hold may be given as follows.
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For n odd let B be the unit vector basis of Rn considered with the norm

~x~ = max |x, 03B5&#x3E;|, where the maximum is taken over all n-tuples
e = (03B51, 03B52,..., 8n) of signs with 03A3i~n03B5i = 1. Then 03B4(B) = 1 and x(B) = n.
For p any one of the parameters x, c5 or t define the corresponding

symmetry parameter of E by p(E) = infb p(B), with the infimum taken
over all bases for E.

The Banach Mazur distance between isomorphic spaces E and F is
defined as d(E, F) = inf ~u~~u-1~, the infimum being taken over all

isomorphisms u between E and F. It is immediate that each of the three
symmetry parameters of E defined above is continuous in the sense that

p(E) ~ d(E, F)p(F) holds for all E and F.

Although the diagonal and total symmetry constants of a particular
basis in a finite dimensional space may behave quite differently, the
diagonal and total symmetry constants of the space itself are equivalent.
More precisely,

THEOREM 1: The relations 03B4(E) ~ t(E) ~ 903B4(E) hold in every finite
dimensional space E.

The first inequality is obvious. To prove the second it is convenient
to first consider the case in which E has a basis B = (bi)i~n with 03B4(B) = 1.
The coefficient functionals of the basis are denoted by (b’i)i~n, and m is
the greatest integer satisfying 2m ~ n. The group of all permutations of
{1, 2, ..., kl is written Sk. The proof of the special case requires two
lemmata, the first of which is given without proof.

LEMMA 1 : Let wl, W2’ ..., wm and vl’ V2, ..., vm be two finite sequences
of non-negative reals with vi ~ vi+1 for 1 ~ i  m. For 1 ~ k ~ m set

U2k = u2k-1 = vk, and un = 0 if n is odd. Then

LEMMA 2 : Let 11 be any norm on E for which b(B c (E, | |)) = 1. T hen
(a) q = n-1(03A3i~nb’i) (8) (03A3k~nbk) is a norm one projection,
(b) p = 2-1 03A3k~m(b’2k- b’2k-1) (D (b2k - b2k -1 ) is a norm one projection,
(c) 1 E - q = (n-1)m-1(n!)-103A3n~Sng-103C0pg03C0, and
(d) t((b2k - b2k-1)k~m ~ (E, 1 |)) = 1.

PROOF OF LEMMA 2 : Part (a) follows from the equality q = (n!)-103A303C0g03C0,
and (b) is true since p = 2-1(1- g,), where T E Sn interchanges 2k with
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2k -1 for each k = 1, 2,..., m.
To verify (c) write w = (n!)-103A303C0g-103C0pg03C0. Since w commutes with each

g03C0, w = s1E+tq for some scalars s and t. Write H for the kernel of q.
Then

and pIH is a projection onto an m dimensional subspace of H, so

Also

so that s = - t = m(n-1)-1.
Finally, given signs b1, b2, ..., bm and 03C4 ~ Sm let 03C0 ~ Sn be the permutation

which maps {2k, 2k-1} onto (203C4(k), 203C4(k)-1}, 1 ~ k ~ m, and which
satisfies 03C0(2k) = 203C4(k) if 03B4k = 1, n(2k) = 203C4(k) - 1 if bk = -1. For each
k = 1, 2,..., m, bk(b2T(k) - b2T(k)-1) = g03C0(b2k - b2k-l)’ which proves (d).

PROOF oF THEOREM 1: Assume b(B) = 1 and let (( )) be the norm on
E defined by 

where ~ ~ is the given norm on E and the maximum is over all 03C0 ~ Sn
and n-tuples of signs 8. Let F denote E under (( )). Notice that each
operator gEgn is an isometry of F, and hence t(F) = 03B4(B c F) = 1, so the
assumptions of Lemma 2 are satisfied by the basis B in both norms,
(( )) and 11 11.
The first claim is that ((x)) = llxll for all x in [b2k-b2k-1]k~m, the span

of the vectors b2k-b2k-1. The inequality ((x)) ~ Ilxll is immediate,
and for the other direction it is enough, by Lemma 2(d), to consider
vectors of the form x = 03A3k~mak(b2k-b2k-1) with |ak| ~ |ak+1| for

1 ~ k  m. For 8 an n-tuple of signs and 03C0 ~ Sn, choose x’ E E’ so that
Ilx’lI = 1 and
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Applying Lemma 1 with Vk = lakl and wk = |b2k-b2k-1,x’&#x3E;| shows that

~pg03B5g-103C0~ ~ maxTesm L |a-103C4(k)~b2k-b2k-1,x’&#x3E;|
k s m

the last by part (d) of Lemma 2.
We next assert that the inequalities

hold for all x E E. For the first, applying Lemma 2 with both ~ ~ and
(( )) yields

and the other inequality follows by interchanging the rôles of ~ ~ and
(( )).
Now let be the constant satisfying

and define u : F ~ E by u = 1E+(À-1)q. Since «q(x») = ~q(x)~03BB for all
x ~ E, ~u(x)~ 1 ~ ~1-q)(x)~+((q(x))) ~ 3((x)) by the preceeding paragraph
and Lemma 2, and hence ~u~ ~ 3. But u- 1 = 1E+(03BB-1-1)q so the same
proof gives ((u-1(x))) ~ 3~x~ and thus d(E, F) ~ 9. Then

More generally for B c E any basis let H be E with the norm

Ixl = max03C0 IIgTt(x)ll. Since 03B4(B c H) = 1 and d(E, H) ~ 03B4(B) the special
case shows that t(E) ~ d(E, H)t(H) ~ 9Ô(B).Taking the infimum over all
possible bases for E completes the proof of the theorem.
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REMARK 1: In [4] Gurarii, Kadec and Macaev define the symmetry
parameter a of a finite dimensional space E by a(E) = infB x(B)03B4(B).
The theorem implies that 03B4(E) ~ 03B1(E) ~ 9ô(E)’, answering a question
raised by Gordon [2] and by Lewis [5].

REMARK 2: Let E be a Banach space with a diagonally symmetric basis
B = (bi)i~1. Then for any 8 &#x3E; 0 and any finite dimensional F c E there

is finite dimensional W with F c W c E and t(W) ~ (9 +8)b(B). This
follows from a routine pertubation argument and the fact that

t([b1, b2, ..., bn]) ~ 9b(B) for all n. Thus, although the unconditional
basis constant of B depends on the basis constant of B, the local
unconditional structure of E depends only on ô(B).

Following [1] define the asymmetry constant of a finite dimensional
space E by

with the infimum taken over all compact groups G of isomorphisms of E
which have the property that only scalar multiples of the identity
commute with the elements of G.

It is clear that s(E) ~ t(E), so the following theorem strongly indicates
the non-isometric nature of the relationship between 03B4(E) and t(E).

THEOREM 2: There is a sequence (En)n~5 of Minkowski spaces with
dim En = n, b(En) = 1 and lim infn s(En) ~ (2-1 + 2-1 2)1 2.

PROOF : Let ei e ln+1 and e’i e ln+11 be the unit vectors, 1 ~ 03BB ~ n and

En c ln+1~ be the kernel of 03A3i~ne’i+03BBe’n+1 (a sequence of values for À
will be specified later). The basis bi = ei-03BB-1en+1, 1 ~ i ~ n, has

diagonal symmetry constant one so b(En) = 1. To estimate s(En) from
below we use the inequality [1]

with 03B3~(En) and 03C01(En) denoting, respectively, the projection constant
of En and the 1-absolutely summing norm [6] of the identity on En.
Write G for the group of isometries of ln+1 of form g(ei) = en(i) for some
03C0 ~ Sn+1 with 03C0(n+1) = n+1.

If w is a projection of ln+1~ onto En with llwll = 03B3~(En), then

u = IGI-1 03A3g~Gg-1wg is also a projection onto En with norm y 00 (En).
Since u commutes with each element of G
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for some scalars s and t with tn+03BBs = trace (1- u) = 1. Thus

To estimate 03C01(En) from below, there is by Pietsch’s Theorem [6]
a measure J1 on 03A9 = {e’i|En: 1 ~ i ~ n+1} such that ~03BC~ = nl(E n) and
~x~ I ~ 03BC(|x,·&#x3E;|) for all x E En. Let v be a measure on Sz given by
v(f) = |G|-1 03A3g~G J1(fog), so that 1 lvl = 03C01(En), 1 Ixl ~ v(l(x, ·&#x3E;|) for

x E En and v( f ) = v(fog) for all f E C(03A9) and g E G. The last implies that
s = v(b’i}) is independent of i, 1 ~ i ~ n. Setting t = v({b’n+ 1}) gives
scalars s and t satisfying 03C01(En) = sn + t and

Substituting e1-03BB-1en+1 and e 1- e2 in the last inequality shows that
s+t03BB-1 ~ 1 and 2s ~ 1, so that

NowvarYÀwithnbytakingÀn = [2n(n-1)]1 2-n for n ~ 5. Combining
inequalities yields the desired lower estimate.

REMARK 3: As is observed above every Minkowski space satisfies

x(E) ~ t(E) and s(E) ~ t(E). Some other possible relations between the
three parameters x, t and s are known to be false. The space An = ln1 ~ ln2
has unconditional basis constant one but s(An) and t(An) behave asymp-
totically like n1 4 [1], and the tensor product Bn = l2 Q l2 has asymmetry
constant one but x(Bn) and t(Bn) both act asymptotically like nt [3].
Such examples suggest the following problem. Is there a real function
f of two variables such that t(E) ~ f (x(E), s(E)) for all finite dimensional
E?

The answer to this problem is negative as is shown by the following
example due to J. Lindenstrauss.

EXAMPLE: Let
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where each Enk is isometric to an n2 dimensional Hilbert space. Then

s(En) = x(En) = 1 but t(En) ~n~~ 00. The first two statements are clear
so we will prove only the last one. Let us start with the observation that
En is isometric to a subspace of L4[0,1].

LEMMA 1: Let B = (bi)i~n be a normalized basic sequence in L4[0,1]
with t(B) = a. T hen span {bi}i~n is a-isomorphic to a subspace of
ln2 ~ 4 ln4.

PROOF : The expression

is a-equivalent to

where 8 = (8J? = 1 ranges over all 2n choices of signs and 6 over all n !
permutations of {1,2,..., n}. This latter sum is of the form

for suitable positive a and c.

This Lemma follows immediately from Corollary 3.1 of [8]. Using those
two Lemmas we will estimate t(En). Suppose t(En) ~ C for n = 1, 2, 3, ...
then En embeds uniformly into ln32 + ln34. Denote

where 9 is an isomorphic embedding from En into ln32 E9 ln34 and P is a
projection from ln32 ~ ln34 onto ln32 annihilating ln34. Let
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Then for some 8k’ 18kl = 1

But this implies that for n big enough at least one Pk must be very small.
Then an easy perturbation argument implies that ln34 contains uniformly
l22 which contradicts Lemma 2.
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