Compositio Mathematica

J. S. RICHARDSON

Primitive idempotents and the socle in group rings of periodic abelian groups

Compositio Mathematica, tome 32, n 2 (1976), p. 203-223
http://www.numdam.org/item?id=CM_1976__32_2_203_0
© Foundation Compositio Mathematica, 1976, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

PRIMITIVE IDEMPOTENTS AND THE SOCLE IN GROUP RINGS OF PERIODIC ABELIAN GROUPS

J. S. Richardson

Abstract

Let K be a field and G a periodic abelian group containing no elements of order p if char $K=p>0$. We establish necessary and sufficient conditions for the group ring $K G$ to contain primitive idempotents. We also characterize the socle of $K G$, and show that when the socle is non-zero the ascending socular series reaches $K G$ after a finite number of steps.

1. Introduction

Let K be a field and G a periodic abelian group containing no elements of order p if char $K=p>0$. We shall investigate the circumstances under which the group ring $K G$ contains primitive idempotents. We find (Lemma 3.1 and Theorem 3.4) that the following three conditions are necessary and sufficient:
(a) G is almost locally cyclic (i.e. has a locally cyclic subgroup of finite index);
(b) G satisfies the minimum condition on subgroups; and
(c) $|k(G) \cap K: k|<\infty$, where k is the prime field of K, and $k(G)$ is a certain algebraic extension of k, to be defined in Section 2.

Note that (a) and (b) hold if and only if G has the form

$$
G \cong F \times C_{p_{1}^{\infty}} \times \ldots \times C_{p_{m}^{\infty}},
$$

where F is a finite abelian group and the $C_{p_{i}^{\infty}}$ are Prüfer p_{i}-groups for distinct primes p_{i}. To foreshadow the significance of (c), we remark that (c) always holds if G is finite or K is a finite extension of k, but if K is algebraically closed then (c) holds only if G is finite.

For groups G satisfying (a) and (b), we consider the connection between primitive idempotents in $K G$ and irreducible $K G$-modules. When (c) holds, there is a one-to-one onto correspondence between primitive idempotents in $K G$ and isomorphism classes of irreducible $K G$-modules with finite centralizer (i.e. finite kernel in G); moreover there are only finitely many non-isomorphic such modules having any fixed finite subgroup of G as centralizer (Theorem 3.4). But if (c) fails to hold the situation is quite different: there are no primitive idempotents in $K G$, but given any finite subgroup C of G such that G / C is locally cyclic, there exist $2^{N_{0}}$ non-isomorphic irreducible $K G$-modules with centralizer C (Theorem 3.3).

In Section 4 we characterize the socle of $K G$: it is zero if (c) fails, and otherwise it is the intersection of certain maximal ideals of $K G$ (Theorem 4.2). When (a), (b) and (c) hold we find that the ascending socular series of $K G$ reaches $K G$ after a finite number of steps, i.e. that $K G$ has a finite series with completely reducible factors. The number of steps is one plus the number of primes involved in the maximal divisible subgroup of G (Theorem 4.3).

When G is a locally cyclic group with Min, it is convenient to consider a condition equivalent both to (c) and to the existence of primitive idempotents in $K G$: namely, the existence of K-inductive subgroups in G. We call a finite subgroup H of $G K$-inductive if every irreducible KH module faithful for H remains irreducible when induced up to G. It is with the study of K-inductive subgroups that we commence.

Special cases of some of the results have been obtained in papers of Hartley [2], Berman [1], and Müller [4]; more detailed references will be given in the sequel. The author is deeply indebted to Dr Brian Hartley for his aid and encouragement in the writing of this paper.

2. K-Inductive subgroups

Let G be a periodic abelian group, $\pi(G)$ the set of primes p such that G has elements of order p, and K a field with char $K \notin \pi(G)$. Let $K G$ be the group ring of G over K. Let \bar{K} be an algebraic closure of K, and \bar{K}^{*} its multiplicative group. We denote by $K(G)$ the K-subalgebra of \bar{K} generated by all images of homomorphisms $G \rightarrow \bar{K}^{*} ; K(G)$ is in fact a subfield of \bar{K}. Since the torsion subgroup of \bar{K}^{*} is a direct product of Prüfer groups, one for each prime not equal to char K, if G is locally cyclic then \bar{K}^{*} has exactly one subgroup isomorphic to G; the elements of this subgroup generate $K(G)$ as a K-algebra, for any quotient of G is isomorphic (albeit unnaturally) to a subgroup of C.

Lemma (2.1): Let H be a finite cyclic group and K a field with char $K \notin \pi(H)$. Then there exist irreducible $K H$-modules faithful for H, and all such modules have dimension $\mid K(H)$: $K \mid$ over K.

Proof: $K(H)^{*}$ has a unique subgroup isomorphic to H, so we may choose a monomorphism $\theta: H \rightarrow K(H)^{*}$. Then $K(H)$ becomes a $K H$ module with H-action given by

$$
v \cdot h=v h^{\theta}, \quad v \in K(H), h \in H .
$$

If $0 \neq v \in K(H)$ then $v \cdot K H=v K(H)=K(H)$, so $K(H)$ is an irreducible $K H$-module; it is faithful for H as θ is one-to-one.

Let V be any irreducible $K H$-module faithful for H. Then V is isomorphic to $K H / M$ for some maximal ideal M of $K H$. Now $K H / M$ is a field, containing (since V is faithful) a multiplicative subgroup isomorphic to H which generates it over K. It follows that $K H / M$ is algebraic over K, and thence isomorphic to the field $K(H)$. Thus

$$
\operatorname{dim}_{K} V=\operatorname{dim}_{K} K H / M=|K(H): K|,
$$

completing the proof.
If G is a periodic abelian group, we will denote by $\Omega(G)$ the subgroup generated by all elements of prime order in G. This subgroup is finite if and only if G satisfies Min, the minimum condition on subgroups. If K is a field and V a $K G$-module, we write

$$
C_{G}(V)=\{g \in G: v g=v \text { for all } v \in V\} .
$$

Lemma (2.2): Let G be a periodic abelian group, H a subgroup of G containing $\Omega(G)$, and K a field with char $K \notin \pi(G)$. Let V be an irreducible KH-module faithful for H, and W a non-zero submodule of the induced module $V^{G}=V \otimes_{K H} K G$. Then W is faithful for G.

Proof: Since G is abelian, the restriction $\left.V^{G}\right|_{H}$ of V^{G} to H is a direct sum of copies of V. As V is irreducible, W_{H} is also a direct sum of copies of V. Suppose $1 \neq g \in C_{G}(W)$. There exists an integer n such that $1 \neq g^{n} \in \Omega(G) \leqq H$. But then $1 \neq g^{n} \in C_{H}\left(W_{H}\right)=C_{H}(V)$, a contradiction as V is faithful for H. Hence W is faithful for G.

Let K be a field and G a locally cyclic group with Min such that char $K \notin \pi(G)$. A finite subgroup H of G will be called K-inductive in G if whenever V is an irreducible KH -module faithful for H, the induced module V^{G} is an irreducible $K G$-module.

Lemma (2.3): A finite subgroup H of G is K-inductive if and only if the following two conditions are satisfied:
(a) H contains $\Omega(G)$;
(b) whenever L is a finite subgroup of G containing H, we have

$$
|K(L): K(H)|=|L: H|
$$

Proof: Suppose H is K-inductive in G. By Lemma 2.1 there exists an irreducible $K H$-module V faithful for H; then V^{G} is irreducible.
(a) Suppose $H \not \geqq \Omega(G)$; then there exists a finite non-trivial subgroup L of G with $H L=H \times L$. Now $V^{H \times L}$ is reducible: indeed

$$
\left\{\sum_{x \in L} v \otimes x: v \in V\right\}
$$

is a proper submodule. A fortiori V^{G} is reducible, a contradiction. So $H \geqq \Omega(G)$.
(b) Let L be a finite subgroup of G containing H. Then V^{L} like V^{G} is irreducible; by (a) and Lemma $2.2 V^{L}$ is faithful for L. Hence using Lemma 2.1,

$$
\begin{aligned}
|K(L): K(H)| & =|K(L): K| /|K(H): K| \\
& =\operatorname{dim}_{K} V^{L} / \operatorname{dim}_{K} V \\
& =|L: H|,
\end{aligned}
$$

since $V^{L}=V \otimes_{K H} K L$.
Now suppose (a) and (b) hold. We may express G as the union of a chain

$$
H=H_{0} \leqq H_{1} \leqq H_{2} \leqq \ldots \leqq G
$$

of finite subgroups. Let V be any irreducible KH -module faithful for H. By (a) and Lemma 2.2, any irreducible submodule of $V^{H_{i}}$ is faithful for H_{i}, so has dimension $\mid K\left(H_{i}\right)$: $K \mid$ by Lemma 2.1. But by (b) and Lemma 2.1,

$$
\begin{aligned}
\left|K\left(H_{i}\right): K\right| & =\left|K\left(H_{i}\right): K(H)\right||K(H): K| \\
& =\left|H_{i}: H\right| \operatorname{dim}_{K} V \\
& =\operatorname{dim}_{K} V^{H_{i}} .
\end{aligned}
$$

Hence $V^{H_{i}}$ is itself irreducible. Now V^{G} may be regarded as the union of the $V^{H_{i}}$, so is also irreducible. Thus H is K-inductive in G.

Corollary (2.4): A finite subgroup H of G is K-inductive if and only if there exists an irreducible $K H$-module V faithful for H such that V^{G} is irreducible.

Proof: If such a V exists then by the first half of the proof of Lemma 2.3 H satisfies (a) and (b); then by the second half H is K-inductive. The converse follows from Lemma 2.1.

Note also that if $H \leqq L \leqq G$ and L is finite then in any case we have

$$
|K(L): K(H)| \leqq|L: H| .
$$

For if $m=|L: H|$ and the subgroup of $K(L)^{*}$ isomorphic to L is generated by ξ, then $\xi^{m} \in K(H)$, so the polynomial $f(X)=X^{m}-\xi^{m}$ has degree m over $K(H)$ and ξ as a root. Hence $|K(L): K(H)|=|K(\xi): K(H)| \leqq m$.

Lemma (2.5): Let F and K be subfields of some field. Then

$$
|K F: F| \leqq|K: K \cap F| .
$$

(Here the ring KF may or may not be a field.)

Proof: Any basis of K over $K \cap F$ also spans $K F$ over F.

Theorem (2.6): Let G be a locally cyclic group with Min, and K a field with char $K \notin \pi(G)$. If there exists any K-inductive subgroup in G, then there exists a unique minimal K-inductive subgroup in G.

Proof: Since K-inductive subgroups are finite, it is sufficient to show that if H_{1} and H_{2} are K-inductive in G, then so is $H_{1} \cap H_{2}$. But let H_{1} be K-inductive, and H_{2} any subgroup of G. Then

$$
\Omega\left(H_{2}\right) \leqq \Omega(G) \cap H_{2} \leqq H_{1} \cap H_{2} .
$$

Moreover, if L is a finite subgroup of H_{2} containing $H_{1} \cap H_{2}$, then $H_{1} \cap H_{2}=H_{1} \cap L$, so

$$
\begin{aligned}
\left|K(L): K\left(H_{1} \cap H_{2}\right)\right| & =\left|K(L): K\left(H_{1} \cap L\right)\right| \\
& \geqq\left|K(L): K\left(H_{1}\right) \cap K(L)\right| \\
& \geqq\left|K\left(H_{1}\right) K(L): K\left(H_{1}\right)\right|
\end{aligned}
$$

by Lemma 2.5. Since $L H_{1}$ is cyclic, we have $K\left(H_{1}\right) K(L)=K\left(I . H_{1}\right)$. So as
H_{1} is K-inductive in G,

$$
\begin{aligned}
\left|K(L): K\left(H_{1} \cap H_{2}\right)\right| & \geqq\left|K\left(L H_{1}\right): K\left(H_{1}\right)\right| \\
& =\left|L H_{1}: H_{1}\right| \\
& =\left|L: H_{1} \cap L\right| \\
& =\left|L: H_{1} \cap H_{2}\right| .
\end{aligned}
$$

But $\left|K(L): K\left(H_{1} \cap H_{2}\right)\right| \leqq\left|L: H_{1} \cap H_{2}\right|$ by the remark following Corollary 2.4, so by Lemma $2.3 H_{1} \cap H_{2}$ is K-inductive in H_{2}. If now H_{2} is also K-inductive in G, it easily follows that $H_{1} \cap H_{2}$ is K-inductive in G. This completes the proof.

We shall now investigate more closely the conditions under which a locally cyclic group with Min contains inductive subgroups for various fields.

Lemma (2.7): Let G be a locally cyclic group with Min. Then $\Omega(G)$ is \mathbb{Q}-inductive in G.

Proof: Suppose L is a finite subgroup of G containing $H=\Omega(G)$, and let ε be a primitive $|L|$-th root of unity. Then

$$
|\mathbb{Q}(L): \mathbb{Q}|=|\mathbb{Q}(\varepsilon): \mathbb{Q}|=\varphi(|L|),
$$

where φ is the Euler function. Thus

$$
\begin{aligned}
|\mathbb{Q}(L): \mathbb{Q}(H)| & =\varphi(|L|) / \varphi(|H|) \\
& =\varphi(|L: H \| H|) / \varphi(|H|) \\
& =|L: H|,
\end{aligned}
$$

for $\pi(L)=\pi(H)$ and if p is a prime dividing an integer m, then $\varphi(p m)=p \varphi(m)$. Hence $\Omega(G)=H$ is \mathbb{Q}-inductive in G by Lemma 2.3.

If m and n are positive integers, their highest common factor is denoted by (m, n). If $(m, n)=1$, we will denote by $o(m, n)$ the order of m modulo n, i.e. the smallest positive integer r such that $n \mid m^{r}-1$. If G is a locally cyclic group with Min, say

$$
G \cong C_{p_{11}^{n}} \times \ldots \times C_{p_{k^{k}}^{n}}
$$

where the p_{i} are distinct primes and $1 \leqq n_{i} \leqq \infty$, then $N=p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}$
will be called the Steinitz number associated with G. Evidently the concepts of divisibility and highest common factor extend to Steinitz numbers.

The following is a slightly strengthened form of Lemma 2.2 in [2].
Lemma (2.8): Let G be a locally cyclic group with Min, and $\mathbb{F}_{p^{d}}$ a finite field of order p^{d}, with $p \notin \pi(G)$. Let N be the Steinitz number associated with G, and put

$$
\begin{aligned}
n & =\left(N, 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot \ldots\right) \\
r & =o\left(p^{d}, n\right) \\
m & =\left(N, p^{d r}-1\right)
\end{aligned}
$$

Then the unique subgroup H of order m in G is $\mathbb{F}_{p^{d}}$-inductive in G.
Proof: Since $n \mid p^{d r}-1$, we have $n \mid m$, whence $\Omega(G) \leqq H$. Let L be a finite subgroup of G containing H. Then L is cyclic and $\mathbb{F}_{p^{d}}(L)$ is the smallest extension $\mathbb{F}_{p^{d t}}$ of $\mathbb{F}_{p^{d}}$ such that L may be embedded in $\mathbb{F}_{p^{d t}}^{*}$, i.e. such that $l=|L|$ divides $\left|\mathbb{F}_{p^{t t}}^{*}\right|=p^{d t}-1$. Hence t is the smallest positive integer such that $l \mid p^{d t}-1$, so we have

$$
\left|\mathbb{F}_{p^{d}}(L): \mathbb{F}_{p^{d}}\right|=t=o\left(p^{d}, l\right) .
$$

By Lemma 2.3, to show that H is $\mathbb{F}_{p^{d}}$-inductive in G it is sufficient to prove that $\left|\mathbb{F}_{p^{d}}(L): \mathbb{F}_{p^{d}}(H)\right|=|L: H|$, i.e. that if $m|l| N$ then

$$
\frac{o\left(p^{d}, l\right)}{o\left(p^{d}, m\right)}=\frac{l}{m}
$$

Note that $o\left(p^{d}, m\right)=r$, for since $n\left|m, r=o\left(p^{d}, n\right)\right| o\left(p^{d}, m\right)$, while as $m\left|p^{d r}-1, o\left(p^{d}, m\right)\right| r$. We will prove by induction on l / m (more precisely, on the sum of the exponents in the prime power factors of l / m) that if $o\left(p^{d}, l\right)=t$ and $p^{d t}-1=k l$, then $(k, N / m)=1$, and $t / r=l / m$.

Firstly, let $l=m$, so $t=r$. Write $p^{d r}-1=k m$. Then

$$
(k m, N)=\left(p^{d r}-1, N\right)=m
$$

so $(k, N / m)=1$. Also $t / r=1=l / m$.
Now suppose that $m|l| l q \mid N$, where q is a prime. Let $t=o\left(p^{d}, l\right)$ and $p^{d t}-1=k l$. By induction we may assume that $(k, N / m)=1$ and that $t / r=l / m$. We then have

$$
\begin{aligned}
p^{d t q} & =(1+k l)^{q} \\
& =1+q k l+\frac{1}{2} q(q-1)(k l)^{2}+\ldots+(k l)^{q} .
\end{aligned}
$$

Let $q_{1} \mid N$ be prime. If $q_{1} \neq q$ then as $q q_{1} \mid l$ we have

$$
p^{d t q} \equiv 1+q k l \quad\left(\bmod l q q_{1}\right) .
$$

If $q_{1}=q$ we have $q \mid l$ so (since $\left.q \left\lvert\, \begin{array}{c}q \\ s\end{array}\right.\right)$ for $s=2, \ldots, q-1$)

$$
p^{d t q} \equiv 1+q k l+(k l)^{q} \quad\left(\bmod l q^{2}\right)
$$

whence

$$
p^{d t q} \equiv 1+q k l \quad\left(\bmod l q^{2}\right)
$$

provided $q>2$. But if $q=2$ then $2^{2}|l q| N$ whence $2^{2}|n| m \mid l$, and again we obtain

$$
p^{d t q} \equiv 1+q k l \quad\left(\bmod l q^{2}\right)
$$

In particular we see that $l q \mid p^{d t q}-1$, so $t^{\prime}=o\left(p^{d}, l q\right) \mid t q$. Moreover, $l \mid l q$, so $t=o\left(p^{d}, l\right) \mid t^{\prime}$. If $l q \mid p^{d t}-1=k l$, then $q \mid k$. But $m|l| l q \mid N$, so $q \mid(N / m)$, a contradiction as $(k, N / m)=1$. Hence $l q \nmid p^{d t}-1$. Thus $t\left|t^{\prime}\right| t q$, but $t \neq t^{\prime}$, so $o\left(p^{d}, l q\right)=t^{\prime}=t q$. We have

$$
t^{\prime} / r=t q / r=l q / m
$$

Now write $p^{d t^{\prime}}-1=k^{\prime} l q$. By the above congruences, if q_{1} is any prime divisor of N, we have

$$
k^{\prime} l q \equiv k l q \quad\left(\bmod l q q_{1}\right)
$$

whence

$$
k^{\prime} \equiv k \quad\left(\bmod q_{1}\right)
$$

Thus if $q_{1} \mid\left(k^{\prime}, N / m\right)$ then $q_{1} \mid(k, N / m)=1$, a contradiction. Hence $\left(k^{\prime}, N / m\right)=1$. This completes the induction, and the proof.

It can be shown that H is the minimal $\mathbb{F}_{p^{d}}$-inductive subgroup of G unless $\left|O_{2}(G)\right|=4$ and $p^{d} \equiv 3(\bmod 4)$, in which case the subgroup of index 2 in H is minimal inductive.

Lemma (2.9): Let D and E be subfields of some field, and suppose that E
is a finite normal extension of $D \cap E$. Then
(a) D and E are linearly disjoint over $D \cap E$;
(b) if F is a subfield of E containing $D \cap E$ then $F D \cap E=F$.

Proof:

(a) E is the splitting field of some monic irreducible polynomial f over $D \cap E$. In fact f is still irreducible over D. For if $f=g h$, where g and h are monic polynomials over D, then the roots of g and h are roots of f, so all lie in E. The coefficients of g and h are (plus or minus) elementary symmetric functions in the roots, so lie in $D \cap E$. But f is irreducible over $D \cap E$, so over D too.

Let n be the degree of f, and ξ one of its roots. Then $\left\{1, \xi, \ldots, \xi^{n-1}\right\}$ is a basis of E over $D \cap E$, consisting of elements which are linearly independent over D. So D and E are linearly disjoint over $D \cap E$.
(b) Let ω_{i} be a basis of D over $D \cap E$, with $\omega_{1}=1$. Then $F D=\sum F \omega_{i}$. By (a), the ω_{i} are linearly independent over E (see Chapter IV Section 5 of [3]). Suppose

$$
\beta=\sum \alpha_{i} \omega_{i} \in F D \cap E \quad\left(\alpha_{i} \in F\right)
$$

Then

$$
\left(\alpha_{1}-\beta\right) \omega_{1}+\sum_{i \neq 1} \alpha_{i} \omega_{i}=0 \quad\left(\alpha_{1}-\beta, \alpha_{i} \in E\right)
$$

so $\beta=\alpha_{1} \in F$. Thus $F D \cap E=F$.
Theorem (2.10): Let K be any field, k its prime field, and G a locally cyclic group satisfying Min with char $k \notin \pi(G)$. Then G has a K-inductive subgroup if and only if

$$
|k(G) \cap K: k|<\infty .
$$

(Here $k(G) \cap K$ is a subfield of \bar{K}, in which \bar{k} and $k(G)$ are embedded.)

Proof: Suppose H is a K-inductive subgroup of G, and that L is a finite subgroup of G containing H. Then by the remark following Corollary 2.4 we have $|k(L): k(H)| \leqq|L: H|=|K(L): K(H)|$ (as H is K-inductive). Now $K(L)=k(L) \cdot K(H)$, so by Lemma 2.5

$$
\begin{aligned}
|K(L): K(H)| & =|k(L) \cdot K(H): K(H)| \\
& \leqq|k(L): k(L) \cap K(H)| \\
& \leqq|k(L): k(H)|
\end{aligned}
$$

(as $k(H) \leqq k(L) \cap K(H)$). We now have $|k(L): k(L) \cap K(H)|=|k(L): k(H)|$, whence

$$
k(L) \cap K \leqq k(L) \cap K(H)=k(H)
$$

As G is locally finite it follows that $k(G) \cap K \leqq k(H)$. Hence

$$
|k(G) \cap K: k| \leqq|k(H): k| \leqq|H|<\infty
$$

Conversely, suppose that $|k(G) \cap K: k|<\infty$: say $k(G) \cap K=k(\gamma)$. By Lemma 2.7 or 2.8 , as k is a prime field, G contains a k-inductive subgroup H_{1}. Since G is locally finite, there exists a finite subgroup H of G containing H_{1} and such that $\gamma \in k(H)$. Then

$$
k(G) \cap K=k(\gamma) \leqq k(H)
$$

We will show that H is K-inductive in G. Note first that $H \geqq H_{1} \geqq \Omega(G)$ by Lemma 2.3.

Let L be a finite subgroup of G containing H. Then the cyclotomic field $k(L)$ is a finite normal extension of $k(L) \cap K$; moreover

$$
k(L) \cap K \leqq k(G) \cap K \leqq k(H)
$$

Hence by Lemma 2.9 (b), with $D=K, E=k(L)$, and $F=k(H)$, we have

$$
K(H) \cap k(L)=(K \cdot k(H)) \cap k(L)=k(H) .
$$

By Lemma 2.9(a), $K(H)(=D)$ and $k(L)(=E)$ are linearly disjoint over their intersection $k(H)$. Hence a basis for $k(L)$ over $k(H)$ also constitutes a basis for $K(L)=K(H) \cdot k(L)$ over $K(H)$. Thus

$$
\begin{aligned}
|K(L): K(H)| & =|k(L): k(H)| \\
& =\left|k(L): k\left(H_{1}\right)\right| /\left|k(H): k\left(H_{1}\right)\right| \\
& =\left|L: H_{1}\right| /\left|H: H_{1}\right| \\
& =|L: H|
\end{aligned}
$$

as H_{1} is k-inductive. By Lemma 2.3, H is K-inductive in G.
Corollary (2.11): Let K be any field, k its prime field, and G a periodic abelian group with char $k \notin \pi(G)$. Suppose that

$$
|k(G) \cap K: k|<\infty
$$

Then every locally cyclic quotient of G satisfying Min contains a K-inductive subgroup.

Proof: If \bar{G} is any quotient of G, every image of \bar{G} in \bar{k}^{*} is also an image of G, and therefore $k(\bar{G}) \leqq k(G)$. Now apply Theorem 2.10.

3. Primitive idempotents in $K \boldsymbol{G}$

Let G be an abelian group and K a field. If $\alpha=\sum \alpha_{g} g \in K G$, we denote by supp α the finite set $\left\{g \in G: \alpha_{g} \neq 0\right\}$. We will write

$$
C_{G}(\alpha)=\{g \in G: \alpha g=\alpha\} .
$$

Since G is abelian, $C_{G}(\alpha)$ is in fact the centralizer $C_{G}(\alpha K G)$ in G of $\alpha K G$ considered as a $K G$-module. If e is an idempotent in $K G$, we say e is faithful (for G) if $C_{G}(e)=1$.

Lemma (3.1): Let G be a periodic abelian group and K a field with char $K \notin \pi(G)$. Suppose $K G$ contains a primitive idempotent e. Then G satisfies Min and is almost locally cyclic (i.e. has a locally cyclic subgroup of finite index). If e is faithful, G is locally cyclic, and〈suppe〉 is K-inductive in G.

Proof: Let $H=\langle\operatorname{supp} e\rangle$, a finite subgroup of G. Then $e K H$ is an irreducible $K H$-module, and $\left.e K H\right|^{G}=e K G$ is an irreducible $K G$-module (for otherwise G would contain a finite subgroup $L \geqq H$ with $e K L$ reducible; but e is primitive in $K L$). As in the proof of Lemma 2.3, it follows that $H \geqq \Omega(G)$, whence $\Omega(G)$ is finite and G satisfies Min. If e is faithful for G so for H, then H is K-inductive in G by Corollary 2.4.
The group $C=C_{G}(e)$ is finite, since it acts as a group of permutations on the finite set supp e. The irreducible $K G$-module $e K G$, considered as a ring, is actually a field F. The homomorphism $G \rightarrow F^{*}, g \mapsto e g$ has kernel C. Hence G / C embeds in F^{*} so is locally cyclic. Let $|C|=m$. Since G is abelian, $G^{m}=\left\{g^{m}: g \in G\right\}$ is a quotient of G and indeed of G / C, as $C^{m}=1$. Thus G^{m} is locally cyclic. But G / G^{m} has finite exponent and satisfies Min, so is finite. Hence G is almost locally cyclic. If e is faithful then $m=1$ and G itself is locally cyclic. This completes the proof.

We shall now investigate the circumstances under which $K G$ contains primitive idempotents faithful for G, given that G is locally cyclic and satisfies Min. We shall need:

Lemma (3.2): Let G be a periodic abelian group, K a field with char $K \notin \pi(G)$, and $H_{0} \leqq H_{1} \leqq \ldots \leqq G$ a chain of finite subgroups with union G. For each i, let e_{i} be a primitive idempotent in $K H_{i}$, such that $e_{i} e_{i+1}=e_{i+1}$. Then there exists a maximal ideal M of $K G$ such that:
(a) for each $i, 1-e_{i} \in M$ and $e_{i} \notin M$;
(b) $C_{G}(K G / M)=\bigcup_{i=0}^{\infty} C_{G}\left(e_{i}\right)$.

Proof: For each i, write

$$
K H_{i}=e_{i} K H_{i} \oplus M_{i},
$$

where $M_{i}=\left(1-e_{i}\right) K H_{i}$ is a maximal ideal of $K H_{i}$. We have

$$
\left(1-e_{i+1}\right)\left(1-e_{i}\right)=1-e_{i}
$$

whence

$$
M_{i}=\left(1-e_{i}\right) K H_{i} \leqq\left(1-e_{i}\right) K H_{i+1} \leqq\left(1-e_{i+1}\right) K H_{i+1}=M_{i+1}
$$

Since $G=\bigcup_{i=0}^{\infty} H_{i}, M=\bigcup_{i=0}^{\infty} M_{i}$ is an ideal of $K G$. Moreover $e_{0} \notin M$, for if $e_{0} \in M_{i}$ then $e_{0} e_{i}=0$, but then $e_{i}=e_{i} e_{i-1} \ldots e_{1} e_{0}=0$. Thus M is a proper ideal of $K G$; furthermore it is maximal since $M \cap K H_{i}=M_{i}$ for each i. For each $i, 1-e_{i} \in M_{i} \subseteq M$, so as $1 \notin M, e_{i} \notin M$. Thus we have (a).

Let $x \in C_{G}\left(e_{i}\right)$ and $\alpha \in K G$. Choose $j \geqq i$ such that $x, \alpha \in K H_{j}$. Since $e_{j}=e_{j} e_{j-1} \ldots e_{i}$, we have $x \in C_{G}\left(e_{j}\right)$. Thus $(\alpha x-\alpha) e_{j}=0$, whence $\alpha x-\alpha \in\left(1-e_{j}\left(K H_{j}=M_{j} \subseteq M\right.\right.$, i.e. $(\alpha+M) x=\alpha+M$. It follows that $\bigcup_{i=0}^{\infty} C_{G}\left(e_{i}\right) \leqq C_{G}(K G / M)$.

Conversely let $x \in C_{G}(K G / M)$, so that $x-1 \in M$. Choose i so that $x \in H_{i}$. Then $x-1 \in M \cap K H_{i}=M_{i}$ (as M_{i} is maximal in $K H_{i}$). Thus $e_{i}(x-1)=0$, so $e_{i} x=e_{i}$ and $x \in C_{G}\left(e_{i}\right)$. This completes the proof of (b).

Theorem (3.3): Let G be a locally cyclic group with Min and K a field with char $K \notin \pi(G)$. Then the following are equivalent:
(a) $K G$ contains a faithful primitive idempotent;
(b) G contains a K-inductive subgroup;
(c) there are only finitely many non-isomorphic irreducible $K G$-modules faithful for G;
(d) there do not exist $2^{\aleph_{0}}$ non-isomorphic irreducible $K G$-modules faithful for G;
(e) $|k(G) \cap K: k|<\infty$, where k is the prime field of K.

Furthermore, when (a)-(e) hold, there is a one-to-one onto correspondence between faithful primitive idempotents of $K G$ and isomorphism classes of irreducible KG-modules faithful for G.

Proof: (a) implies (b) by Lemma 3.1, and (b) is equivalent to (e) by Theorem 2.10.

Now suppose H is a K-inductive subgroup of G, and V is an irreducible $K G$-module faithful for G. Since H is finite, V_{H} is completely reducible, so it contains an irreducible $K H$-submodule W say. Then $V_{H}=\sum_{x \in G} W x$, and $W x \cong W$ as $K H$-modules since G is abelian. Hence

$$
C_{H}(W)=C_{H}\left(V_{H}\right)=1 .
$$

So as H is K-inductive, W^{G} is irreducible. But there is a non-zero $K G$-map $W^{G} \rightarrow V, w \otimes x \mapsto w x$, so $V \cong W^{G}$. Thus every irreducible $K G$-module faithful for G is isomorphic to W^{G} for some irreducible $K H$-module W faithful for H. (Note that $W \cong e K H$ and $V \cong e K G$ for some idempotent e in $K H$ which is faithful and primitive in $K G$.) There are only finitely many non-isomorphic such W, and therefore only finitely many non-isomorphic irreducible $K G$-modules faithful for G. Hence (b) implies (c). Trivially (c) implies (d).

The last part of the Theorem now also follows. For if e is a faithful primitive idempotent in $K G$, then $e K G$ is an irreducible $K G$-module faithful for G; as we have just shown, every such module arises in this way. If e and f are idempotents in $K G$ and $e K G \cong f K G$, then if $\theta: e K G \rightarrow f K G$ is an isomorphism, we have $\theta(e)=f \theta(e)=\theta(e) f$; applying θ^{-1} we obtain $e=e f$. Similarly $f=f e$, so $e=f$.

To prove that (d) implies (a), we shall assume that $K G$ contains no faithful primitive idempotent, and exhibit $2^{\aleph_{0}}$ non-isomorphic irreducible $K G$-modules faithful for G. Let

$$
\Omega(G)=L_{0} \leqq L_{1} \leqq L_{2} \leqq \ldots \leqq G
$$

be a chain of finite subgroups with union G.
For $n=0,1,2, \ldots$ let T_{n} denote the set of all n-tuples with each entry either 0 or 1 . By induction we will construct for each integer n a finite subgroup H_{n} of G and for each $\varphi \in T_{n}$ a faithful primitive idempotent e_{φ} in $K H_{n}$. Firstly, let $H_{0}=L_{0}=\Omega(G)$. By Lemma 2.1, $K H_{0}$ contains a faithful primitive idempotent e.

Now suppose inductively that we have constructed H_{n} and $\left\{e_{\varphi}: \varphi \in T_{n}\right\}$. By Lemma 2.2 each e_{φ} is faithful for G, so by hypothesis is not primitive in $K G$. Hence we may choose a finite subgroup H_{n+1} of G containing L_{n+1} and such that for each $\varphi \in T_{n}, e_{\varphi}$ decomposes in $K H_{n+1}$; say

$$
e_{\varphi} K H_{n+1}=e_{(\varphi, 0)} K H_{n+1} \oplus e_{(\varphi, 1)} K H_{n+1} \oplus \ldots,
$$

where $e_{(\varphi, 0)}$ and $e_{(\varphi, 1)}$ are primitive idempotents in $K H_{n+1}$. By Lemma 2.2, since $e_{\varphi} K H_{n+1}=\left.e_{\varphi} K H_{n}\right|^{H_{n+1}}, e_{(\varphi, 0)}$ and $e_{(\varphi, 1)}$ are faithful for H_{n+1}. Thus we have chosen $e_{\varphi^{\prime}}$, for each $\varphi^{\prime} \in T_{n+1}$. This completes the inductive construction. Note that

$$
\bigcup_{i=0}^{\infty} H_{i}=\bigcup_{i=0}^{\infty} L_{i}=G .
$$

Let $\varphi=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ be an infinite sequence of 0 's and 1's. Write $e_{0}(\varphi)=e$ and $e_{n}(\varphi)=e_{\left(a_{1}, \ldots, a_{n}\right)}(n=1,2,3, \ldots)$. By Lemma 3.2 there is a maximal ideal $M=M(\varphi)$ of $K G$ with $1-e_{n}(\varphi) \in M(\varphi)$ and $e_{n}(\varphi) \notin M(\varphi)$ for all n, and

$$
C_{G}(K G / M(\varphi))=\bigcup_{n=0}^{\infty} C_{G}\left(e_{n}(\varphi)\right)=1 .
$$

Thus $V(\varphi)=K G / M(\varphi)$ is an irreducible $K G$-module faithful for G.
If $\varphi \neq \psi$ then $V(\varphi)$ and $V(\psi)$ are not $K G$-isomorphic. For if φ and ψ differ first in the n-th place, then $e_{n}(\varphi) e_{n}(\psi)=0$; hence

$$
e_{n}(\psi)=e_{n}(\psi)\left(1-e_{n}(\varphi)\right) \in M(\varphi),
$$

so $e_{n}(\psi)$ annihilates $V(\varphi)$. But $1-e_{n}(\psi) \in M(\psi)$, so $e_{n}(\psi)$ acts as the identity on $V(\psi)$. This completes the proof of the Theorem.

In Lemma 2.12 of [1], S. D. Berman proves a result related to part of Theorem 3.3, for the special case of abelian p-groups. Note that a field K with prime field k is "of the first kind for p ", in Berman's terminology, if and only if $\left|k\left(C_{p^{\infty}}\right) \cap K: k\right|<\infty$.
The following corollary to Theorem 3.3 generalizes Lemma 2.5 of [2].
Theorem (3.4): Let K be a field, k its prime field, and G an abelian almost locally cyclic group with Min such that char $k \notin \pi(G)$. If $|k(G) \cap K: k|=\infty$, then $K G$ contains no primitive idempotents. Suppose that $|k(G) \cap K: k|<\infty$. If C is any finite subgroup of G such that G / C is locally cyclic, then $K G$ contains a non-zero finite number of primitive idempotents e with $C_{G}(e)=C$, and there is a one-to-one onto correspondence between such idempotents and isomorphism classes of irreducible KGmodules V with $C_{G}(V)=C$.

Proof: Let C be any finite subgroup of G. We may write

$$
K G=\mathfrak{c} G \oplus v K G
$$

where $\mathfrak{c} G$ is the ideal of $K G$ generated by the augmentation ideal c of $K C$, and v is the idempotent

$$
\frac{1}{|C|} \sum_{x \in C} x
$$

It is easily deduced that the canonical group ring projection

$$
K G \rightarrow K[G / C] \quad(\cong K G / \mathfrak{c} G \cong \nu K G)
$$

determines a one-to-one map from the set of primitive idempotents e in $K G$ with $C_{G}(e)=C$ onto the set of faithful primitive idempotents in $K[G / C]$. (Both these sets might be empty.)

Suppose $K G$ contains a primitive idempotent e; we will show that $|k(G) \cap K: k|<\infty$. Let $C=C_{G}(e)$. By the above the image of e in $K[G / C]$ is a primitive idempotent faithful for G / C. Thus G / C is locally cyclic, and by Theorem $3.3|k(G / C) \cap K: k|<\infty$.

Since every image of G / C is an image of G, we have $k(G / C) \leqq k(G)$. Now let

$$
F=k\left(\prod O_{p}(G)\right)
$$

where the product is taken over those primes p such that $O_{p}(G)$ is finite. Then $|F: k|<\infty$ since G satisfies Min. Moreover $k(G)=F \cdot k(G / C)$. For $k(G)$ is determined by the exponents of the primary components of G, and since C is finite, if $\exp O_{p}(G)=\infty$ then $\exp O_{p}(G / C)=\infty$. Hence by Lemma 2.5 ,

$$
|k(G): k(G / C)|=|F \cdot k(G / C): k(G / C)| \leqq|F: k|<\infty .
$$

Now $k(G / C)$ is a union of finite normal extensions of k, so also of $k(G / C) \cap K$; Lemma 2.9(a) together with a local argument shows that $k(G / C)$ and K are linearly disjoint over $k(G / C) \cap K$. In particular, any subset of $k(G) \cap K$ which is lineărly independent over $k(G / C) \cap K$ is a subset of $k(G)$ which is linearly independent over $k(G / C)$. Hence

$$
|k(G) \cap K: k(G / C) \cap K| \leqq|k(G): k(G / C)|<\infty .
$$

We now have

$$
|k(G) \cap K: k|=|k(G) \cap K: k(G / C) \cap K \| k(G / C) \cap K: k|<\infty
$$

Now suppose that $|k(G) \cap K: k|<\infty$, and that C is a finite subgroup of G such that G / C is locally cyclic. Since $k(G / C) \leqq k(G)$ we also have $|k(G / C) \cap K: k|<\infty$. In view of the one-to-one correspondence mentioned in the first paragraph of this proof, an application of Theorem 3.3 to $K[G / C]$ yields the remaining statements of Theorem 3.4.

4. The socular series of $K \boldsymbol{G}$

If V is a module recall that the socle $\operatorname{So}(V)$ of V is the sum of all irreducible submodules of V. We define the ascending socular series of V by

$$
\begin{aligned}
S o_{0}(V) & =0 \\
S o_{1}(V) & =S o(V) \\
\frac{S o_{n+1}(V)}{S o_{n}(V)} & =S o\left(\frac{V}{S o_{n}(V)}\right), \quad n=1,2,3, \ldots .
\end{aligned}
$$

In particular if A is a commutative ring, we obtain an ascending socular series of A considered as an A-module.

Lemma (4.1): Let G be a locally finite group and K a field with char $K \notin \pi(G)$. Then the socle of $K G$ (considered as left or right $K G$ module) contains and is generated by all primitive idempotents in $K G$.

Proof: We consider the right module case; the proof for the left module case is analogous. If e is a primitive idempotent in $K G$ then $e K G$ is irreducible, for otherwise as G is locally finite there exists a finite subgroup H of G with $e \in K H$ such that $e K H$ is reducible, a contradiction as $K H$ is completely reducible and e is primitive in $K H$. Hence $e \in e K G \leqq S o\left(K G_{K G}\right)$.

Let N be a minimal right ideal of $K G$. Since G is locally finite there exists a finite subgroup H of G with $K H \cap N \neq 0$. As $K H$ is completely reducible, $K H \cap N$ contains an idempotent e. Then $N=e K G$, so e is primitive in $K G$. Hence $\operatorname{So}\left(K G_{K G}\right)$ is generated as a right ideal by the primitive idempotents of $K G$.

Theorem (4.2): Let K be a field with prime field k, and G a periodic abelian group such that char $k \notin \pi(G)$. If $|k(G) \cap K: k|=\infty$, then the socle of $K G$ is zero. If $|k(G) \cap K: k|<\infty$, then the socle of $K G$ is the intersection T of the maximal ideals M of $K G$ such that $C_{G}(K G / M)$ is infinite.

Proof: If $|k(G) \cap K: k|=\infty$, then by Lemma 3.1 and Theorem 3.4, $K G$ contains no primitive idempotents. Hence $\operatorname{So}(K G)=0$ by Lemma 4.1. Now assume that $|k(G) \cap K: k|<\infty$.

Suppose that N is a minimal ideal of $K G, M$ is a maximal ideal, and $N \nsubseteq M$. Then $K G=N \oplus M$, so $C_{G}(K G / M)=C_{G}(N)$. Let $0 \neq \alpha \in N$; then $C_{G}(N)$ is contained in $C_{G}(\alpha)$, which is finite since it acts as a group of permutations on $\operatorname{supp} \alpha$. Hence $C_{G}(K G / M)$ is finite. It follows that $S o(K G) \leqq T$.

To show that $T \leqq \operatorname{So}(K G)$, suppose $0 \neq \alpha \in T$. Let. $H=\langle\operatorname{supp} \alpha\rangle$, and write

$$
\alpha=\alpha e_{1}+\ldots+\alpha e_{m}
$$

where the e_{i} are orthogonal primitive idempotents in $K H$, and $\alpha e_{i} \neq 0$ for each i. Since $e_{i} K H$ is irreducible, $\alpha e_{i} K H=e_{i} K H$, so there exists $\beta_{i} \in K H$ such that $e_{i}=\alpha e_{i} \beta_{i}$; thus $e_{i} \in T$. Hence it is sufficient to show that if H is a finite subgroup of G, e is a primitive idempotent in $K H$, and $e \in T$, then $e \in \operatorname{So}(K G)$, i.e. if $e \notin \operatorname{So}(K G)$ then $e \notin T$.

If $C_{G}(K G / M)$ is infinite for all maximal ideals M of $K G$, then T is the Jacobson radical of $K G$. But $K G$ is semisimple (see Theorem 18.7 of [5]), so $T=0 \leqq \operatorname{So}(K G)$ as required. Hence we may assume that there exists a maximal ideal M of $K G$ with $C=C_{G}(K G / M)$ finite. Then G / C embeds in the multiplicative subgroup of the field $K G / M$, so is locally cyclic whence countable. Thus G is also countable. Hence there
exists a chain

$$
H=H_{0} \leqq H_{1} \leqq \ldots \leqq G
$$

of finite subgroups with union G.
Assume first that G does not satisfy Min. Then by Lemmas 3.1 and 4.1 $\operatorname{So}(K G)=0$, so the condition that $e \notin \operatorname{So}(K G)$ is vacuous; in effect we must show that T is also zero. We shall construct by induction a subchain $H_{n_{0}} \leqq H_{n_{1}} \leqq \ldots$ of $H_{0} \leqq H_{1} \leqq \ldots$ and for each i a primitive idempotent e_{i} in $K H_{n_{i}}$ such that $e_{i} e_{i+1}=e_{i+1}$. Firstly, let $n_{0}=0$ and $e_{0}=e$. Suppose we have already found n_{i} and e_{i}. Since G does not satisfy Min and $C_{G}\left(e_{i}\right)$ is finite, $\Omega(G)$ is not contained in $C_{G}\left(e_{i}\right)$, so there exists a non-trivial finite subgroup L_{i} of G with $C_{G}\left(e_{i}\right) \cap L_{i}=1$. Choose n_{i+1} such that $H_{n_{i}+1} \geqq L_{i} H_{n_{i}}$. Let

$$
v_{i}=\frac{1}{\left|L_{i}\right|} \sum_{x \in L_{i}} x
$$

be the trivial primitive idempotent in $K L_{i}$, and choose a primitive idempotent e_{i+1} in $K H_{n_{i+1}}$ such that $\left(e_{i} v_{i}\right) e_{i+1}=e_{i+1}$; then also $e_{i} e_{i+1}=e_{i+1}$. Now $L_{i} \leqq C_{G}\left(e_{i+1}\right)$, so $C_{G}\left(e_{i}\right) \nsupseteq C_{G}\left(e_{i+1}\right)$. By Lemma 3.2 there exists a maximal ideal M of $K G$ such that $e=e_{0} \notin M$, and

$$
C_{G}(K G / M)=\bigcup_{i=0}^{\infty} C_{G}\left(e_{i}\right),
$$

which by construction is infinite. Thus $e \notin T$ as required. Hence we may assume that G satisfies Min.

If f is a primitive idempotent in $K H_{n}$ for some $n \geqq 0$, consider the set of all sequences $\left(f_{n}, f_{n+1}, \ldots\right)$ such that
(i) f_{i} is a primitive idempotent in $K H_{i}$ for all $i \geqq n$;
(ii) $f_{n}=f$;
(iii) $f_{i} f_{i+1}=f_{i+1}$ for all $i \geqq n$.

If $m \geqq 0$ we shall say that f is m-stationary if for all such sequences $\left(f_{n}, f_{n+1}, \ldots\right)$ and all $i \geqq 0$ we have $f_{n+m}=f_{n+m+i}$. Note that if

$$
f=f_{1}^{\prime}+\ldots+f_{t}^{\prime}
$$

where the f_{j}^{\prime} are orthogonal primitive idempotents in $K H_{n+1}$, then f is m-stationary (for $m \geqq 1$) if and only if each f_{j}^{\prime} is ($m-1$)-stationary. Moreover f is 0 -stationary if and only if it is primitive in $K G$. Hence if f is m-stationary and we write f as a sum of orthogonal primitive
idempotents in KH_{n+m}, then each such idempotent will be 0 -stationary; thus by Lemma 4.1 we have $f \in \operatorname{So}(K G)$.

Now let e be a primitive idempotent in $K H$ with $e \notin S o(K G)$. Then $e=e_{0}$ is not m-stationary for any m. Hence among the finitely many orthogonal primitive idempotents in $K H_{1}$ whose sum is e_{0}, there must exist one, say e_{1}, which is not m-stationary for any m. Similarly we may choose a primitive idempotent e_{2} in $K H_{2}$ which satisfies $e_{1} e_{2}=e_{2}$ and is not m-stationary for any m, and so on. In this way we obtain a sequence $e_{0}=e, e_{1}, e_{2}, \ldots$ such that e_{i} is a primitive idempotent in $K H_{i}$, and $e_{i} e_{i+1}=e_{i+1}$.

Consider the chain of subgroups $C_{G}\left(e_{0}\right) \leqq C_{G}\left(e_{1}\right) \leqq \ldots$, and suppose that $C=\bigcup_{i=0}^{\infty} C_{G}\left(e_{i}\right)$ is finite; then $C=C_{G}\left(e_{n}\right)$ for some n. For $i \geqq n$, $e_{i} K H_{i}$ is an irreducible module faithful for H_{i} / C, so H_{i} / C is cyclic; hence G / C is locally cyclic. Also $|k(G / C) \cap K: k| \leqq|k(G) \cap K: k|<\infty$, so by Theorem $2.10 G / C$ contains a K-inductive subgroup. Thus we may choose $s \geqq n$ so that H_{s} / C is K-inductive in G / C. But e_{s} is a primitive idempotent in $K H_{s}$ with $C_{G}\left(e_{s}\right)=C$, so e_{s} is primitive in $K G$, i.e. 0 -stationary, a contradiction. It follows that $\bigcup_{i=0}^{\infty} C_{G}\left(e_{i}\right)$ is infinite, whence by Lemma 3.2 there is a maximal ideal M of $K G$ such that $e=e_{0} \notin M$ and $C_{G}(K G / M)=\bigcup_{i=0}^{\infty} C_{G}\left(e_{i}\right)$ is infinite. Hence $e \notin T$. This completes the proof of the theorem.

As an example we may take G to be a Prüfer group and K any field satisfying the hypotheses of Theorem 4.2. Then the augmentation ideal \mathfrak{g} of $K G$ is the only maximal ideal M such that $C_{G}(K G / M)$ is infinite. Hence $S o(K G)=g$, a result obtained by W. Müller in [4] in the case where K is a subfield of the field of complex numbers. But $K G / \mathrm{g}$ is the trivial irreducible $K G$-module, so $\mathrm{So}_{2}(K G)=K G$. The next theorem generalizes this observation.

Theorem (4.3): Let K be a field with prime field k, and G an abelian almost locally cyclic group with Min such that char $k \notin \pi(G)$ and $|k(G) \cap K: k|<\infty$. Let m be the number of factors in a decomposition of the maximal divisible subgroup of G as a direct product of Prüfer groups. Then the ascending socular series of $K G$ reaches $K G$ after exactly $m+1$ steps, i.e. $S o_{m}(K G) \neq K G=S o_{m+1}(K G)$.

Proof: We may write

$$
G=F \times \prod_{i=1}^{m} P_{i}
$$

where F is finite and for $i=1, \ldots, m P_{i}$ is a Prüfer p_{i}-group, where the
p_{i} are distinct primes. We proceed by induction on m. If $r_{\iota}=0$ then G is finite, so $K G$ is completely reducible and $\operatorname{So}(K G)=K G$.
Suppose $m \geqq 1$. Let $\varphi_{i}: K G \rightarrow K\left[G / P_{i}\right]$ be the canonical projection of group rings, and define a $K G$-homomorphism θ by the commutativity of the diagrams

Then

$$
\operatorname{ker} \theta=\bigcap_{i=1}^{m} \operatorname{ker} \varphi_{i}=\bigcap_{i=1}^{m} \mathfrak{p}_{i} G
$$

where $\mathfrak{p}_{i} G$ is the ideal of $K G$ generated by the augmentation ideal \mathfrak{p}_{i} of $K P_{i}$.

Since $K G / \mathfrak{p}_{i} G \cong K\left[G / P_{i}\right]$ and $K\left[G / P_{i}\right]$ is semisimple, it follows that $\mathfrak{p}_{i} G$ is the intersection of the maximal ideals M of $K G$ containing it. But if $M \geqq \mathfrak{p}_{i} G$ then $C_{G}(K G / M)$ contains P_{i} so is infinite. Thus ker θ is the intersection of certain maximal ideals M with $C_{G}(K G / M)$ infinite, so by Theorem $4.2 \operatorname{ker} \theta \geqq S o(K G)$. On the other hand if M is any maximal ideal of $K G$ with $C_{G}(K G / M)$ infinite, then $C_{G}(K G / M)$ contains P_{i} for some i, whence $\operatorname{ker} \theta \leqq \mathfrak{p}_{i} G \leqq M$. Thus by Theorem 4.2 again we have $\operatorname{ker} \theta \leqq S o(K G)$. Therefore $\operatorname{ker} \theta=\operatorname{So}(K G)$.

Hence θ induces a $K G$-monomorphism

$$
\frac{K G}{S o(K G)} \rightarrow B=\underset{i=1}{m} K\left[G / P_{i}\right]
$$

By induction, the ascending socular series of $K\left[G / P_{i}\right]$ (as $K\left[G / P_{i}\right]$ module) reaches $K\left[G / P_{i}\right]$ after exactly m steps. Thus the ascending socular series of B (as $K G$-module) reaches B after m steps, i.e. $S o_{m}\left(B_{K G}\right)=B$. Hence

$$
\frac{S o_{m+1}(K G)}{S o(K G)}=S o_{m}\left(\left(\frac{K G}{S o(K G)}\right)_{K G}\right)=\frac{K G}{\operatorname{So}(K G)}
$$

whence $S o_{m+1}(K G)=K G$. If $S o_{m}(K G)=K G$ then we would have

$$
S o_{m-1}\left(\frac{K G}{S o(K G)}\right)=\frac{K G}{S o(K G)},
$$

a contradiction as $K\left[G / P_{i}\right]$ is a quotient of $K G / \operatorname{So}(K G)$ but

$$
S o_{m-1}\left(K\left[G / P_{i}\right]\right) \neq K\left[G / P_{i}\right] .
$$

This completes the proof of the theorem.
Despite Theorem 4.3 the group rings we have been studying do not seem to satisfy any form of the Jordan-Hölder Theorem. In fact, if K and G satisfy the hypotheses of Theorem 4.3 and G is infinite, we may enumerate the primitive idempotents of $K G$, say as $e_{1}, e_{2}, e_{3}, \ldots$. Then $K G$ has a descending composition series

$$
K G=V_{0}>V_{1}>V_{2}>\ldots
$$

of type ω, where for $n \geqq 1$

$$
V_{n}=\left(1-\sum_{i=1}^{n} e_{i}\right) K G .
$$

(Since $\bigcap_{n=0}^{\infty} V_{n}$ contains no primitive idempotents it is disjoint from $S o(K G)$ by Lemma 4.1, whence zero by Theorem 4.3.) For each $n \geqq 0$ the factor V_{n} / V_{n+1} is isomorphic to $e_{n+1} K G$, so $C_{G}\left(V_{n} / V_{n+1}\right)$ is finite. Hence for example the trivial irreducible $K G$-module does not occur as a factor in the composition series.

REFERENCES

[1] S. D. Berman: Group algebras of countable abelian p-groups. Publ. Math. Debrecen 14 (1967) 365-405 (Russian).
[2] B. Hartley: A class of modules over a locally finite group I. J. Austral. Math. Soc. 16 (1973) 431-442.
[3] Nathan Jacobson: Lectures in Abstract Algebra, Vol. III - Theory of Fields and Galois Theory. Van Nostrand, Princeton, New Jersey, 1964.
[4] Wolfgang Müller: Radikal und Sockel in Gruppenalgebren über lokalendlichen Gruppen. Arch: Math. (Basel) 25 (1974) 476-482.
[5] Donald S. Passman: Infinite Group Rings. M. Dekker, New York, 1971.
(Oblatum 2-VI-1975)
J. S. Richardson

University of Warwick Coventry CV4 7AL England

