Compositio Mathematica

Walter Baur

Decidability and undecidability of theories of abelian groups with predicates for subgroups

Compositio Mathematica, tome 31, n 1 (1975), p. 23-30
http://www.numdam.org/item?id=CM_1975__31_1_23_0
© Foundation Compositio Mathematica, 1975, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

DECIDABILITY AND UNDECIDABILITY OF THEORIES OF ABELIAN GROUPS WITH PREDICATES FOR SUBGROUPS

Walter Baur ${ }^{1}$

0. Introduction

Let $n>1, k \leqq 5$ be natural numbers and let $T(n, k)$ be the first-order theory of the class of all structures $\left\langle A, A_{0}, \cdots, A_{k-1}\right\rangle$ where A is an n-bounded abelian group (i.e. $n A=0$) and A_{0}, \cdots, A_{k-1} are arbitrary subgroups of A. In the present paper the following results concerning decidability of $T(n, k)$ are obtained: (i) $T(n, 5)$ is undecidable, (ii) if n contains a square then $T(n, 4)$ is undecidable, (iii) if n is squarefree then $T(n, 3)$ is decidable. A trivial consequence of (ii) is that the theory of abelian groups with four distinguished subgroups is undecidable ${ }^{2}$

Terminology: 'group' means 'abelian group' except where stated otherwise. 'Countable' means 'finite or countably infinite'. For all undefined notions from logic we refer to [5].

1. Undecidability

The first-order language L of abelian groups consists of a binary function symbol + and a constant 0 . Let f_{0}, f_{1} be two unary function symbols and put $L_{1}=L \cup\left\{f_{0}, f_{1}\right\}$. For $n \geqq 1$ let $T_{1}(n)$ denote the theory of all structures $\left\langle A, f_{0}, f_{1}\right\rangle$ where A is an n-bounded abelian group and f_{0}, f_{1} are arbitrary automorphisms of A.

Theorem 1: $T_{1}(n)$ is undecidable for all $n>1$.

Proof: Let G be a (noncommutative) finitely presented 2-generator group with undecidable word problem (see e.g. Higman [2]). Assume

[^0]that G is the quotient of the free group on the generators f_{0}, f_{1} modulo the normal subgroup generated by t_{0}, \cdots, t_{m-1} where each t_{μ} is a word in $f_{0}, f_{1}, f_{0}^{-1}, f_{1}^{-1}$.

Consider f_{0}^{-1}, f_{1}^{-1} as new function symbols and let $T_{2}(n)$ be the theory in the language $L_{1} \cup\left\{f_{0}^{-1}, f_{1}^{-1}\right\}$ obtained from $T_{1}(n)$ by adding

$$
\forall x\left(f_{0} f_{0}^{-1}(x)=f_{1} f_{1}^{-1}(x)=x\right)
$$

as a new axiom. $T_{2}(n)$ is an extension by definitions of $T_{1}(n)$ and therefore it suffices to show that $T_{2}(n)$ is undecidable.

Since G has undecidable word problem it suffices to show that for any word t in $f_{0}, f_{1}, f_{0}^{-1}, f_{1}^{-1}$ the following two statements are equivalent
(i) $T_{2}(n) \vdash \forall x\left(\bigwedge_{\mu<m} t_{\mu}(x)=x\right) \rightarrow \forall x(t(x)=x)$,
(ii) $t=e$ in G (e is the neutral element of G).

Clearly (ii) implies (i). To prove the other direction assume $t \neq e$ in G. Let \mathbb{Z} be the ring of integers and put $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$. Let A be the additive group of the group ring $\mathbb{Z}_{n}[G]$ and define two automorphisms of A by $f_{i}^{A}(a)=f_{i} \cdot a(i=0,1)$. Let \mathfrak{A} be the unique expansion of $\left\langle A, f_{0}^{A}, f_{1}^{A}\right\rangle$ to a model of $T_{2}(n)$. Since G operates faithfully on A we have $\mathfrak{A} \vDash \exists x(t(x) \neq x)$, but clearly $\mathfrak{A} \vDash \forall x\left(\bigwedge_{\mu<m} t_{\mu}(x)=x\right)$. Hence (i) does not hold and Theorem 1 is proved.

Let P_{0}, \cdots, P_{4} be fivie unary predicate symbols. For $n \geqq 1$ and $k \leqq 5$ let $T(n, k)$ denote the $L \cup\left\{P_{0}, \cdots, P_{k-1}\right\}$-theory of all structures $\left\langle A, A_{0}, \cdots, A_{k-1}\right\rangle$ where A is an n-bounded group and A_{0}, \cdots, A_{k-1} are arbitrary subgroups of A.

Theorem 2:

(i) $T(n, 5)$ is undecidable for all $n>1$,
(ii) if n contains a square then $T(n, 4)$ is undecidable.

Proof: (i) By Theorem 1 it suffices to give a faithful interpretation of $T_{1}(n)$ in a finite extension $T^{\prime}(n)$ of $T(n, 5) . T^{\prime}(n)$ is obtained from $T(n, 5)$ by adding the following new axioms
(1) $\forall x \exists!y \exists!z\left(P_{3}(y) \& P_{4}(z) \& x=y+z\right)$,
(2) $\forall y\left(P_{3}(y) \rightarrow \exists!z\left(P_{4}(z) \& P_{i}(y+z)\right)\right) \quad(i \leqq 2)$,
(3) $\forall z\left(P_{4}(z) \rightarrow \exists!y\left(P_{3}(y) \& P_{i}(y+z)\right)\right) \quad(i \leqq 2)$.

A model of $T^{\prime}(n)$ is nothing else than an n-bounded group A together with a direct sum decomposition $A=A_{3} \oplus A_{4}$ and the graphs of three isomorphisms between A_{3} and A_{4}.

Rather than giving the formal details of the interpretation we show how to get a model of $T_{1}(n)$ out of a model of $T^{\prime}(n)$ and that we get all models of $T_{1}(n)$ in this way.

Let $\mathfrak{A l}=\left\langle A, A_{0}, \cdots, A_{4}\right\rangle$ be a model of $T^{\prime}(n)$. The axioms of $T^{\prime}(n)$ guarantee that the maps $g_{0}, g_{1}: A_{3} \rightarrow A_{3}$ defined by
$g_{i}(a)=a^{\prime} \Leftrightarrow \mathfrak{A} \vDash P_{3}(a) \& P_{3}\left(a^{\prime}\right) \& \exists z\left(P_{4}(z) \& P_{i}(a+z) \& P_{2}\left(a^{\prime}+z\right)\right)$
are well-defined automorphisms of A_{3}. Therefore $\left\langle A_{3}, g_{0}, g_{1}\right\rangle$ is a model of $T_{1}(n)$.

Conversely assume that $\mathfrak{B}=\left\langle B, g_{0}, g_{1}\right\rangle$ is a model of $T_{1}(n)$. Define $A=B \oplus B, A_{0}=\operatorname{graph}\left(g_{0}\right), A_{1}=\operatorname{graph}\left(g_{1}\right), A_{2}=\{\langle b, b\rangle \mid b \in B\}, A_{3}=$ left copy of B in $A, A_{4}=$ right copy of B in A. Obviously $\mathfrak{H}=\left\langle A, A_{0}, \cdots, A_{4}\right\rangle$ is a model of $T^{\prime}(n)$ and the model of $T_{1}(n)$ associated with \mathfrak{A} in the way described above is isomorphic to \mathfrak{B}.
(ii) Let p be a prime number such that $p^{k} \mid n$ and $p^{k+1} \nmid n$ for some $k>1$. We interprete $T^{\prime}(p)$ faithfully in a finite extension T of some extension by definition of $T(n, 4)$. Let T be the theory obtained from $T(n, 4)$ by adding (2), (3) and
(4) $\forall x\left(P_{4}(x) \leftrightarrow\left(p^{k-1} \mid x \& p x=0\right)\right)$,
(5) $\forall x\left(\left(P_{3}(x) \& P_{4}(x)\right) \rightarrow x=0\right)$.

Let $\left\langle A, A_{0}, \cdots, A_{4}\right\rangle$ be a model of $T . B=A_{3} \oplus A_{4}$ can be considered as a subgroup of A, by axiom (5). From (2), (3), (4) it follows that

$$
\left\langle B, A_{0} \cap B, A_{1} \cap B, A_{2} \cap B, A_{3}, A_{4}\right\rangle
$$

is a model of $T^{\prime}(p)$.
Conversely assume that $\mathfrak{B}=\left\langle B, B_{0}, \cdots, B_{4}\right\rangle$ is a model of $T^{\prime}(p)$. Embed B_{4} in a direct sum A^{\prime} of cyclic groups of order p^{k} such that $B_{4}=p^{k-1} A^{\prime}$ and consider B in the obvious way as a subgroup of $A=B_{3} \oplus A^{\prime}$. Then

$$
\mathfrak{H}=\left\langle A, B_{0}, B_{1}, B_{2}, B_{3}, B_{4}\right\rangle
$$

is a model of T and the model of $T^{\prime}(p)$ associated with \mathfrak{A} in the way described above is isomorphic to \mathfrak{B}. Again it should be clear now how the interpretation works.

Since $T(4,4)$ is a finite extension of the theory of abelian groups with four predicates for subgroups we obtain

Corollary 1^{1} : The theory of abelian groups with four predicates denoting subgroups is undecidable.

Kozlov and Kokorin [4] showed that the theory of torsionfree abelian groups with one predicate denoting a subgroup is decidable. The next corollary answers a question of [4]. It follows from the fact that every group is a quotient of a torsionfree group.

Corollary 2^{1} : The theory of torsionfree groups with five predicates denoting subgroups is undecidable.

2. Decidability

This section is devoted to the proof of the following

Theorem 3: If n is a squarefree positive number then $T(n, 3)$ is decidable.

Assume $n=p_{0} \cdots p_{k-1}>1$ squarefree, p_{i} prime. (If $n=1$ the theorem is obvious). Since every model \mathfrak{A} of $T(n, 3)$ is a direct product $\mathfrak{H}=\prod_{i<k} \mathfrak{H}_{i}$ where \mathfrak{H}_{i} is a model of $T\left(p_{i}, 3\right)$ (see e.g. Kaplansky [3]) it suffices to prove that $T(p, 3)$ is decidable for any prime number p, by the Feferman-Vaught-Theorem [1].

Let p be an arbitrary prime number fixed for the rest of the paper. A model of $T(p, 3)$ is nothing else than a vectorspace U over the field K with p elements together with three subspaces U_{0}, U_{1}, U_{2}. In the following 'vectorspace" always means 'vectorspace over K '. Before starting with the proof we introduce some terminology.

Let U be a subspace of the vectorspace V and let $B=\left(x_{\alpha}\right)_{\alpha<\lambda}$ (λ an ordinal) be a sequence of elements $x_{\alpha} \in V$. We say that B is linearly independent over U (a basis of V / U resp.) if the sequence $\left(x_{\alpha}+U\right)_{\alpha<\lambda}$ is linearly independent in V / U (a basis of V / U resp.). Let $B^{\prime}=\left(x_{\alpha}^{\prime}\right)_{\alpha<\lambda^{\prime}}$ be another sequence from $V . B \cup B^{\prime}$ denotes the sequence $\left(y_{\alpha}\right)_{\alpha<\lambda+\lambda^{\prime}}$ where $y_{\alpha}=x_{\alpha}$ if $\alpha<\lambda$ and $y_{\lambda+\alpha}=x_{\alpha}^{\prime}$ if $\alpha<\lambda^{\prime}$.

With any countable model $\mathfrak{A}=\left\langle U, U_{0}, U_{1}, U_{2}\right\rangle$ of $T(p, 3)$ we associate nine vectorspaces V_{0}, \cdots, V_{7}, V as follows .

$$
\begin{aligned}
& V_{0}=U / U_{0}+U_{1}+U_{2} \\
& V_{1}=U_{0}+U_{1}+U_{2} / U_{1}+U_{2} \\
& V_{2}=U_{0}+U_{1}+U_{2} / U_{0}+U_{2}
\end{aligned}
$$

[^1]\[

$$
\begin{aligned}
& V_{3}=U_{0}+U_{1}+U_{2} / U_{0}+U_{1} \\
& V_{4}=U_{0} \cap U_{1} / U_{0} \cap U_{1} \cap U_{2} \\
& V_{5}=U_{0} \cap U_{2} / U_{0} \cap U_{1} \cap U_{2} \\
& V_{6}=U_{1} \cap U_{2} / U_{0} \cap U_{1} \cap U_{2} \\
& V_{7}=U_{0} \cap U_{1} \cap U_{2} \\
& V=U_{0} \cap\left(U_{1}+U_{2}\right) /\left(U_{0} \cap U_{1}+U_{0} \cap U_{2}\right)
\end{aligned}
$$
\]

For $i<8$ put $\kappa_{i}=\operatorname{dim} V_{i}, \kappa_{8}=\kappa_{9}=\operatorname{dim} V, \operatorname{Inv}(\mathfrak{H})=\left\langle\kappa_{0}, \cdots, \kappa_{8}\right\rangle$.
Let $B_{0}=\left(x_{0, \alpha}\right)_{\alpha<\kappa_{0}}, \cdots, B_{7}=\left(x_{7, \alpha}\right)_{\alpha<\kappa_{7}}, B=\left(x_{\alpha}\right)_{\alpha<\kappa_{8}}$ be sequences from U such that
(1) B_{i} is a basis of $V_{i}(i<8)$,
(2) B is a basis of V,
(3) $B_{i+1} \subseteq U_{i}$ for $i<3$.

Clearly such sequences exist. For every $\alpha<\kappa_{8}$ choose $x_{8, \alpha} \in U_{1}, x_{9, \alpha} \in U_{2}$ such that $x_{\alpha}=x_{8, \alpha}+x_{9, \alpha}$. This is possible since $B \subseteq U_{1}+U_{2}$. Put $B_{8}=\left(x_{8, \alpha}\right)_{\alpha<\kappa_{8}}$ and $B_{9}=\left(x_{9, \alpha}\right)_{\alpha<\kappa 9}$.

Lemma 1:
(i) $B_{0} \cup \cdots \cup B_{9}$ is a basis of U,
(ii) $B_{1} \cup B_{4} \cup B_{5} \cup B_{7} \cup B$ generates U_{0},
(iii) $B_{2} \cup B_{4} \cup B_{6} \cup B_{7} \cup B_{8}$ generates U_{1},
(iv) $B_{3} \cup B_{5} \cup B_{6} \cup B_{7} \cup B_{9}$ generates U_{2}.

Proof: First we show that $B_{0} \cup \cdots \cup B_{9}$ is linearly independent. Let

$$
\begin{equation*}
\sum_{i \leqq 9} y_{i}=0 \tag{*}
\end{equation*}
$$

where $y_{i}=\sum_{\alpha<\kappa_{i}} a_{i \alpha} x_{i \alpha}$ and $a_{i \alpha}=0$ for all but finitely many α. We have to show that $a_{i \alpha}=0$ for all $i \leqq 9$, all $\alpha<\kappa_{i}$.

Since all summands in $\left(^{*}\right.$) except possibly y_{0} lie in $U_{0}+U_{1}+U_{2}$ we obtain $a_{0, \alpha}=0$ for all $\alpha<\kappa_{0}$, by linear independence of B_{0} over $U_{0}+U_{1}+U_{2}$.

Since the remaining summands except possibly y_{1} lie in $U_{1}+U_{2}$ we conclude $a_{1, \alpha}=0$ for all $\alpha<\kappa_{1}$ as above.

Next note that $y_{8} \in U_{0}+U_{2}$ by construction of the $x_{8, \alpha}$'s. Therefore
all the remaining summands except possibly y_{2} lie in $U_{0}+U_{2}$ and hence $a_{2, \alpha}=0$ for all $\alpha<\kappa_{2} \cdot a_{3, \alpha}=0$ is shown in a similar way.
$\left.{ }^{*}\right)$ now looks as follows

$$
y_{4}+y_{5}+y_{6}+y_{7}+\sum a_{8, \alpha} x_{8, \alpha}+\sum a_{9, \alpha} x_{9, \alpha}=0
$$

Replacing $x_{8, \alpha}$ by $x_{\alpha}-x_{9, \alpha}$ we obtain

$$
\sum a_{8, \alpha} x_{\alpha}+y_{4}+y_{5}+y_{7}=\sum\left(a_{8, \alpha}-a_{9, \alpha}\right) x_{9, \alpha}-y_{6} .
$$

The right hand side lies in U_{2} whereas the left hand side lies in U_{0}. Since $y_{4}+y_{5}+y_{7}$ lies in $U_{0} \cap U_{1}+U_{0} \cap U_{2}$ we obtain

$$
\sum a_{8, \alpha} x_{\alpha} \in U_{0} \cap U_{1}+U_{0} \cap U_{2}
$$

Hence $a_{8, \alpha}=0$ for all $\alpha<\kappa_{8}$ by linear independence of B over $U_{0} \cap U_{1}+U_{0} \cap U_{2} . a_{9, \alpha}=0$ is shown in a similar way.

The proof that the remaining $a_{i \alpha}$'s are $=0$ is left to the reader.
Next we prove (iii). Obviously the subspace generated by the B_{i} 's mentioned in (iii) is contained in U_{1}. Let $y \in U_{1}$. Since B_{2} is a basis of V_{2} and $B_{2} \subseteq U_{1}$ there exists a linear combination y_{2} of the $x_{2, \alpha}$'s such that $y-y_{2} \in U_{1} \cap\left(U_{0}+U_{2}\right)$. Write $y-y_{2}=z_{0}+z_{2}$ where $z_{0} \in U_{0}$, $z_{2} \in U_{2}$. Note that $z_{0} \in U_{0} \cap\left(U_{1}+U_{2}\right)$. Since B is a basis of V there exists a linear combination $\sum_{\alpha} a_{\alpha} x_{\alpha}$ such that

$$
z_{0}-\sum a_{\alpha} x_{\alpha}=u+u^{\prime}
$$

for some $u \in U_{0} \cap U_{1}, u^{\prime} \in U_{0} \cap U_{2}$. Put $y_{8}=\sum a_{\alpha} x_{8, \alpha}$. Since

$$
x_{\alpha}=x_{8, \alpha}+x_{9, \alpha}
$$

we obtain

$$
\begin{aligned}
y-y_{2}-y_{8} & =z_{0}-y_{8}+z_{2} \\
& =u+\left(u^{\prime}+\sum a_{\alpha} x_{9, \alpha}+z_{2}\right) .
\end{aligned}
$$

The expression in the bracket clearly lies in U_{2}. Since u and the left hand side both lie in U_{1} we conclude

$$
y-y_{2}-y_{8} \in U_{0} \cap U_{1}+U_{1} \cap U_{2}
$$

This together with the trivial fact that $B_{4} \cup B_{6} \cup B_{7}$ generates $U_{0} \cap U_{1}+U_{1} \cap U_{2}$ implies (iii).
(iv) is shown in a similar way and (ii) is obvious. (i) follows from what has been proved above and the fact that B_{0} is a basis of V_{0}.

Lemma 2: Let $\mathfrak{A}=\left\langle U, U_{0}, U_{1}, U_{2}\right\rangle, \quad \mathfrak{H}^{\prime}=\left\langle U^{\prime}, U_{0}^{\prime}, U_{1}^{\prime}, U_{2}^{\prime}\right\rangle$ be countable models of $T(p, 3)$. Then $\mathfrak{H} \cong \mathfrak{A}^{\prime}$ if and only if $\operatorname{Inv}(\mathfrak{H})=\operatorname{Inv}\left(\mathfrak{H}^{\prime}\right)$.

Proof: Clearly $\mathfrak{H} \cong \mathfrak{H}^{\prime}$ implies that $\mathfrak{A}, \mathfrak{X}^{\prime}$ have the same invariants.
Conversely assume Inv $(\mathfrak{H})=\operatorname{Inv}\left(\mathfrak{H}^{\prime}\right)$. Choose sequences B_{0}, \cdots, B_{7}, B in $\mathfrak{A}\left(B_{0}^{\prime}, \cdots, B_{7}^{\prime}, B^{\prime}\right.$ in $\left.\mathfrak{A}^{\prime}\right)$ such that (1), (2), (3) before Lemma 1 hold. Form $B_{8}, B_{9}\left(B_{8}^{\prime}, B_{9}^{\prime}\right)$ according to the instructions before Lemma 1. Note that length $\left(B_{i}\right)=$ length $\left(B_{i}^{\prime}\right)$ for all $i \leqq 9$ because of $\operatorname{Inv}(\mathfrak{H})=\operatorname{Inv}\left(\mathfrak{H}^{\prime}\right)$. Define a map f from the union of the B_{i} 's onto the union of the $B_{i}^{\prime \prime}$ s by mapping the $\alpha^{\text {th }}$ elements of B_{i} onto the $\alpha^{\text {th }}$ element of B_{i}^{\prime}. By (i) of Lemma $1 f$ extends to an isomorphism $g: U \rightarrow U^{\prime}$. Since $g(B)=B^{\prime}$ by construction, it follows from Lemma 1 that $g\left(U_{i}\right)=U_{i}^{\prime}$, $i \leqq 2$.

Lemma 3: For any 9 -tuple $\left\langle\kappa_{0}, \cdots, \kappa_{8}\right\rangle$ of cardinals $\kappa_{i} \leqq \omega$ there exists a countable model \mathfrak{A} of $T(p, 3)$ such that $\operatorname{Inv}(\mathfrak{A})=\left\langle\kappa_{0}, \cdots, \kappa_{8}\right\rangle$.

Proof: Let V_{0}, \cdots, V_{9} be vectorspaces such that $\operatorname{dim} V_{i}=\kappa_{i}$ if $i \leqq 8$, $\operatorname{dim} V_{9}=\kappa_{8}$. Choose a basis $\left(x_{\alpha}\right)_{\alpha<\kappa_{8}}$ of V_{8} and a basis $\left(y_{\alpha}\right)_{\alpha<\kappa_{8}}$ of V_{9}. Put $U=\oplus_{i \leqq 9} V_{i}$ and consider the $V_{i}^{\prime} \mathrm{s}$ in the obvious way as subspaces of U. Let V be the subspace of U generated by $\left\{x_{\alpha}+y_{\alpha} \mid \alpha<\kappa_{8}\right\}$ and put

$$
\begin{aligned}
& U_{0}=V_{1}+V_{4}+V_{5}+V_{7}+V, \\
& U_{1}=V_{2}+V_{4}+V_{6}+V_{7}+V_{8}, \\
& U_{2}=V_{3}+V_{5}+V_{6}+V_{7}+V_{9} .
\end{aligned}
$$

A straightforward computation shows that $\operatorname{Inv}\left(\left\langle U, U_{0}, U_{1}, U_{2}\right\rangle\right)=$ $\left\langle\kappa_{0}, \cdots, \kappa_{8}\right\rangle$.

Proof of Theorem 3: Let $\varphi_{\text {in }}(i<9, n \in \omega)$ be $L \cup\left\{P_{0}, P_{1}, P_{2}\right\}$ sentences such that for any model \mathfrak{A} of $T(p, 3)$ the following holds

$$
\begin{aligned}
\mathfrak{A} \vDash \varphi_{i n} \Leftrightarrow \operatorname{dim} V_{i} \geqq n & (i<8, n \in \omega), \\
\mathfrak{A} \vDash \varphi_{8, n} \Leftrightarrow \operatorname{dim} V \geqq n & (n \in \omega) .
\end{aligned}
$$

Such sentences can be constructed without difficulties. $\varphi_{0, n}$ e.g. looks
as follows

$$
\begin{aligned}
\exists x_{0}, \cdots, x_{n-1} \forall y_{0}, y_{1}, y_{2}\left(P_{0}\left(y_{0}\right)\right. & \& P_{1}\left(y_{1}\right) \& P_{2}\left(y_{2}\right) \\
& \rightarrow \underbrace{}_{\substack{0 \leq r_{v}<p \\
\left\langle r_{0}, \cdots, r_{n-1}\right\rangle \neq 0}} \sum_{v<n} r_{v} x_{v} \neq y_{0}+y_{1}+y_{2}) .
\end{aligned}
$$

In order to prove Theorem 3 it suffices to show that the set of all sentences φ which are consistent with $T(p, 3)$ is recursively enumerable.

For any 9 -tuple $\vec{\kappa}=\left\langle\kappa_{0}, \cdots, \kappa_{8}\right\rangle$ of cardinals $\kappa_{i} \leqq \omega$ put

$$
T_{\vec{\kappa}}=T(p, 3) \cup\left\{\varphi_{i n} \mid i<9, n \leqq \kappa_{i}\right\} \cup\left\{\neg \varphi_{i, \kappa_{i}+1} \mid \kappa_{i}<\omega\right\} .
$$

Note that $T_{\hat{\kappa}}$ is consistent and \aleph_{0}-categorical, by Lemmas 2,3 . Therefore φ is consistent with $T(p, 3)$ if and only if φ holds in some countable model of $T(p, 3)$ if and only if there exists a $\vec{\kappa}$ such that $T_{\vec{\kappa}} \vdash \varphi$. This proves Theorem 3.

Remark: If p is a prime number then $T(p, 3)$ is decidable whereas $T(p, 5)$ is undecidable.

Question: Is $T(p, 4)$ decidable?

Postscript: $T\left(p^{9}, 1\right)$ is undecidable (to appear in Proc. Amer. Math. Soc.).

REFERENCES

[1] S. Feferman and R. L. Vaught: The first order properties of algebraic systems, Fund. Math. 47 (1959) 57-103.
[2] G. Higman: Subgroups of finitely presented groups, Proc. Roy. Soc. London (A) 262 (1961) 455-475.
[3] I. Kaplansky : Infinite Abelian Groups. (Univ. of Michigan Press, Ann Arbor 1954).
[4] G. T. Kozlov and A. I. Kokorin: Elementary theory of abelian groups without torsion, with a predicate selecting a subgroup, Algebra and Logic 8 (1969) 182-190.
[5] J. R. Shoenfield: Mathematical Logic. (Addison-Wesley, Reading, Mass., 1967).
(Oblatum 26-VII-1974)
Department of Mathematics Yale University
Box, 2155, Yale Station New Haven, Conn. 06520 USA

[^0]: ${ }^{1}$ Supported by Schweizerischer Nationalfonds.
 ${ }^{2}$ See postscript.

[^1]: ${ }^{1}$ See posiscript.

