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0. Introduction

Let n &#x3E; l, k ~ 5 be natural numbers and let T(n, k) be the first-order
theory of the class of all structures A, A0, ···, Ak-1&#x3E; where A is an
n-bounded abelian group (i.e. nA = 0) and A0, ···, Ak-1 are arbitrary
subgroups of A. In the present paper the following results concerning
decidability of T(n, k) are ‘obtained : (i) T(n, 5) is undecidable, (ii) if n
contains a square then T(n, 4) is undecidable, (iii) if n is squarefree then
T(n, 3) is decidable. A trivial consequence of (ii) is that the theory of
abelian groups with four distinguished subgroups is undecidable 2

Terminology: ’group’ means ’abelian group’ except where stated other-
wise. ’Countable’ means ’finite or countably infinite’. For all undefined
notions from logic we refer to [5].

1. Undecidability

The first-order language L of abelian groups consists of a binary
function symbol + and a constant 0. Let fo, fi be two unary function
symbols and put L1 = L ~{f0, f1}. For n ~ 1 let Tl(n) denote the theory
of all structures A, fo, f1&#x3E; where A is an n-bounded abelian group and
fo, f i are arbitrary automorphisms of A.

THEOREM 1: Tl(n) is undecidable for all n &#x3E; 1.

PROOF: Let G be a (noncommutative) finitely presented 2-generator
group with undecidable word problem (see e.g. Higman [2]). Assume
1 Supported by Schweizerischer Nationalfonds.
2 See postscript.
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that G is the quotient of the free group on the generators fo, f, modulo
the normal subgroup generated by t0, ···, tm-l where each t03BC is a word in
7o?Ji?7o f-11.

Consider Jo-l, fl-1 as new function symbols and let T2(n) be the
theory in the language L1 ~ {f-10, f-11} obtained from Tl (n) by adding

as a new axiom. T2(n) is an extension by definitions of T1(n) and therefore
it suffices to show that T2(n) is undecidable.

Since G has undecidable word problem it suffices to show that for any
word t in fo, fi , f-10, fi 1 the following two statements are equivalent

(i) T2(n)  = x) ~ ~x(t(x) = x),
(ii) t = e in G (e is the neutral element of G).
Clearly (ii) implies (i). To prove the other direction assume t =1= e in G.

Let Z be the ring of integers and put Zn = Z/nZ. Let A be the additive
group of the group ring 7Ln[ G] and define two automorphisms of A by
liA(a) = fi·a (i = 0, 1). Let 2I be the unique expansion of A, foA, fA1&#x3E;
to a model of T2(n). Since G operates faithfully on A we have

21 P ~x(t(x) ~ x), but clearly ~x( = x). Hence (i) does not
hold and Theorem 1 is proved.

Let Pro, ..., P4 be five unary predicate symbols. For n ~ 1 and k ~ 5
let T(n, k) denote the Lu {P0, ···, Pk-1}-theory of all structures

A, A0, ···, Ak-1&#x3E; where A is an n-bounded group and A0, ···, Ak-1 are
arbitrary subgroups of A.

THEOREM 2: 

(i) T(n, 5) is undecidable for all n &#x3E; 1,
(ii) if n contains a square then T(n, 4) is undecidable.

PROOF : (i) By Theorem 1 it suffices to give a faithful interpretation of
Tl(n) in a finite extension T’(n) of T(n, 5). T’(n) is obtained from T(n, 5)
by adding the following new axioms

A model of T’(n) is nothing else than an n-bounded group A together
with a direct sum decomposition A = A3 E9 A4 and the graphs of three
isomorphisms between A3 and A4 .
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Rather than giving the formal details of the’ interpretation we show
how to get a model of T1(n) out of a model of T’(n) and that we get all
models of T1(n) in this way.

Let 2I = A, Ao, ..., A4&#x3E; be a model of T’(n). The axioms of T’(n)
guarantee that the maps g0, g1: A3 ~ A3 defined by

are well-defined automorphisms of A3. Therefore A3, go, g1&#x3E; is a model
of Tl (n).

Conversely assume that 0 = B, go, gi) is a model of T1(n). Define
A = B ~ B, Ao = graph (g0), A, = graph (gl), A2 = {b, b&#x3E;|b~B}, A3 =
left copy of B in A, A4 = right copy of B in A. Obviously
2I = A, Ao, ..., A4&#x3E; is a model of T’(n) and the model of Tl(n) associated
with 21 in the way described above is isomorphic to 0.

(ii) Let p be a prime number such that pkln and pk+1n for some
k &#x3E; 1. We interprete T’(p) faithfully in a finite extension T of some
extension by definition of T(n, 4).’Let T be the theory obtained from
T(n, 4) by adding (2), (3) and

Let A, An , ..., A4&#x3E; be a model of T. B = A3 ~ A4 can be considered as
a subgroup of A, by axiom (5). From (2), (3), (4) it follows that

is a model of T’(p).
Conversely assume that B = B, B0, ···, B4&#x3E; is a model of T’(p).

Embed B4 in a direct sum A’ of cyclic groups of order pk such that
B4 = pk-l A’ and consider B in the obvious way as a subgroup of
A = B3 0 A’. Then

is a model of T and the model of T’(p) associated with W in the way
described above is isomorphic to 0. Again it should be clear now how
the interpretation works.

Since T(4, 4) is a finite extension of the theory of abelian groups with
four predicates for subgroups we obtain
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COROLLARY 11: The theory of abelian groups with four predicates
denoting subgroups is undecidable.

Kozlov and Kokorin [4] showed that the theory of torsionfree

abelian groups with one predicate denoting a subgroup is decidable.

The next corollary answers a question of [4]. It follows from the fact
that every group is a quotient of a torsionfree group.

COROLLARY 21: The theory of torsionfree groups with five predicates
denoting subgroups is undecidable.

2. Decidability

This section is devoted to the proof of the following

THEOREM 3 : If n is a squarefree positive number then T(n, 3) is decidable.

Assume n = Po ... pk-1 &#x3E; 1 squarefree, pi prime. (If n = 1 the theorem
is obvious). Since every model 2I of T(n, 3) is a direct product
2I = ui where 2Ii is a model of T(Pb 3) (see e.g. Kaplansky [3])
it suffices to prove that T(p, 3) is decidable for any prime number p,
by the Feferman-Vaught-Theorem [1].

Let p be an arbitrary prime number fixed for the rest of the paper.
A model of T(p, 3) is nothing else than a vectorspace U over the field K
with p elements together with three subspaces Uo, U1, U2. In the

following ’vectorspace" always means ’vectorspace over K’. Before

starting with the proof we introduce some terminology.
Let U be a subspace of the vectorspace V and let B = (x03B1)03B103BB, (2 an

ordinal) be a sequence of elements Xa e E We say that B is linearly
independent over U (a basis of V/U resp.) if the sequence (x03B1 + U)03B103BB, is
linearly independent in V/U (a basis of V/U resp.). Let B’ = (x’03B1)03B103BB’ be
another sequence from E BB’ denotes the sequence (y03B1)03B103BB+03BB’ where
.
With any countable model  = U, U0, U1, U2&#x3E; of T(p, 3) we

associate nine vectorspaces V0, ···, V7, V as follows .

1 See postscript.



27

For i  8 put xi = dim Vi, k8 = k9 = dim E Inv (u) = k0, ···, k8&#x3E;.
Let B0 = (x0,03B1)03B103BA0, ···, B7 = (x7,03B1)03B103BA7, B = (x03B1)03B103BA8 be sequences

from U such that

Clearly such sequences exist. For every a  03BA8 choose x8, 03B1 E U1, X9, a E U2
such that x03B1 = x8,03B1 + x9,03B1. This is possible since B ~ U1 + U2. Put
B8 - (x8,03B1)03B103BA8 and B9 = (X9,03B1)03B103BA9.

LEMMA 1: 

PROOF : First we show that B0B9 is linearly independent. Let

where yi =  and aia = 0 for all but finitely many a. We have
to show that aia = 0 for all i ~ 9, all a  Ki.

Since all summands in (*) except possibly yo lie in Uo + U1 + U2 we
obtain a0,03B1 = 0 for all 03B1  03BA0, by linear independence of Bo over

U0+U1+U2.
Since the remaining summands except possibly y1 lie in U1 + U2

we conclude a1,03B1 = 0 for all a  03BA1 as above.

Next note that y8 ~ U0 + U2 by construction of the x8,03B1’s. Therefore
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all the remaining summands except possibly y2 lie in Uo + U2 and hence

a2,a = 0 for alla  x2 . a3,03B1 = 0 is shown in a similar way.

(*) now looks as follows

Replacing xs, el by x03B1-x9,03B1 we obtain

The right hand side lies in U2 whereas the left hand side lies in Uo.
Since y4 + y5 + Y7 lies in Uo n Ul + Uo n U2 we obtain

Hence as, a = 0 for all a  03BA8 by linear independence of B over

Uo n U + Uo n U2. a9,03B1 = 0 is shown in a similar way.
The proof that the remaining ai«’s are = 0 is left to the reader.
Next we prove (iii). Obviously the subspace generated by the Bu’s

mentioned in (iii) is contained in U1. Let y ~ U1. Since B2 is a basis of
V2 and B2 ç; U1 there exists a linear combination y2 of the x2, a’s such
that y - y2 ~ U1 ~ (U0 + U2). Write y - y2 = z0 + z2 where zo E Uo ,
z2 E U2 . Note that z0 ~ U0 ~ (U1 + U2). Since B is a basis of V there
exists a linear combination Laaaxa such that

for some u E Uo n U1, u’ E Uo n U2 . Put Y8 = . Since

we obtain

The expression in the bracket clearly lies in U2. Since u and the left hand
side both lie in U1 we conclude
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This together with the trivial fact that B4  B6  B7 generates
Uo n U1 + U1 n U2 implies (iii).

(iv) is shown in a similar way and (ii) is obvious. (i) follows from what
has been proved above and the fact that Bo is a basis of Vo.

LEMMA 2 : Let =U, U0, U1, U2&#x3E;, =U’, U’0, U’1, U’2&#x3E; be
countable models of T(p, 3). Then  ~ ’ if and only if Inv (u) = Inv (’).

PROOF : Clearly  ~ 21’ implies that 21, 9T have the same invariants.
Conversely assume Inv () = Inv (’). Choose sequences Bo, ..., B7, B

in (B’0, ···, B’7, B’, in 21’) such that (1), (2), (3) before Lemma 1 hold.

Form Bs , B9 (B’8, B’9) according to the instructions before Lemma 1.

Note that length (Bi) = length (B’i) for all i ~ 9 because of

Inv () = Inv (’). Define a map f from the union of the Bi’s onto the
union of the B’i’s by mapping the 03B1th elements of Bi onto the ath element
of B’i. By (i) of Lemma 1 f extends to an isomorphism g : U ~ U’. Since
g(B) = B’ by construction, it follows from Lemma 1 that g(Ui = U’i,
i~2.

LEMMA 3 : For any 9-tuple 03BA0, ···, 03BA8&#x3E; of cardinals 03BAi ~ 03C9 there exists

a countable model 21 of T(p, 3) such that Inv () = 03BA0, ···, 03BA8&#x3E;.

PROOF : Let V0, ···, V9 be vectorspaces such that dim Vi = xi if i ~ 8,
dim V9 = 03BA8. Choose a basis (x03B1)03B103BA8 of Vs and a basis (y03B1)03B103BA8 of V9.
Put U = ~i~9Vi and consider the Vi’s in the obvious way as subspaces
of U. Let Vbe the subspace of U generated by {x03B1 + y03B1|03B1  03BA8} and put

A straightforward computation shows that Inv « U, U0, Ui , U2» =
.

PROOF 0F THEOREM 3: Let ~in (i  9, nEw) be L ~ {P0, P1, P2}-
sentences such that for any modcl 9t of T(p, 3) the following holds

Such sentences can be constructed without difficulties. ~0,n e.g. looks
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as follows

In order to prove Theorem 3 it suffices to show that the set of all sentences

cp which are consistent with T(p, 3) is recursively enumerable.
For any 9-tuple k = 03BA0, ···, 03BA8&#x3E; of cardinals 03BAi ~ ce put

Note that fi is consistent and No-categorical, by Lemmas 2, 3. Therefore
ç is consistent with T(p, 3) if and only if ç holds in some countable model
of T(p, 3) if and only if there exists a k such that T  ç. This proves
Theorem 3.

REMARK: If p is a prime number then T(p, 3) is decidable whereas

T(p, 5) is undecidable.

Question: Is T(p, 4) decidable?

Postscript: T(p9, 1) is undecidable (to appear in Proc. Amer. Math. Soc.).
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