@article{CM_1975__31_3_309_0, author = {Altman, Allen B. and Kleiman, Steven L.}, title = {Joins of schemes, linear projections}, journal = {Compositio Mathematica}, pages = {309--343}, publisher = {Noordhoff International Publishing}, volume = {31}, number = {3}, year = {1975}, mrnumber = {396560}, zbl = {0337.14004}, language = {en}, url = {http://www.numdam.org/item/CM_1975__31_3_309_0/} }
Altman, Allen B.; Kleiman, Steven L. Joins of schemes, linear projections. Compositio Mathematica, Tome 31 (1975) no. 3, pp. 309-343. http://www.numdam.org/item/CM_1975__31_3_309_0/
[1] A Divisorial Cycle Acquiring an Embedded Component under a Flat Specialization (to appear). | Numdam | Zbl
and :[2] Les classes d'équivalence rationnelle (I et II). Séminaire C. Chevalley, 2e Année: 1958, Anneaux de Chow et Applications, exp 2, 14 pp and exp 3, 18 pp, Secrétariat Mathématique, Paris, 134 pp (mimeographed). | Numdam | MR | Zbl
:[3] On Equivalence Classes of Cycles in an Algebraic Variety. Annals of Mathematics v. 64 (1956) 450-479. | MR | Zbl
:[4] Eléments de Géometrie Algébrique I Springer-Verlag (1971) (cited EGA I). | Zbl
and :[5] Eléments de Géométrie Algébrique. Publ. Math. No. 8, IHES, (1961) (cited EGA II). | Numdam
and :[6] Embedding-obstruction for algebraic varieties I. University of Bergen, Norway, Preprint No. 1.
:[7] Etude cohomologique des pinceaux de Lefschetz, Expose XVIII, SGA 7 II. Lecture Notes in Math No. 340, Springer-Verlag (1973) especially Sec. 3.1, p. 267. | Zbl
:[8] Geometry on Grassmannians and Applications to Splitting Bundles and Smoothing Cycles. Publ. Math. No. 36, IHES, (1969) pp. 281-298. | Numdam | MR | Zbl
:[9] An Algebraic Correspondence with Applications to Projective Bundles and Blowing-Up Chern Classes. (to appear in Annali di Matematica, Pura ed Applicata). | MR | Zbl
and :[10] Chow's Moving Lemma. Algebraic Geometry, Oslo 1970, Wolters-Noordhoff Publishing. Groningen, (1972) 89-96. | MR
:[11] Rational Equivalence of Arbitrary Cycles. American Journal of Mathematics, v 78 (1956) 383-400. | MR | Zbl
: