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1. Introduction

A group G is an FC-group if each element of G has only finitely many
conjugates. We shall be concerned with the class X of periodic FC-groups.
X is well known to coincide with the class of locally finite-normal groups
and could be defined as the class of locally finite groups satisfying either:

Let F denote the class of finite groups and Q, s, D the usual closure
operations; it is clear that QSDF ~ X. In fact, QSDF seems to be a large
subclass of X as P. Hall [3] showed that every countable X-group is a
QSDF-group and Ju. M. Gorëakov [2] has shown that every residually
finite X-group is a QSDF-group. P. Hall also gave an example, generalized
in [6], of an X-group which is not a QSDF-group. Our aim here is to give
further information about X-groups which are not in the class QSDF.
To present our results more clearly we introduce two further subclasses

of X using conditions similar to (1.1) and (1.2). We define B to be the class
of locally finite groups G which satisfy:

(1.3) if m is an infinite cardinal and H  G such that IHI  m, then

|G: CG(H)|  m.

We let Y denote the class of locally finite groups G satisfying:
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(1.4) if m is an infinite cardinal and H  G such that IHI  m, then

|G: NG(H)|  m.

It was proved by P. Hall [3] and again by Gorcakov [2] that QSDF ~ 3.
It is clear that B ~ Y and the examples mentioned above are X-groups
not in the class Y. (Hall used condition (1.3) to show that these groups
were not in QSDF but it is just as easy to see that they are not 9)-groupes).
Thus we have

Our main result shows that the examples mentioned above are in
some way typical of those X-groups not satisfying (1.4); we prove:

THEOREM A: Let G be an X-group. Then G is a Y-group if and only if
each extraspecial section of G is a Y-group.

A section of a group G is a factor group H/K, where K « H  G.
An extraspecial p-group E is one in which 03B6(E) = E’ has order p and
E/E’ is elementary abelian. The extraspecial Y-groups are more easily
identified by the following characterization :

THEOREM B: Let E be an extraspecial p-group. Then E is a D-group
if and only if, for each infinite subgroup H of E and each maximal abelian
subgroup A of H, lAI = IHI.

Apart from the example in [6], a rather worse extraspecial group not in
Y has been constructed by A. Ehrenfeucht and V. Faber [1]. Their
example is uncountable but every maximal abelian subgroup is countable.
The class ?) also has a connection with another problem concerning

FC-groups. It was proved in [7] and again in [2] that if A is a subgroup
of the QSDô-group G, then Lcl(A) = Cl(A) if and only if Cl(A) is finite.
(Here Lcl(A)[Cl(A)] denotes the set of all subgroups of G which are
locally conjugate [conjugate] to A.) However this result can be proved
much more easily for the (possibly) larger class of Y-groups. In the proof
of Theorem B of [7] it is shown that if Cl(A) is infinite, then G has a
countable normal subgroup N such that Lcl(A n N) is uncountable.
If Lcl(A) = Cl(A), then Lcl(A n N) = Cl(A n N) and so A n N is a

countable subgroup with IG: NG(A n N)j uncountable. Thus G is not
a 9)-groups and we have :

THEOREM C : Let A be a subgroup of the D-group G. Then Lcl(A) = Cl(A)
if and only if Cl(A) is finite.
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Theorem A indicates that in investigating X-groups which are not in the
class QSDF, we should begin by considering extraspecial groups. The
main results that we prove may be summarized as:

THEOREM D: (i) If E is an extraspecial D-group of cardinality
then E is a 3-group.

(ii) There is an extraspecial 3-group of cardinality 1, which cannot
be embedded in the central direct product of groups of order p3.

It seems unlikely that D(i) can be extended to show that Y and 3
coincide for extraspecial groups of arbitrary cardinality but the construc-
tion of a counterexample would necessarily be very complicated. The
example of D(ii) was intended to show that QSDF ~ B but we have not
been able to prove that this group is not a QSDF-group. However it does
show that a possible stronger conjecture is false. In [3], P. Hall actually
proved that if G is a countable X-group, then G E QSD(F n 5B( G)), where
5B( G) is the variety generated by G. The next result shows that the example
G in D(ii) is not in the class QSD(S n 5B( G)).

THEOREM E: (i) Let E be an extraspecial QSD(F n zp ’l1p)-group where
Zp9îp denotes the variety of groups which are (central of exponent p)-by-
(abelian of exponent p). Then E can be embedded in the central direct
product of groups of order p3.

(ii) There is an extraspecial subgroup of a central direct product of
groups of order p3 which is not itself a central direct product of groups
of order p3.

We begin by proving the characterization of extraspecial Y-groups
given in Theorem B as this will simplify later proofs. Our main result,
Theorem A, is proved in Section 3. The remainder of the paper consists
of the results concerning extraspecial p-groups. These results are all

obtained in terms of symplectic spaces, using the well known relationship
between extraspecial p-groups and non-degenerate symplectic spaces
over GF(p). The results we give do not depend on the underlying field
of the symplectic spaces.

Although the example of D(ii) indicates that 3 is probably a larger
class than QSDS? we should emphasize that we have still not definitely
constructed any exainples of groups outside QSDF other than the known
examples mentioned earlier. Apart from this obvious question it would
also be interesting to know whether these investigations can be reduced
entirely to studying extraspecial groups by showing that QsDô-groups
and 3-groups can be recognized by their extraspecial sections.
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Our terminology concerning symplectic spaces is slightly different from
that used in [5]. We call a subspace A isotropic if (x, y) = 0, for all
x, y ~ A; the term totally isotropic is used by Kaplansky. A hyperbolic
plane is simply a 2-dimensional non-degenerate symplectic space H;
that is, H has a basis {x, yl such that (x, y) = 1. The expression A E9 B
denotes the direct sum of subspaces A and B in the usual sense. If, in
addition the subspaces A and B are orthogonal (i.e. (a, b) = 0, for all
a E A, b E B) then we refer to the orthogonal sum of A and B. In what
follows, it is usually clear when a direct sum is an orthogonal sum as
one of the subspaces will be contained in the orthogonal complement
of the other. (The orthogonal complement of a subspace U is defined
to be U~ = {x E V ; (x, u) = 0 for all u ~ U}.) The only occasion on which
we stress the orthogonality is when considering an orthogonal sum V
of hyperbolic planes Hi. We denote this by

Kaplansky [5] refers to such a space as having a symplectic basis.

2. Extraspecial Y-Groups

LEMMA (2.1): Y and 3 are Qs-closed classes.

PROOF : Let G ~ Y and U  G. If H is an infinite subgroup of U, then
1 G : NG(H)|  |H| and so |U : NU(H)|  1 G : NG(H)|  IHI and Y is

s-closed.

Now let N « G and H/N be an infinite subgroup of G/N. Then there
is a subgroup U of G such that |U| = |H/N| and H = UN. NG(H)  NG( U)
and so

|G/N : NG/N(H/N)|  I G : NG(U)|  |U| = IHINI I

and so G/N ~ Y.
To prove that  is Q-closed we follow a similar argument, noting that

CG(H/N)  CG( U).

PROOF OF THEOREM B: Let E be an infinite extraspecial 9)-groups and
let A be a maximal abelian subgroup of E; then CE(A) = A. If lAI  lEI
then JE : CE(A)| &#x3E; lAI. Since A has finite exponent it is a direct product of
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finite abelian groups and so may be expressed as A = B x Y where Y is a
finite group containing Z = «E). Then |B| = lAI and

so that JE: CE(B)| &#x3E; IBI. But since B n E’ = 1, we have CE(B) = NE(B)
and so lE: NE(B)I &#x3E; |B|, contrary to E being a ’1)-groups. Therefore
JAI = IEI.
Now let H be any infinite subgroup of E and A a maximal abelian

subgroup of H. If H n Z = 1, then H is abelian and clearly lAI = ’IHI.
So we may assume that H &#x3E; Z. Let the elements of «H)IZ be xi, i ~ I.
For each i ~ I, there is an element Yi E E such that [xi, yi] ~ 1. Let

H1 = H, yi; i ~ I&#x3E;; then |H1/H|  |03B6(H)|  lAI and Ri is extraspecial.
Also, by (2.1), H1 is a Y-group. Let A1 be a maximal abelian subgroup
of Ni containing A. Then |A1|  JAI |H1/H|  |A|2 = IAI and, by the
above, IA11 = IH11. Therefore |A| = |A1| = |H1| = |H|, as required.

Conversely, let E be an infinite extraspecial group with an infinite
subgroup U such that |E : NE(U)| &#x3E; |U|. Then U n Z = 1 and so

NE( U) = CE(U)  UZ and U is abelian. Since E/ UZ is elementary
abelian, there is a subgroup H of E such that HCE( U) = E and
H n CE( U) = UZ. Now let A be a maximal abelian subgroup of H
containing UZ. Then A  CH(U) = UZ and so JAI = |UZ| = lUI. But
1 HIA = |H/UZ| = |E : CE(U)| &#x3E; 1 Ul and we obtain lAI |  |H|, as required.

3. Proof of Theorem A

It follows from (2.1) that if G is a Y-group then every section of G
is a Y-group. So we assume that G is not a 9)-group and show that there
is an extraspecial section of G which is not in Y. Starting with the group
G we shall repeatedly replace G with either a subgroup or factor group
thus imposing more and more restrictions on G until we are left with an
extraspecial group not in Y.

Let U be an infinite subgroup of G such that I G : NG( U)I | &#x3E; 1 UI. Clearly
we may assume that core G( U) = 1.

Let Z = «G). G/Z E R ô ~ X ~ QsDô ~ 3 ([2], Theorem 2). Therefore
!G. : CG(UZ/Z)|  |UZ/Z|  lUI and so

Replacing G by UCG(UZ/Z) we may assume:
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If c ~ C then Uc  UZc, where Zc = [U, c] is a finite subgroup of Z.
Zc  UG n Z and |UG| = UI so that UG n Z|  |U|. Thus there are
at most |U| finite subgroups of UG n Z. Therefore there is a finite

subgroup F of UG n Z such that UF contains more than |U| conjugates
of U. We choose F to have minimal order.

If Uc  UF, then [U, c]  F and so c ~ CG(UF/F). Now writing G
for UCG(UF/F), C for CG(UF/F), we have

(2) UF  G, F  Z, CG( UF/F) = C, C : Nc(U)| &#x3E; |U|, U n F = 1.
( U n F = 1 since F  Z and core U = 1.)

There is a subgroup D S F such that F/D is cyclic of prime order p,
say. By the minimality of F, U has at most |U| conjugates contained in
UD but has more than 1 Ul contained in UF. It follows that UD has
more than |U| conjugates contained in UF.

Replacing G by G/D, U by UD/D etc., we have

Let u ~ U, c E C; then [c, u] ~ F and so

i.e. C centralizes UP. Also

and so C centralizes U’.

Therefore U’ Up  UC = G.

Factoring out U’UP, we may assume that U is elementary abelian and
so U  CG(UF/F). We may also assume that G = CG(UF/F) and so
obtain

(4) F has order p, F  Z, UF is a normal elementary abelian p-group
U n F = 1, G = CG(UF/F) and G : N,,(U)l &#x3E; |U|.

Let D = CG(U), so that D = CG(UF)  G. Let g1, g2 ~ G ; then

[gi, u] ~ F and so
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and

Therefore G/D is an elementary abelian p-group and, since D  NG( U),
we have IGIDI &#x3E; lUI. We may now clearly replace G by a Sylow
p-subgroup and so assume that

(5) G is a p-group, F  Z, IFI = p, U n Z = 1, U and GICG(U) are
elementary abelian p-groups, UF  G and 1 G : N G(U)I &#x3E; |U|.

Let No G be maximal subject to N n UF = 1. Then if Ux  UN,
we have Ux  UN n UF = U(N n UF) = U and so U’ = U. Thus
NG( UN) = NG( U) and we can replace G by GIN. Thus, in addition to (5),
we also have

(6) F is the unique minimal normal subgroup of G and, in particular,
Z is locally cyclic.

We now construct an ascending chain of subgroups

(where p is the least ordinal such that Ipl &#x3E; |U|) such that

Then, letting A = ~03B103C1 A03B1, we see that AIF is abelian, A n Z = F
and JA : NA(U)L &#x3E; 1 UI.
We construct the Aa inductively. The limit ordinal case is clear as (i)

and (ii) follow immediately from (iv). So we may assume that Aa-1 has
been constructed. Let Ca-1 = CG(Aa-1IF); then since A03B1-1/F ~ Aa-1 ZIZ
and GIZE3, we have |G/C03B1-1|  IAa-11 = 1 Ul. Therefore

and so C03B1 - 1 &#x3E; C03B1 - 1 n A03B1 - 1 NG( U).
Let Z&#x3E; be the unique subgroup of A03B1- 1 Z/A03B1- 1 of order p, and let

a1 ~ C03B1-1 - A03B1-1 NG(U). Then a1, z&#x3E; is a finite abelian group and so
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|C03B1-1 : C03B1-1 ~ CG(a1, z&#x3E;)| is finite. Therefore there is an element

a2 ~ Cc03B1-1(a1, z&#x3E;) - A03B1-1 NG(U). Thus a1, a2, z&#x3E; is again a imitea2 ~ Cc03B1-1(a1, z&#x3E;) - A03B1-1 NG(U). is not a1, a2, z&#x3E; is again not cyclic.abelian group and since a1, a2&#x3E; is not cyclic, a1, a2, z&#x3E; is not cyclic.
Therefore a1, â2, z) contains an element no power of which is equal
to z. That is, there is an element a ~ C03B1 - 1 - A03B1-1 NG(U) such that

A03B1-1 Z/A03B1-1 has trivial intersection with (à ) .
Let A03B1 = A03B1-1, a&#x3E;. Clearly Aa/F is abelian, |A03B1| = IAcx-11 1 and

AcxN G(U) &#x3E; Acx-1 NG( U). Also

Replacing G by A, we have :

(7) G is a p-group, G/F is abelian, IFI = p, U is elementary abelian and
|G : NG(U)| &#x3E; |U|.

If x, y E G, then [x, y] E F and so [xP, y] = [x, y]P = 1 and so xP E Z
i.e. G/Z is elementary abelian. We can also repeat the argument preceding
(6) so that we may assume (7) together with

(8) G/Z is elementary abelian and Z is locally cyclic.

Let X be maximal subject to X &#x3E;, U, X n Z = F so that G/X is finite
if Z is finite or is countable if Z is infinite. In either case |G/X|  1 UI
and so |X : N x(U)1 &#x3E; |U|. Also X/F ~ XZIZ is elementary abelian and
so, replacing G by X, we have

(9) G is a p-group such that IG’l = p and GIG’ is elementary abelian,
U ~ G’ = 1 and |G : NG(U)| &#x3E; JUI.

It is now possible that Z &#x3E; G’. If so, then there is a subgroup Y &#x3E; UG’
such that G/F = Y/F x Z/F and clearly 03B6(Y) = G’. Replacing G by Y,
we obtain the required result.

Although this proof relies heavily on the fact that G/Z is a 3-group
(and not just a Y-group) it does not seem to be possible to adapt the
methods to give the corresponding result for 3. It is possible to prove
that an X-group which is not in 3 has a section G which is a p-group,
contains a central subgroup F of order p and a normal subgroup U &#x3E; F
such that 1 CG(UIF) : CG(U) &#x3E; |U|. The main difficulty in making further
reductions is that when one considers centralizers it is not usually
possible to factor out normal subgroups.
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4. Extraspecial QSD%-groups

We begin by giving a reduction theorem for arbitrary extraspecial
QSDF-groups.

LEMMA (4.1): Let G be an extraspecial section of DrieI Di, where each
Di is finite. Then G is isomorphic to a section of DrieI Ei, where
E, E Qs{Di} and Ei is a monolithic p-group.
[A group is monolithic if it has a unique minimal normal subgroup.]

PROOF : Let G = H/K where K « H K D = DrieI Di. Let T be a
Sylow p-subgroup of H so that TK = H and G xé TI(T n K). If S is a
Sylow p-subgroup of D containing T, then S = DrieI Si, where Si is a
Sylow p-subgroup of D,, and G is isomorphic to a section T/U of S.
We may assume that the index set I is well-ordered. For each i ~ I

choose Ni « Si maximal with respect to

where Mi = Nj; j  i&#x3E;.
Define N = Dric, Ni = UieI Mi. We show that N n T  U so that G

is isomorphic to the section NT/NU of S/N ~ Dric, Si/Ni. Suppose that
Mi n T  U ; then

Therefore, by induction, Mi n T  U for all i e I and so

Ei = Si/Ni is a p-group and Ei E Qs{Di}; it remains to show that Ei is
monolithic. Let XilNi be a normal subgroup of Si Ni. If X ~ TN  UN
then
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and so, by the maximality of Ni , we get X = Ni. Writing H/K again
for G as a section of Dric, Ei this means that for every non-trivial normal
subgroup X i of Ei, we have X ri H  K. Let L/K = «HIK) and
Zi = 03B6(Ei). Then (Zi n H)K = L and so Zi n H = Zi n L has order p.
If Y is a minimal normal subgroup of Ei, then (Y n H)K = L and so
Yi  L n Zi and we must have Y = Zi n L. Thus Zi n L is the monolith
of Ei.
To obtain Theorem E(i) we first need to consider the symplectic space

associated with an extraspecial group. We state this explicitly as

THEOREM (4.2): Let G be an extraspecial p-group with «G) = z&#x3E;.
(i) G = G/((G) becomes a non-degenerate symplectic space over GF(p)

if we define (x, y) = a, where ac = x«G), y = y«G) and [x, y] = z’.
(ii) G is a central direct product of groups of order p3 if and only if

the symplectic space G is an orthogonal sum of hyperbolic planes.

It is well-known (e.g. [5], p. 45) that a non-degenerate symplectic space
of countable dimension is an orthogonal sum of hyperbolic planes
so we see immediately that every countable extraspecial p-group is a
central direct product of groups of order p3.

PROOF OF THEOREM E(i): 
By Lemma (4.1) we may assume that G = H/K where

and each Ei is a monolithic p-group. Let L j K = 03B6(H/K), Zi = ((Ei)
and Ni be the monolith of Ei. If N = Dric, Ni , then (N n H)K = L.
HI(N n H) ~ NHIH is elementary abelian and so there is a subgroup
M such that ML = H and M n L = N n H. Thus HIK -- M/(H n N)
and, replacing H/K by M/(H n N), we may assume that K  N and
hence H n N = L.

N is elementary abelian and so there is a subgroup X such that N = Lx,
K = L n X and so HIK -- HX/KX. Replacing H/K by HX/KX we
may now assume that L = N.

Let Z = 03B6(E) = Dri~I Zi. Since H n Z = N, there is a subgroup
U  H such that UZ = E, U n Z = N. We show that the extraspecial
group U/K is a central direct product of groups of order p3. For each
i c- I, there is a finite extraspecial subgroup Vi such that Zi Vi = Ei,
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Zi n v = Ni. Let Tl = Dri~I Vi so that Z V = E and Z n V = N. Then
the extraspecial group V/K is the central direct product of the groups
Vi and so the associated symplectic space v/K is an orthogonal sum of
hyperbolic planes. But the symplectic spaces U/K and V/K are clearly
isomorphic under the mapping which takes U E U/K to its projection
on V/K in the symplectic space Z/K ~ V/K. Thus U/K is an orthogonal
sum of hyperbolic planes and H/K is embedded in the central product
U/K of groups of order p3.

5. Symplectic spaces associated with -groups and Y-groups

We begin by defining 9)-espaces and 3-spaces in such a way that an
extraspecial p-group G is a 9)-group (-group) if and only if its associated
symplectic space G is a 9)-espace (3-space). For 3 we can simply translate
(1.3) into the language of symplectic spaces so that a non-degenerate
symplectic space V over a field f is a 3-space if it satisfies :

if m is an infinite cardinal and U ~ V such that dim U  m, then
dim (V/U~)  m.

For Y we need to use the characterization of extraspecial Y-groups
given in Theorem B. Thus a non-degenerate symplectic space V over a
field t is a 9)-espace if it satisfies:

for each infinite-dimensional subspace U of V and for each maximal
isotropic subspace A of U, dim A = dim U.

We also require a rather stronger condition, calling V a 3B-space if it
satisfies :

if xtt is an infinite cardinal and U g V such that dim U  m, then there
is a subspace W ;2 U such that dim W  m and V = W Et) W~.

It is clear that an orthogonal sum of hyperbolic planes is a 3B-space
and that every non-degenerate subspace of a M-space is a 3-space.
We shall show that every 3-space of dimension Ni can be embedded
in a M-space. First we embed in a larger space so that a given subspace
is contained in an orthogonal summand of the same dimension.

LEMMA (5.1) : Let U be an infinite-dimensional subspace of the 3-space
E Then V can be embedded in a 3-space il = V(V U) such that
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dim V = dim V and V contains a subspace U = U(U) ~ U such that
dim U = dim U and V = U ~ U*.

Furthermore, if W ~ U and V = W ~ W1., then V = W ~ W*.

[Here X* denotes the orthogonal complement of X in v and X~ the
orthogonal complement in V.]

PROOF : By adjoining elements to U, if necessary, we may assume that
U n U 1. = 0. Let V = U ~ U~ C X ; since V is a 3-space, dim X  dim U
and we can choose a basis {xi; i E Il of X so that |I|  dim U.

Let V be spanned by V and basis elements yi, i El. Define an alternate
product on TV by

Let LI be the subspace of V spanned by U and the yi, ~ I ; then
dim CI = dim U.

Since

we have yi E W E9 W * and so W E9 W * = E
It remains to show that TV is a 3-space. Writing Y for yi; i ~ I&#x3E;,

we have V = U ~ U~ ~ X ~ Y.
Let S g V and dim S = m, where m is an infinite cardinal. Let A, B

and C denote the projections of S on U, U~ E9 X and Y, respectively.
Since V is a 3-space, we have dim (V/A~)  m and so

Since xi - yi ~ A*, for all i ~ I, it follows that
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Therefore

B* ;2 Y and so dim (V/B*) = dim (V/B~)  m. C* ;2 Ul Et) X Et) Y and
so dim (PIC*) = dim (VI(V n C*)). If 0 Y - X is the mapping which
takes yi to xi, for each i ~ I, then V n C* = (C~)~. Since Co is a subspace
of the 3-space V, we have dim (V/(C~)~)  m and hence dim (V/C*)  m.
S* ;2 A* n B* n C* and so we obtain dim (QS*) 5 m.

THEOREM (5.2): A 3-space V such that dim V is a regular cardinal can be
embedded in a space Y satisfying the condition :

if U ç Y and dim U  dim V then there is a subspace W ;2 U such
that V = W Et) W~ and dim W  dim V.

PROOF : Let p be the least ordinal with cardinality dim V ; then V has
a basis {xi; i  pl. Let Va = (x;; i  a) so that V = Uap v:.

We construct spaces V(03B1) ~ V and subspaces F,,, of V (a) such that

Then we may define V = ~03B103C1 V(03B1) = ~03B103C1 V03B1. Since dim f is a

regular cardinal, any subspace of V with dimension less than dim V is
contained in some V03B1 (a  p) and V - E9 f:.l and the result follows.
The spaces V (a) and V03B1 are constructed inductively. We may suppose

that Y(03B2) and g have been constructed for each fl  a.

as in Lemma (5.1) and

By the Lemma, whenever 03B2  a, V03B2 is an orthogonal summand of V(a).
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V(a) = V(03B3) + f7., by construction, and the induction hypothesis gives
V(a) = V + V03B3 + V03B1 = V + V03B1. Thus V(a) and V03B1 satisfy the conditions (1)
and (2).

Case (ii): a a limit ordinal.

r 
--

For each fl  a and for each y with f3  y  a;

and so % is an orthogonal summand of V0(03B1). By Lemma (5.1), Po is an
orthogonal summand of V(a). By construction,

Thus V(a) and TVa again satisfy conditions (1) and (2).
Since the space V in the theorem is clearly a W-space if its dimension

is 1, this shows that every 3-space of dimension 1 can be embedded
in a M-space. Combining this with Theorem D(i), which we prove now,
gives

THEOREM (5.3): A Y-space of dimension 1 can be embedded in a

M-space.

PROOF : It remains only to show that a 9)-espace of dimension 1 is a
3-space.

Suppose that V has a subspace U of dimension No such that

dim (V/U~) = 1. Then U = A + B, the sum of two isotropic subspaces,
and U~ = A~ n B~.

Therefore V has an isotropic subspace A, say, such that dim A = No
and dim (V/A~) = 1. There is a subspace W of V such that V = W E9 A’.
Let X = A + W; then A.l n X = A and so A is a maximal isotropic
subspace of X although dim X = 1 and dim A = No.

6. The counterexamples

We begin by giving an example of a non-degenerate subspace V of an
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orthogonal sum of hyperbolic planes which is not a M-space. In

particular itself is not an orthogonal sum of hyperbolic planes.
Let

where xi, yi&#x3E; is a hyperbolic plane such that (xi , Yi) = 1 and 03C91 is the

least uncountable ordinal.

Let V be the subspace of X spanned by the elements xi and yi - yj
with 0  i, j  W1. Writing zi for yi 2013 y0, we see that

(xi, zi) = 1 and (zi, xo) = 1.
Let

and suppose that V = U (B U~ where U ~ Uo. We show that U has
uncountable dimension.

For each i  W1, xi E U ~ U1 and so there is an element u E U such
that u - xi ~ U1. Let u = kxo + w, where k ~  and

For each n  cv with n ~ i, (zn, u - xi) = 0 and so (zn, w) = -k, for
infinitely many n. It follows that k = 0 and so w - xi ~ U~. That is,
for each i  W1, there is an element wi E W n U such that wi 2013 xi ~ U~.

Similarly, there is an element vi E W n U such that 03BDi 2013 Zi ~ U1.
Now (wi , 03BDj 2013 zj) = 0 and (03BDj, Wi-Xi) = 0. Therefore (wi , Vj) = (wi , zj)

and (vj, wi) = (vj, x;) and hence (wi , zj) = (xi, 03BDj).
If w; and vj are written as linear combinations of x’s and z’s then the

above shows that the coefficient of xj in wi is equal to the coefficient of
zi in Vj. Since (x0, 03BDj 2013 zj) = 0, we have (x0, 03BDj) = 1, for each j, and so
there is some zi having a non-zero coefficient in 03BDj. Therefore, for each j,
there is a Wi in which the coefficient of xj is non-zero. It follows that there
are uncountably many different w’is and dim ( W n U) is uncountable.

It should be noted that an orthogonal summand V of an orthogonal
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sum of hyperbolic planes is also an orthogonal sum of hyperbolic planes.
The method used by I. Kaplansky [4] for modules shows that V is an
orthogonal sum of spaces of countable dimension. The structure of
symplectic spaces of countable dimension then gives the required result.
We saw in Section 5 that every Y-space of dimension 1 can be

embedded in a M-space. Because M-spaces seem to be very close to
orthogonal sums of hyperbolic planes one might hope to prove a stronger
embedding theorem. However our next example is a W-space of dimen-
sion 1 which cannot be embedded in an orthogonal sum of hyperbolic
planes.

Let V have a basis consisting of xi , yi and z03B1, where i takes all ordinal
values less than W1 and a takes all limit ordinal values less than W1. We
define an alternate product on V by

For each 8  03C91, let

clearly V = ~03B503C91 V03B5. Each countable dimensional subspace of V is

contained in some V, and so to show that Tl is a M-space it is sufficient
to show that V = V03B5 ~ V~03B5. Certainly v~03B5 ~ xj, yj; j  B) and if

e = a + n, where a is a limit ordinal and 1  n  cv, then

Z03B1 + Y03B1 + Y03B1+1 + ... + Y03B1+n-1 - Z03B2 ~ V~03B5, for all 03B2 &#x3E; e.

If e is a limit ordinal then zE - zo E V~03B5, for all 03B2 &#x3E; e. In both cases

Zo C- V03B5 + V~03B5 and hence V ~ V~03B5 = V, as required.
Now suppose that

where Hi = ai, bi&#x3E; and (ai, bi) = 1. Write
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Let i be any ordinal less than w1; then there is a least ordinal j(i)  W1
such that Vi ~ Kj(i)(~ V). If j  03C91, then there is a least ordinal i(j)
such that Kj n v 9 Vi(j). Given an ordinal i  OJ 1, we define

Then

Let a = lub{jn} and f3 = lub{in}; then we have

We shall call a limit ordinal 03B2 for which there exists a limit ordinal
a = 03B1(03B2) satisfying (*) a fi-ordinal. We have shown that if i is any ordinal
less than cv 1, then there is a 03B2-ordinal 03B2 such that i 5 fl  W1. In

particular, there are uncountably many 03B2-ordinals.
If 03B2 is a 03B2-ordinal and a = 03B1(03B2), then Ka contains an element k,,, such

that k03B1 - z03B2 ~ K~03B1. Suppose, if possible, that there is no element k E H

such that k - z03B2 ~ K~03B1(03B2) for uncountably many 03B2-ordinals 03B2. Then,
for each a  W1, there is a smallest fi-ordinal 03B2(03B1) such that, for each
element k E Ka and for each 03B2-ordinal 03B3  03B2(03B1), k - z03B3 ~ K~03B1(03B3).
Choose some 03B2-ordinal 03B20 and define ao = 03B1(03B2) and, for each integer

n  1, 03B2n = 03B2(03B1n-1), 03B1n = 03B1(03B2n). Let 03B2 = lub{03B2n} and a = lub{03B1n}; then

so that p is a p-ordinal and a = 03B1(03B2). If k E Ka, then k E Kan for some n
and so k - z, 0 K~03B1(03B3) for any 03B2-ordinal 03B3  03B2n+1. In particular there is no
element k E Ka such that k - zo E K~03B1. This contradiction shows that there
is some element k E H such that k - z03B2 ~ K~03B1(03B2), for uncountably many
fl-ordinals 03B2.

It follows that
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We now consider the subspace V = V + k&#x3E; of H. Letting f7, = V + k&#x3E;,
we clearly have V = ~03B503C91 V03B5. This allows us to repeat the arguments
above, defining a 03B2-ordinal to be a limit ordinal fi for which there exists
a limit ordinal a zzi a(f3) such that

We are then able to show that there is some element h E H such that

h - xp E K~03B1(03B2), for uncountably many 03B2-ordinals fl.
It follows that

Suppose that h E K03B4 and let y be a fi-ordinal such that a(y) &#x3E; ô,
and k 2013 Z03B3 ~ K~03B1(03B3). But (h, k - z03B3) = 1 and this is a contradiction to

h e Kô z K03B1(03B3). Thus V cannot be embedded in an orthogonal sum of
hyperbolic planes.
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