COMPOSITIO MATHEMATICA

WALTER BAUR

Decidability and undecidability of theories of abelian groups with predicates for subgroups

Compositio Mathematica, tome 31, nº 1 (1975), p. 23-30 http://www.numdam.org/item?id=CM 1975 31 1 23 0>

© Foundation Compositio Mathematica, 1975, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

DECIDABILITY AND UNDECIDABILITY OF THEORIES OF ABELIAN GROUPS WITH PREDICATES FOR SUBGROUPS

Walter Baur¹

0. Introduction

Let n > 1, $k \le 5$ be natural numbers and let T(n, k) be the first-order theory of the class of all structures $\langle A, A_0, \dots, A_{k-1} \rangle$ where A is an *n*-bounded abelian group (i.e. nA = 0) and A_0, \dots, A_{k-1} are arbitrary subgroups of A. In the present paper the following results concerning decidability of T(n, k) are obtained: (i) T(n, 5) is undecidable, (ii) if n contains a square then T(n, 4) is undecidable, (iii) if n is squarefree then T(n, 3) is decidable. A trivial consequence of (ii) is that the theory of abelian groups with four distinguished subgroups is undecidable²

Terminology: 'group' means 'abelian group' except where stated otherwise. 'Countable' means 'finite or countably infinite'. For all undefined notions from logic we refer to [5].

1. Undecidability

The first-order language L of abelian groups consists of a binary function symbol + and a constant 0. Let f_0 , f_1 be two unary function symbols and put $L_1 = L \cup \{f_0, f_1\}$. For $n \ge 1$ let $T_1(n)$ denote the theory of all structures $\langle A, f_0, f_1 \rangle$ where A is an n-bounded abelian group and f_0, f_1 are arbitrary automorphisms of A.

THEOREM 1: $T_1(n)$ is undecidable for all n > 1.

PROOF: Let G be a (noncommutative) finitely presented 2-generator group with undecidable word problem (see e.g. Higman [2]). Assume

² See postscript.

¹ Supported by Schweizerischer Nationalfonds.

W. Baur

that G is the quotient of the free group on the generators f_0 , f_1 modulo the normal subgroup generated by t_0, \dots, t_{m-1} where each t_{μ} is a word in $f_0, f_1, f_0^{-1}, f_1^{-1}$.

Consider f_0^{-1} , f_1^{-1} as new function symbols and let $T_2(n)$ be the theory in the language $L_1 \cup \{f_0^{-1}, f_1^{-1}\}$ obtained from $T_1(n)$ by adding

$$\forall x (f_0 f_0^{-1}(x) = f_1 f_1^{-1}(x) = x)$$

as a new axiom. $T_2(n)$ is an extension by definitions of $T_1(n)$ and therefore it suffices to show that $T_2(n)$ is undecidable.

Since G has undecidable word problem it suffices to show that for any word t in f_0 , f_1 , f_0^{-1} , f_1^{-1} the following two statements are equivalent (i) $T_2(n) \vdash \forall x (\Lambda_{u \le m} t_u(x) = x) \rightarrow \forall x(t(x) = x)$,

(ii) t = e in G (e is the neutral element of G).

Clearly (ii) implies (i). To prove the other direction assume $t \neq e$ in G. Let \mathbb{Z} be the ring of integers and put $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$. Let A be the additive group of the group ring $\mathbb{Z}_n[G]$ and define two automorphisms of A by $f_i^A(a) = f_i \cdot a$ (i = 0, 1). Let \mathfrak{A} be the unique expansion of $\langle A, f_0^A, f_1^A \rangle$ to a model of $T_2(n)$. Since G operates faithfully on A we have $\mathfrak{A} \models \exists x(t(x) \neq x)$, but clearly $\mathfrak{A} \models \forall x(\bigwedge_{\mu < m} t_{\mu}(x) = x)$. Hence (i) does not hold and Theorem 1 is proved.

Let P_0, \dots, P_4 be five unary predicate symbols. For $n \ge 1$ and $k \le 5$ let T(n, k) denote the $L \cup \{P_0, \dots, P_{k-1}\}$ -theory of all structures $\langle A, A_0, \dots, A_{k-1} \rangle$ where A is an n-bounded group and A_0, \dots, A_{k-1} are arbitrary subgroups of A.

THEOREM 2:

(i) T(n, 5) is undecidable for all n > 1,

(ii) if n contains a square then T(n, 4) is undecidable.

PROOF: (i) By Theorem 1 it suffices to give a faithful interpretation of $T_1(n)$ in a finite extension T'(n) of T(n, 5). T'(n) is obtained from T(n, 5) by adding the following new axioms

(1)
$$\forall x \exists ! y \exists ! z (P_3(y) \& P_4(z) \& x = y + z),$$

(2)
$$\forall y(P_3(y) \to \exists ! z(P_4(z) \& P_i(y+z)))$$
 $(i \leq 2),$

(3)
$$\forall z(P_4(z) \to \exists ! y(P_3(y) \& P_i(y+z)))$$
 $(i \leq 2).$

A model of T'(n) is nothing else than an *n*-bounded group A together with a direct sum decomposition $A = A_3 \oplus A_4$ and the graphs of three isomorphisms between A_3 and A_4 .

24

Rather than giving the formal details of the interpretation we show how to get a model of $T_1(n)$ out of a model of T'(n) and that we get all models of $T_1(n)$ in this way.

Let $\mathfrak{A} = \langle A, A_0, \dots, A_4 \rangle$ be a model of T'(n). The axioms of T'(n) guarantee that the maps $g_0, g_1 : A_3 \to A_3$ defined by

$$g_i(a) = a' \Leftrightarrow \mathfrak{A} \models P_3(a) \& P_3(a') \& \exists z (P_4(z) \& P_i(a+z) \& P_2(a'+z))$$

(i = 0, 1)

are well-defined automorphisms of A_3 . Therefore $\langle A_3, g_0, g_1 \rangle$ is a model of $T_1(n)$.

Conversely assume that $\mathfrak{B} = \langle B, g_0, g_1 \rangle$ is a model of $T_1(n)$. Define $A = B \oplus B$, $A_0 = \text{graph}(g_0)$, $A_1 = \text{graph}(g_1)$, $A_2 = \{\langle b, b \rangle | b \in B\}$, $A_3 =$ left copy of B in A, $A_4 =$ right copy of B in A. Obviously $\mathfrak{A} = \langle A, A_0, \dots, A_4 \rangle$ is a model of T'(n) and the model of $T_1(n)$ associated with \mathfrak{A} in the way described above is isomorphic to \mathfrak{B} .

(ii) Let p be a prime number such that $p^{k}|n$ and $p^{k+1} \not> n$ for some k > 1. We interprete T'(p) faithfully in a finite extension T of some extension by definition of T(n, 4). Let T be the theory obtained from T(n, 4) by adding (2), (3) and

(4) $\forall x(P_4(x) \leftrightarrow (p^{k-1}|x \& px = 0)),$

(5)
$$\forall x((P_3(x) \& P_4(x)) \to x = 0).$$

Let $\langle A, A_0, \dots, A_4 \rangle$ be a model of T. $B = A_3 \oplus A_4$ can be considered as a subgroup of A, by axiom (5). From (2), (3), (4) it follows that

$$\langle B, A_0 \cap B, A_1 \cap B, A_2 \cap B, A_3, A_4 \rangle$$

is a model of T'(p).

Conversely assume that $\mathfrak{B} = \langle B, B_0, \dots, B_4 \rangle$ is a model of T'(p). Embed B_4 in a direct sum A' of cyclic groups of order p^k such that $B_4 = p^{k-1}A'$ and consider B in the obvious way as a subgroup of $A = B_3 \oplus A'$. Then

$$\mathfrak{A} = \langle A, B_0, B_1, B_2, B_3, B_4 \rangle$$

is a model of T and the model of T'(p) associated with \mathfrak{A} in the way described above is isomorphic to \mathfrak{B} . Again it should be clear now how the interpretation works.

Since T(4, 4) is a finite extension of the theory of abelian groups with four predicates for subgroups we obtain

W. Baur

COROLLARY 1^1 : The theory of abelian groups with four predicates denoting subgroups is undecidable.

Kozlov and Kokorin [4] showed that the theory of torsionfree abelian groups with one predicate denoting a subgroup is decidable. The next corollary answers a question of [4]. It follows from the fact that every group is a quotient of a torsionfree group.

COROLLARY 2^1 : The theory of torsionfree groups with five predicates denoting subgroups is undecidable.

2. Decidability

This section is devoted to the proof of the following

THEOREM 3: If n is a squarefree positive number then T(n, 3) is decidable.

Assume $n = p_0 \cdots p_{k-1} > 1$ squarefree, p_i prime. (If n = 1 the theorem is obvious). Since every model \mathfrak{A} of T(n, 3) is a direct product $\mathfrak{A} = \prod_{i < k} \mathfrak{A}_i$ where \mathfrak{A}_i is a model of $T(p_i, 3)$ (see e.g. Kaplansky [3]) it suffices to prove that T(p, 3) is decidable for any prime number p, by the Feferman-Vaught-Theorem [1].

Let p be an arbitrary prime number fixed for the rest of the paper. A model of T(p, 3) is nothing else than a vectorspace U over the field K with p elements together with three subspaces U_0, U_1, U_2 . In the following 'vectorspace" always means 'vectorspace over K'. Before starting with the proof we introduce some terminology.

Let U be a subspace of the vectorspace V and let $B = (x_{\alpha})_{\alpha < \lambda}$ (λ an ordinal) be a sequence of elements $x_{\alpha} \in V$. We say that B is linearly independent over U (a basis of V/U resp.) if the sequence $(x_{\alpha} + U)_{\alpha < \lambda}$ is linearly independent in V/U (a basis of V/U resp.). Let $B' = (x'_{\alpha})_{\alpha < \lambda'}$ be another sequence from V. $B \cup B'$ denotes the sequence $(y_{\alpha})_{\alpha < \lambda + \lambda'}$ where $y_{\alpha} = x_{\alpha}$ if $\alpha < \lambda$ and $y_{\lambda+\alpha} = x'_{\alpha}$ if $\alpha < \lambda'$.

With any countable model $\mathfrak{A} = \langle U, U_0, U_1, U_2 \rangle$ of T(p, 3) we associate nine vectorspaces V_0, \dots, V_7, V as follows

$$\begin{split} V_0 &= U/U_0 + U_1 + U_2 \\ V_1 &= U_0 + U_1 + U_2/U_1 + U_2 \\ V_2 &= U_0 + U_1 + U_2/U_0 + U_2 \end{split}$$

¹ See posíscript.

$$V_{3} = U_{0} + U_{1} + U_{2}/U_{0} + U_{1}$$

$$V_{4} = U_{0} \cap U_{1}/U_{0} \cap U_{1} \cap U_{2}$$

$$V_{5} = U_{0} \cap U_{2}/U_{0} \cap U_{1} \cap U_{2}$$

$$V_{6} = U_{1} \cap U_{2}/U_{0} \cap U_{1} \cap U_{2}$$

$$V_{7} = U_{0} \cap U_{1} \cap U_{2}$$

$$V = U_{0} \cap (U_{1} + U_{2})/(U_{0} \cap U_{1} + U_{0} \cap U_{2})$$

For i < 8 put $\kappa_i = \dim V_i$, $\kappa_8 = \kappa_9 = \dim V$, Inv $(\mathfrak{A}) = \langle \kappa_0, \dots, \kappa_8 \rangle$. Let $B_0 = (x_{0,\alpha})_{\alpha < \kappa_0}, \dots, B_7 = (x_{7,\alpha})_{\alpha < \kappa_7}, B = (x_{\alpha})_{\alpha < \kappa_8}$ be sequences from U such that

- (1) B_i is a basis of V_i (i < 8),
- (2) B is a basis of V,
- (3) $B_{i+1} \subseteq U_i$ for i < 3.

Clearly such sequences exist. For every $\alpha < \kappa_8$ choose $x_{8,\alpha} \in U_1, x_{9,\alpha} \in U_2$ such that $x_{\alpha} = x_{8,\alpha} + x_{9,\alpha}$. This is possible since $B \subseteq U_1 + U_2$. Put $B_8 = (x_{8,\alpha})_{\alpha < \kappa_8}$ and $B_9 = (x_{9,\alpha})_{\alpha < \kappa_9}$.

Lemma 1:

- (i) $B_0 \cup \cdots \cup B_9$ is a basis of U,
- (ii) $B_1 \cup B_4 \cup B_5 \cup B_7 \cup B$ generates U_0 ,
- (iii) $B_2 \cup B_4 \cup B_6 \cup B_7 \cup B_8$ generates U_1 ,
- (iv) $B_3 \cup B_5 \cup B_6 \cup B_7 \cup B_9$ generates U_2 .

PROOF: First we show that $B_0 \cup \cdots \cup B_9$ is linearly independent. Let

$$\sum_{i\leq 9} y_i = 0$$

where $y_i = \sum_{\alpha < \kappa_i} a_{i\alpha} x_{i\alpha}$ and $a_{i\alpha} = 0$ for all but finitely many α . We have to show that $a_{i\alpha} = 0$ for all $i \leq 9$, all $\alpha < \kappa_i$.

Since all summands in (*) except possibly y_0 lie in $U_0 + U_1 + U_2$ we obtain $a_{0,\alpha} = 0$ for all $\alpha < \kappa_0$, by linear independence of B_0 over $U_0 + U_1 + U_2$.

Since the remaining summands except possibly y_1 lie in $U_1 + U_2$ we conclude $a_{1,\alpha} = 0$ for all $\alpha < \kappa_1$ as above.

Next note that $y_8 \in U_0 + U_2$ by construction of the $x_{8,\alpha}$'s. Therefore

all the remaining summands except possibly y_2 lie in $U_0 + U_2$ and hence $a_{2,\alpha} = 0$ for all $\alpha < \kappa_2$. $a_{3,\alpha} = 0$ is shown in a similar way.

(*) now looks as follows

$$y_4 + y_5 + y_6 + y_7 + \sum a_{8,\alpha} x_{8,\alpha} + \sum a_{9,\alpha} x_{9,\alpha} = 0$$

Replacing $x_{8,\alpha}$ by $x_{\alpha} - x_{9,\alpha}$ we obtain

$$\sum a_{8,\alpha} x_{\alpha} + y_4 + y_5 + y_7 = \sum (a_{8,\alpha} - a_{9,\alpha}) x_{9,\alpha} - y_6.$$

The right hand side lies in U_2 whereas the left hand side lies in U_0 . Since $y_4 + y_5 + y_7$ lies in $U_0 \cap U_1 + U_0 \cap U_2$ we obtain

$$\sum a_{8,\alpha} x_{\alpha} \in U_0 \cap U_1 + U_0 \cap U_2.$$

Hence $a_{8,\alpha} = 0$ for all $\alpha < \kappa_8$ by linear independence of *B* over $U_0 \cap U_1 + U_0 \cap U_2$. $a_{9,\alpha} = 0$ is shown in a similar way.

The proof that the remaining $a_{i\alpha}$'s are = 0 is left to the reader.

Next we prove (iii). Obviously the subspace generated by the B_i 's mentioned in (iii) is contained in U_1 . Let $y \in U_1$. Since B_2 is a basis of V_2 and $B_2 \subseteq U_1$ there exists a linear combination y_2 of the $x_{2,\alpha}$'s such that $y-y_2 \in U_1 \cap (U_0+U_2)$. Write $y-y_2 = z_0+z_2$ where $z_0 \in U_0$, $z_2 \in U_2$. Note that $z_0 \in U_0 \cap (U_1+U_2)$. Since B is a basis of V there exists a linear combination $\sum_{\alpha} a_{\alpha} x_{\alpha}$ such that

$$z_0 - \sum a_\alpha x_\alpha = u + u'$$

for some $u \in U_0 \cap U_1$, $u' \in U_0 \cap U_2$. Put $y_8 = \sum a_{\alpha} x_{8,\alpha}$. Since

$$x_{\alpha} = x_{8,\alpha} + x_{9,\alpha}$$

we obtain

$$y - y_2 - y_8 = z_0 - y_8 + z_2$$

= $u + (u' + \sum_{\alpha} a_{\alpha} x_{9,\alpha} + z_2)$

The expression in the bracket clearly lies in U_2 . Since *u* and the left hand side both lie in U_1 we conclude

$$y - y_2 - y_8 \in U_0 \cap U_1 + U_1 \cap U_2.$$

This together with the trivial fact that $B_4 \cup B_6 \cup B_7$ generates $U_0 \cap U_1 + U_1 \cap U_2$ implies (iii).

(iv) is shown in a similar way and (ii) is obvious. (i) follows from what has been proved above and the fact that B_0 is a basis of V_0 .

LEMMA 2: Let $\mathfrak{A} = \langle U, U_0, U_1, U_2 \rangle$, $\mathfrak{A}' = \langle U', U'_0, U'_1, U'_2 \rangle$ be countable models of T(p, 3). Then $\mathfrak{A} \cong \mathfrak{A}'$ if and only if $\operatorname{Inv}(\mathfrak{A}) = \operatorname{Inv}(\mathfrak{A}')$.

PROOF: Clearly $\mathfrak{A} \cong \mathfrak{A}'$ implies that $\mathfrak{A}, \mathfrak{A}'$ have the same invariants. Conversely assume Inv $(\mathfrak{A}) =$ Inv (\mathfrak{A}') . Choose sequences B_0, \dots, B_7, B in $\mathfrak{A}(B'_0, \dots, B'_7, B'$ in $\mathfrak{A}')$ such that (1), (2), (3) before Lemma 1 hold. Form B_8, B_9 (B'_8, B'_9) according to the instructions before Lemma 1. Note that length $(B_i) =$ length (B'_i) for all $i \leq 9$ because of Inv $(\mathfrak{A}) =$ Inv (\mathfrak{A}') . Define a map f from the union of the B_i 's onto the union of the B'_i 's by mapping the α^{th} elements of B_i onto the α^{th} element of B'_i . By (i) of Lemma 1 f extends to an isomorphism $g: U \to U'$. Since g(B) = B' by construction, it follows from Lemma 1 that $g(U_i) = U'_i$, $i \leq 2$.

LEMMA 3: For any 9-tuple $\langle \kappa_0, \dots, \kappa_8 \rangle$ of cardinals $\kappa_i \leq \omega$ there exists a countable model \mathfrak{A} of T(p, 3) such that Inv $(\mathfrak{A}) = \langle \kappa_0, \dots, \kappa_8 \rangle$.

PROOF: Let V_0, \dots, V_9 be vectorspaces such that dim $V_i = \kappa_i$ if $i \leq 8$, dim $V_9 = \kappa_8$. Choose a basis $(x_{\alpha})_{\alpha < \kappa_8}$ of V_8 and a basis $(y_{\alpha})_{\alpha < \kappa_8}$ of V_9 . Put $U = \bigoplus_{i \leq 9} V_i$ and consider the V_i 's in the obvious way as subspaces of U. Let V be the subspace of U generated by $\{x_{\alpha} + y_{\alpha} | \alpha < \kappa_8\}$ and put

$$U_0 = V_1 + V_4 + V_5 + V_7 + V,$$

$$U_1 = V_2 + V_4 + V_6 + V_7 + V_8,$$

$$U_2 = V_3 + V_5 + V_6 + V_7 + V_9.$$

A straightforward computation shows that Inv $(\langle U, U_0, U_1, U_2 \rangle) = \langle \kappa_0, \dots, \kappa_8 \rangle$.

PROOF OF THEOREM 3: Let φ_{in} $(i < 9, n \in \omega)$ be $L \cup \{P_0, P_1, P_2\}$ sentences such that for any model \mathfrak{A} of T(p, 3) the following holds

$$\mathfrak{A} \models \varphi_{in} \Leftrightarrow \dim V_i \ge n \qquad (i < 8, n \in \omega),$$
$$\mathfrak{A} \models \varphi_{8,n} \Leftrightarrow \dim V \ge n \qquad (n \in \omega).$$

Such sentences can be constructed without difficulties. $\varphi_{0,n}$ e.g. looks

as follows

$$\exists x_0, \cdots, x_{n-1} \forall y_0, y_1, y_2(P_0(y_0) \& P_1(y_1) \& P_2(y_2) \\ \rightarrow \bigwedge_{\substack{0 \le r_v$$

In order to prove Theorem 3 it suffices to show that the set of all sentences φ which are consistent with T(p, 3) is recursively enumerable.

For any 9-tuple $\vec{\kappa} = \langle \kappa_0, \dots, \kappa_8 \rangle$ of cardinals $\kappa_i \leq \omega$ put $T_{\vec{\kappa}} = T(p, 3) \cup \{ \varphi_{in} | i < 9, n \leq \kappa_i \} \cup \{ \neg \varphi_{i, \kappa_i+1} | \kappa_i < \omega \}.$

Note that $T_{\vec{k}}$ is consistent and \aleph_0 -categorical, by Lemmas 2, 3. Therefore φ is consistent with T(p, 3) if and only if φ holds in some countable model of T(p, 3) if and only if there exists a \vec{k} such that $T_{\vec{k}} \vdash \varphi$. This proves Theorem 3.

REMARK: If p is a prime number then T(p, 3) is decidable whereas T(p, 5) is undecidable.

Question: Is T(p, 4) decidable?

Postscript: $T(p^9, 1)$ is undecidable (to appear in Proc. Amer. Math. Soc.).

REFERENCES

- S. FEFERMAN and R. L. VAUGHT: The first order properties of algebraic systems, Fund. Math. 47 (1959) 57-103.
- [2] G. HIGMAN: Subgroups of finitely presented groups, Proc. Roy. Soc. London (A) 262 (1961) 455–475.
- [3] I. KAPLANSKY: Infinite Abelian Groups. (Univ. of Michigan Press, Ann Arbor 1954).
- [4] G. T. KOZLOV and A. I. KOKORIN: Elementary theory of abelian groups without torsion, with a predicate selecting a subgroup, *Algebra and Logic 8* (1969) 182–190.
- [5] J. R. SHOENFIELD: Mathematical Logic. (Addison-Wesley, Reading, Mass., 1967).

(Oblatum 26-VII-1974)

Department of Mathematics Yale University Box, 2155, Yale Station New Haven, Conn. 06520 USA

30