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Introduction

A not necessarily associative algebra A is said to satisfy the maximal
condition for subalgebras if it has no infinite strictly ascending chains
of subalgebras or, equivalently, if every subalgebra of A is finitely
generated. Finite-dimensional algebras of course have this property,
and the general problem is whether a given class of algebras has infinite-
dimensional members with the property.
The aim of this paper is to construct a general infinite-dimensional

algebra which with certain restrictions on the multiplication constants
of its basis elements satisfies the maximal condition for subalgebras.
We thus reduce the above-mentioned problem to the (not necessarily
easier) one of determining whether subject to these restrictions the

multiplication constants can be chosen in such a way that our algebra
will be a member of the class in question.
The method enables us to prove (the motivation for our paper) that

over fields of characteristic zero there exist infinitely many infinite-
dimensional Lie algebras satisfying the maximal condition for sub-

algebras and thus giving an affirmative answer to Problem 1 of Amayo
and Stewart [1], when the field has characteristic zero. Another con-
sequence is the seemingly hitherto unknown property that the polynomial
algebra in one variable over any field satisfies the maximal condition
for subalgebras. This is false for two variables. We also show that not
only does the infinite cyclic group satisfy the maximal condition for
subgroups but also its group algebra satisfies the maximal condition
for subalgebras.

* This paper was supported by the Sonderforschungsbereich 40, Theoretische
Mathematik of Bonn University.
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Notation:

Unless otherwise specified k will denote an arbitrary field. We let Z
denote the set of all integers. If A is an algebra and S1, S2,... subsets
of A we let S1, S2 , ...&#x3E; denote the subalgebra generated by these
subsets. For n-fold products we introduce for convenience the non-
standard notation: [a, Ob] = a, [a, b] = ab, [a, n+1b] = [[a, nb], b] for
all n ~ 0; here a, b are elements of the algebra and ab denotes the given
product.

1. Construction and preliminary results

Let 03BB:Z  Z ~ k be a map and let A = A(2) be the infinite-

dimensional algebra over k with basis {ai : i E Z} and bilinear product
defined by

i, j E Z. The result we wish to prove is

THEOREM A : Let A(2) be the algebra defined above and suppose that
the following condition holds :

Then A(2) = a-2, a-1, a2&#x3E; and A(2) satisfies the maximal condition
for subalgebras.

The proof of theorem A is given in section 3. For now we deduce
several consequences of (1) and (2), which we suppose to hold throughout.

Evidently every non-zero element x of A can be uniquely expressed in
the form x = ar ar + 03B1r + 1 ar+1 + ... + as as, where r ~ s, aras =1= 0 and
the oti’s are scalars from k. In this case we say that x has lowest weight r
and highest weight s. We write l . wt(x) = r and h. wt(x) = s. We thus
have a map

defined by M(x) = (,ul(x), 03BC2(x)) = (1. wt(x), h. wt(x)). For a subset S of A
with S)0 not empty we let 03BC(S) denote the image of SB0 under this mapping,
and Jll (S), ,u2(S) the sets of first and second components respectively.
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We note that the elements with the same lowest and highest weights are
precisely the non-zero scalar multiples of the ai’s.

Tl is of course an immediate consequence of (1) and (2).

T2. Let M be a subset of Z and let

Then A(2, M) is a finitely generated subalgebra of A.

This is trivial if M is a finite subset. So let M be infinite and let Ml, M2
denote the subsets of positive and negative integers of M’B{0} respectively.
If Mi has at least two elements let n  m be its first two elements. Then
any other i in M 1 is such that i &#x3E; m and so may be expressed in the form

Let J={s:0 ~ s ~ n-1 and s = r(i) for some i in M1} and for each s
in the finite set J let

For each such s we denote by j(s) the least member of Ns. We claim that

For if Mi contains an element i other than n or m then i is in some Ns.
Thus i ~ j(s) and so k(i) ~ k(j(s)). Using Tl repeatedly we see that the
element [ai(s),k(i)-k(j(s»an] lies in the subalgebra on the right-hand side
of (*) and has lowest and highest weight both equal to

and this is i. Thus ai is in the right hand side for each i and (*) follows.
Similarly we can show that A(2, M2) is also finitely generated
(or this can be deduced from our next result since this shows that
A(03BB, M2) ~ A(03BB’, - M2) for some 2’ satisfying (2)). Thus A(2, M) is also
finitely generated and T2 is proved.
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For each n E Z let

Z~n = {i: i e Z and i ~ n} and Z~n = {i: i e Z and i ~ n}.

T3. Let 2* : Z x Z ~ k be the map defined by

Then 03BB* satisfies (2) if and only if 2 satisfies (2). The linear map A(03BB) ~ A(2 *)
defined by ai ~ a -j is an algebra isomorphism of A(2) onto A(2*). Under
this isomorphism, A(2, M) ~ A(2*, -M) for any subset M of Z.

The statement about 2* is trivial. The given map of A(2) onto A(2 *) is
obviously a linear isomorphism. For convenience let bi’s denote the
basis elements of A(2 *) with product as defined by (1). Then our linear
map is o : ai ~ b - i. Then using (3),

Thus by bilinearity of the product we have that 0 preserves products
and so is an algebra isomorphism. The remaining statement is obvious.

2. Proof of the result for A(03BB, Z &#x3E; o)

For n ~ 0 set A(2, n) = A(2, Z~n). Then A(2, n) is simply the vector
space with basis {ai : i ~ nl and product as defined by (1). Since A(2, n)
has co-dimension n + 1 in A(03BB, 0) it suffices to show that every subalgebra
of A(2, n) is finitely generated. Indeed we need only assume that only the
restriction of 2 to Z~n  Z~n satisfies (2). With this assumption the
statements T1-T3 hold, with the necessary modifications.
We now assume that n ~ 1 and we let B be a subalgebra of A(2, n),

where the restriction of 03BB to Z~n  Z~n satisfies (2) and product is defined
by (1). We wish to show that B is finitely generated.

NVe may without loss of generality assume that 0 ~ B ~ A(2, m) for
any m ~ n, since by T2 these subalgebras are finitely generated. Let
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and

Then I is a set of positive integers, M is a subset of I and consists of the
integers i for which ai is in B, and C is a finitely generated subalgebra of
B, by T2. Clearly if I = M then C = B and we are finished. So assume
that C ~ B, whence I ~ M. This means that there is at least one i and

an element b of B with i = l. wt(b) ~ h. wt(b). For a fixed but arbitrary
element i of IBM let

and

be the least integer in I(i). Then i + 1 ~ f(i), since otherwise f(i) = i and

so i is in M, a contradiction.

For part (i) suppose to the contrary that for some such j a b exists with
03BCi(b) = ,u2(b) = f (j). Then f(j) is in M and af(j) is in B. Now by definition
B contains an element x with lowest weight j and heighest weight f(j).
If a is the coefficient of af(j) in x then B contains y = x - 03B1af(j). We have
y ~ 0 since j ~ f(j). Further k = h. wt(y)  jo) and k is in I(j),since
1. wt(y) = j. But this contradicts the definition of f(j) as the least member
of Io). Thus no such b exists.
For part (ii) the implication in one direction is trivial. Now suppose

that fli) = jo) but i ~ j. Without loss of generality we may suppose
that i  j. Now B contains elements

with ~ 0. Thus, as i  j and J(i) = f(j), B contains the
element w = x - , which has lowest weight i and highest weight
k for some k  f(i). But then k is in I(i) and this contradicts the minimality
of f(i). Thus if fii) = JU) then i = j. This completes the proof of SI.
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For each i in IBM it is clear that B contains elements of the form

ai + (Xi + 1 ai + 1 + ... + otf(i) a f(i)’ with lt f(i) =1= 0. So we may define

Then D(i) is a non-empty subset of B for each i in IBM.

S2. For each i in IBM let di be a fixed but arbitrary element of D(i).
Let E = E(C, Idi : i E IBM}) = C + LieIBM kdi be the vector subspace
of B spanned by the elements of C and the chosen dj’s (just one di
for each distinct i in IBM). Then E = B.

To prove S2 we take x in BBO and use induction on l(x) = ,u2(X) - ,ul (x)
to show that x is in E. If 1(x) = 0 then x E C ~ E. Let 1(x) &#x3E; 0 and suppose

inductively that y E E whenever y E BB0 and 1(y)  l(x). Let

where 03B2r03B2s ~ 0. If r E M then ar ~ C and so y = x - 03B2rar ~ BBO and
1(y) = l(x) - 1, whence y e E and x = y + 03B2rar e E. If r e M then r e IBM
and s E I(s) and so s ~ f(r). Then y = x - f3rdr = 0 or y ~ BB0 and has
highest weight not exceeding s and lowest weight greater than r and so
1(y)  1(x). In either case y ~ E and so x = y + 03B2rdr ~ E. This completes
our induction and proves that E = B.

It is clear from S2 that our contention that B is finitely generated will be
proved if we can find a finitely generated subalgebra F of B with the
properties :

Then such an F will equal B. The rest of the proof is aimed at obtaining
such an F, and for this we need to define a few more sets. It follows from
S2 that if IBM is a finite set then we may take F as one of the E’s above.
So we assume that IBM is an infinite set. Further let us fix one choice
{di : i E IBM} of the d/s and let E = B be the corresponding E as defined
in S2.

Let n  m be the first two integers in IBM and let J = IBM ~ {n, ml).
Then any i in J has the form
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So we may define the finite set

For each s in R let

and

be the least integer in R(s). It follows from Sl that the set

is a finite set. If i E R(s)BR*(s) then Xi) &#x3E; f(j(s)) and so has the form

where p(i), q(i) are integers with p(i) ~ 0, 0 ~ q(i) ~ fin) - 1 . Let

Q(s) = {t : 0 ~ t ~ f(n) - 1 and t = q(i) for some i E R(s)BR*(s)}, and for
each t in the finite set Q(s) let

and

Then j(s, t) is the least integer in R(s, t) and i(s, t) is that element of

R(s)’R*(s) for which j(s, t) = f(i(s, t)). Define

Then 7* is a finite set and so

is a finitely generated subalgebra of B. Finally let F be the vector space
sum of the two finitely generated subalgebras C and G:
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We will show that the vector space F satisfies the conditions exhibited

in (4) and so must equal B, whence B is finitely generated. Before doing
this we need

S3. Let H be a subspace of B such that C - H. Let i E J and suppose
that H n D(j) ~  for aU jE IBM with j  i. If H contains an
element of highest weight fli) then H n D(i) =1= 0.

Among the elements x of H with highest heighest weight f(i) pick xo of
minimal length 1(XO) = 03BC2(x) - 03BC1(x). Then of course 03BC2(x0) = f(i) and
03BC1(x) = j for some j in I. If j = i then multiplication of xo by a suitable
scalar yields an element of H n D(i) and we are done. Let a denote the
coefficient of aj in xo. Suppose if possible that j ~ i. Now j ~ Xi) since
this would contradict S1. Thus 1(xo) &#x3E; 0. If j E M then aj ~ C z H and
so H contains y = x-03B1aj, an element of highest weight fii) and length
at most l(xo) -1. This contradicts the choice of xo. Thus j E IBM, and
hence f(i) ~ I(j) and f(j) ~ Xi). Since j ~ i we have f(i)  f(i), by S 1.

We contend that j  i. For otherwise i  j  lU)  J(i), and then
subtraction of a suitable scalar multiple of xo from di would yield an
element w of B with Jll (w) = i, 03BC2(w) = r  fii). But then r E I(i) and this
would contradict the definition of Xi) as the least integer in I(i). Thus
j  i and so H n D(j) ~ , by hypothesis. Let

Since JU)  fii), the element x, = Xo - aej has highest weight Xi). It has
lowest weight greater than j and so l(x1) = f(i) - 03BC1(x1)  f(i) - j = l(xo).
Since also xi e H we get a contradiction to the choice of x0. Therefore
j = ,ul(xo) = i and S3 is proved.
We are now ready to prove that

For this we use induction on i. If i = n or m then by definition G and so F
contains di and so (*) holds in these cases. Suppose that i &#x3E; m and

suppose inductively that (*) holds for all j in IBM with j  i. Then i E J

and hence by (5) we have that i E R(s) for some s in R. If i ~ R*(s) then by
definition we have di E G ~ F and so (*) holds for i. Suppose that
i E R(s)BR*(s). Then f(i) &#x3E; j(j(s)) and so by (6) we have f(i) E R(s, t) for
some t in Q(s). Thus f(i) ~ j(s, t) = f(i(s, t)) and so p(i) ~ p(i(s, t)), since
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q(i) = q(i(s, t)) = t. Let r = p(i) - p(i(s, t)). Then G and so F contains the
element

Now j(s, t) ~ f(n), since i(s, t) &#x3E; m &#x3E; n, by S1. Therefore

Thus applying Tl repeatedly we see that x has highest weight
03BC2(x) = j(s, t) + rf(n). Using (6), the definition of r, and the fact that i and

i(s, t) are in R(s, t) we have

Thus F has an element of highest weight f(i) and so satisfies the hypothesis
of S3, whence F n D(i) ~  and (*) holds for i. This completes our
induction. Thus (*) holds and so F = B and B is finitely generated.

It is clear from the proof above that in place of F we could just as well
have taken F* = C + G*, where G* is the subspace of G defined by

A look at the proof of T2 shows that a similar expression holds for A(2, M)
in, general and in particular for C.
We can now state the result we have proved :

THEOREM B : Let 2 : Z~0 x Z~0 ~ k be a map and let A(2, Z~0) be the
algebra defined over k with basis {ai : i E Z~0} and product defined by
aiaj = 2(i,j)ai+j for all i, j ~ 0. If there exists an io such that 2(i,j) =1= 0
whenever i =1= j and i, j ~ io then A(2, Z~ 0) satisfies the maximal condition
for subalgebras. In this case every subalgebra B of A(2, Z~0) contains a
finite number b1, b2 , ..., bk of elements such that B = Bo + B*, where Bo
is a subspace of dimension not exceeding io and B* is the subspace

Furthermore B* is an ideal of B and is the set of elements of B of the.f’orm
 + ..., where j ~ io.
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If we wish to be more explicit then b, and certain of the b/s give us
our C and certain of the b/s and b2 give G*.

3. Proof of theorem A

The proof here follows the same lines as that in section 2, except for
a couple of steps. Let A 1 = A(03BB, Z~0) and A2 = A(2, Z~0). Then by
theorem B and T3 we know that A and A2 satisfy the maximal condition
for subalgebras. Let B be a subalgebra of A(03BB) and let B i = B n A 1,
B2 = B n A2 and C = (B1, B2). Then C is a finitely generated sub-
algebra of B. Suppose that C ~ B. Then B contains elements with lowest
weight negative and highest weight positive. If C = 0 set

Let

and

We let n  m be the first two elements of Il. Then

Let

Then this is a finite set. For each i in Il let

and

Rl. (i) Let j E Il. If b E B and Jl2(b) = f(j) then
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Furthermore af(j)~ B.

That f(j) is positive follows from the definition of I and I2(j). We know
that B contains an element x of lowest weight - j and highest weight
f(j). If a b exists with 03BC1(b) &#x3E; -j and P2(b) = f(j) then subtraction of a
suitable scalar multiple of b from x yields an element xi with 03BC1(x1) = - j
and 03BC2(x1)  f(j). If 03BC2(x1) C- P2(B2) then the subtraction of a suitable
multiple of an element of B2 yields X2 with 03BC1(x2) = -j and

were non-positive we would have - j ~ 03BC1(B1) and thus contradict the
definition of I and I1 ). Continuing in this way we arrive after a finite
number of steps at an element xr with 111 (Xr) = - j and 112(Xr) = k  f(j)
and k ft 03BC2(B2). But this implies that

a contradiction. Thus 03BC1(b) ~ -j 0. In particular af(j) is not in B,
since 03BC1(af(j)) = f(j) &#x3E; 0. This proves part (i) of R1. Part (ii) follows in
the same way as for S 1 or follows from part (i) above since f(i) = f(j)
would then imply - i ~ -j ~ - i.

If the set 7 is not empty then I2(i) is not empty for each i in I1. Thus

with all 03B1j in k and 03B1f(i) =1= 01

is a non-empty subset of B for each i in ¡1.

R2. For each i in Il let di be a fixed but arbitrary element of D(i). Let

be the subspace of C spanned by the elements of B1 and B2 and let

be the subspace of B spanned by the elements of C* and the dj’s.
Then E = B.
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The proof is the same as before for S2. We induct on the length ofxe B)0
to show that x ~ E. If 1(x) = 0 then x ~ B 1 or B2 and we are done. Let
1(x) &#x3E; 0 and assume that E contains all y in B with 1(y)  1(x). If x is in
B1 or B2 we are done. If not then 03BC1(x) = - i and 03BC2(X) = j with i, j &#x3E; 0.

If - i E ,ul(B1) or j ~ 03BC2(B2) then substaction of a suitable element of B1
or B2 from x yields an element y ~ 0 with y in E and 1(y)  1(x).Thus y
and so x lies in E. If - i~03BC1(B1) and j~03BC2(B2) then (i, j) ~ I, i E I1, j E 12(i)
and so j ~ Xi). Subtraction of a suitable scalar multiple of di from x
then gives an element w which is either 0 or else has 03BC1(w) &#x3E; 03BC1(x) and
03BC2(w) ~ ,u2(w). Thus w = 0 or l(w)  1(x) and w E B, so w E E and hence
x E E. Therefore E contains all elements of B and so equals B.
So to show that B is finitely generated we need only find a finitely

generated subalgebra F of B and a subspace F* of F with

We now set out to find such an F. Here the proof diverges a bit from that
in section 2.

If Il or I’ is a finite set then {f(i) : i E I1} is a finite set and so in view
of R 1 we have that I is a finite set and so we may take F* = E as defined
in R2 and F = C + F* = C, {di: i~I1}&#x3E;. For then F* = B and so
F = B. So let us assume that both Il and I’ are infinite sets and let us
fix one choice of the di’s and E.

R3. (i) Let j E I1. If b ~ BB0 and 03BC1(b) = - j then 03BC2(b) ~ lU).
(ii) Let H be a subspace of B with C* ~ H. Suppose that i ~ I1 and

H n D(j) ~  for all j in Il with f(j)  f(i). If H contains an
element of highest weight Xi) then H n D(i) =1= p.

For part (i): Suppose to the contrary that there is a b with 03BC1(b) = -j
and ,u2(b)  f(j). Among the elements b of B with this property choose
one bo with k = 03BC2(b0)  f(j) as small as possible. If k E 03BC2(B2) then
subtraction of a suitable element of B2 from bo would yield an element
b 1 with 03BC1(b1) = - j and 03BC2(b1)  k, thus contradicting the choice of bo.
If on the other hand k is not positive then b o is in B 1, so -j~03BC1(B1),
a contradiction to the definition of I. So we have k positive, (j, k) E I,
k E 12(j), k  f(j), and this contradicts the definition of f(j). So we must
have 03BC2(b) ~ f(j), and (i) is proved.
For part (ii): Let x be an element of H with 03BC2(X) = f(i). By RI we

know that 03BC1(x) ~ - i. Choose such an x with 03BC1(x) as large as possible.
Then 03BC1(x) ~ 03BC1(B1) for then the subtraction of a suitable element of B 1
and so H would yield a y in H with 03BC1(y) &#x3E; 03BC1(x) and 03BC2(y) = f(i),
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a contradiction to the choice of x. Thus if 03BC1(x) = -k then (k, f(i)) E I,
f(i) E I’(k) and so f(k) ~ f(i). If k ~ i then by R1 we have f(k)  f(i)
and so by hypothesis there exists an element

in H n D(k). If we subtract a suitable multiple of ek from x we obtain w

in H with 03BC2(w) = Xi) and ,ul(w) &#x3E; -k = ,ul(x), thus contradicting the
choice of x. Thus k = i and a suitable multiple of x is in H n D(i).
The stage is now set for the proof of theorem A. We define as before

(recall that n  m are the first two integers in I1)

Using (7) we define for each s in R1,

and set

Then

is, by RI, a finite set. For each i in R1(s)BR1*(s) we have

where p(i) ~ 0 and 0 ~ q(i) ~ f (n) -1. So we define

and set

We let
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Define

Then I1* is a finite subset of Il and hence

is a finitely generated subalgebra of B. Let

We claim that F* satisfies (8). Suppose to the contrary that for some
i in Il we have F* n D(i) = 0. Then as dn, dm are in G* we must have
i ~ J1. Now choose i such that f(i) is minimal with respect to

F* n D(i) = 0. We have i ~ R1(s) for some s in R 1 and so f(i) &#x3E; f0(s)),
since dk E G* if f(k) ~ f U(s». Thus f(i) E Rl(s, t) for some t in Q(s).
We also have by the choice of i that F* n DU) =1= j3 if f U)  f(i). Now
f(i) &#x3E; j(s, t) = f(i(s, t)). Thus p(i) &#x3E; p(i(s, t)) and so r = p(i) - p(i(s, t)) &#x3E; 0.

As i(s, t) ~ n we have by R1, j(s, t) ~ f(n). Thus using Tl repeatedly
wè see that G* contains the element w = [di(s, t), rdnJ and this has highest
weight j(s, t) + rf(n) = f(i), on using (9). But then by T3 we have
F* n D(i) ~ , a contradiction. Thus F* satisfies (8) and so

is a finitely generated subalgebra. This proves theorem A.
Using theorem B and the definition of G* and F* above we may state

a more descriptive form of theorem A as :

THEOREM A* : Let A(03BB) be the infinite-dimensional algebra defined by
(1) and suppose that 03BB(i, j) ~ 0 whenever i =1= j. Then A(2) = a-2, a-1, a2)
satisfies the maximal condition for subalgebras. In this case every sub-
algebra B of A contains elements b1, b2, b3, b4, b5, ..., bn such that

If there is an integer m with 2(m, m) = 0 then A(2) has no non-trivial
one-sided ideals.
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PROOF : That a-2, a-1, a2 or a - 2, a1, a2 generate A is trivial. Evidently
if a one-sided ideal B contains an an then it contains ao and so by (1)
it contains all ai. Suppose that B contains no ai and let

be an element of minimal length in B (assuming that B ~ 0), where
03B1r03B1s ~ 0. By applying am-r on the left or right if necessary we may
assume that r = m. But then application of am to w yields a non-zero
element of B of length less than l(w), a contradiction.

4. Applications

Let L be the algebra over k with basis a- 1, a0, a1, a2 , ..., and multi-
plication given by

where

and

and (’::) is the usual binomial coefficient with the understanding that
(’::) = 0 whenever n &#x3E; m, m  0 or n  0. Thus 03BB(-1,j) = 1 = -03BB(j, -1)

for all j &#x3E; -1 and, for i, j &#x3E; -1,

It can also be checked (or see [2]) that

for all i, j, k. Thus L is a simple Lie algebra.
If the field has characteristic p &#x3E; 0 then L is a locally finite-dimensional

Lie algebra and so cannot satisfy the maximal condition for subalgebras.
This is so because if n ~ 1 and 1 ~ i ~ pn - 2 then 2(i,pn-i-1) = 0
(see [2]). Thus condition (2) of theorem A is necessary.
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If the field has characteristic zero then clearly 2( i, j) = 0 if and only if
i = j. Thus by theorem A or B we have that L satisfies the maximal
condition for subalgebras. In this case let, for each n ~ -1, Ln be the
subspace of L spanned by the basis elements an, an+1, an+2, .... Then
each Ln is a subalgebra of L and Ln is an ideal of Lo for all n ~ 0. If
Ln = [Ln, Ln] is the derived algebra of Ln then Ln/Ln has dimension
precisely n + 1. Thus Ln ~ Lm if and only if n = m. So we have

THEOREM C: Over any field of characteristic zero there exists a countable
infinity of pairwise non-isomorphic infinite-dimensional Lie algebras
satisfying the maximal condition for subalgebras.

Over a field k of characteristic zero the Lie algebra W (see [1] pp. 209
for its other properties) with basis {wi : i ~ Z} and multiplication
Wi Wj = (j - i)wi+j is a simple Lie algebra satisfying the maximal condition
for subalgebras (by theorem A).
At the present time we have been unable to find 2 with 2(i,j) = -03BB(i,j),

03BB(i,i) = 0, and satisfying (2) and (10) over a field of characteristic p &#x3E; 0.

It might be possible to make further progress by using a more complicated
definition of multiplication, but a proof that every subalgebra is finitely
generated would become correspondingly more difficult.

If we take A(03BB) with 2(i, i) = 0, 2(i,j) = 1 or -1 according as ij or
i &#x3E; j then we obtain an anti-symmetric algebra and in much the same
way as before we have

THEOREM D: Over any field there exist infinitely many pairwise non-
isomorphic infinite-dimensional anti-symmetric algebras satisfying the

maximal condition for subalgebras.

THEOREM E: The polynomial algebras k[t], k[t, t- 1] the maximal

condition for subalgebras.

PROOF: Using theorem B or A, take ai = ti and 2(i, j) = 1 for all i, j.
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