Semi-characteristics and free group actions
Compositio Mathematica, Tome 29 (1974) no. 3, pp. 223-248.
@article{CM_1974__29_3_223_0,
     author = {Stong, R. E.},
     title = {Semi-characteristics and free group actions},
     journal = {Compositio Mathematica},
     pages = {223--248},
     publisher = {Noordhoff International Publishing},
     volume = {29},
     number = {3},
     year = {1974},
     mrnumber = {377943},
     zbl = {0294.57021},
     language = {en},
     url = {http://www.numdam.org/item/CM_1974__29_3_223_0/}
}
TY  - JOUR
AU  - Stong, R. E.
TI  - Semi-characteristics and free group actions
JO  - Compositio Mathematica
PY  - 1974
SP  - 223
EP  - 248
VL  - 29
IS  - 3
PB  - Noordhoff International Publishing
UR  - http://www.numdam.org/item/CM_1974__29_3_223_0/
LA  - en
ID  - CM_1974__29_3_223_0
ER  - 
%0 Journal Article
%A Stong, R. E.
%T Semi-characteristics and free group actions
%J Compositio Mathematica
%D 1974
%P 223-248
%V 29
%N 3
%I Noordhoff International Publishing
%U http://www.numdam.org/item/CM_1974__29_3_223_0/
%G en
%F CM_1974__29_3_223_0
Stong, R. E. Semi-characteristics and free group actions. Compositio Mathematica, Tome 29 (1974) no. 3, pp. 223-248. http://www.numdam.org/item/CM_1974__29_3_223_0/

[1] M.F. Atiyah and I.M. Singer: The index of elliptic operators, V. Annuals of Math.93 (1971) 139-149. | MR | Zbl

[2] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps. Springer, Berlin, 1964. | MR | Zbl

[3] J.L. Dupont and G. Lusztig: On manifolds satisfying w1 2 = 0. Topology,10 (1971) 81-92. | MR | Zbl

[4] M.A. Kervaire: Courbure integrale generalisée et homotopie. Math. Ann., 131 (1956) 219-252. | MR | Zbl

[5] R. Lee: Semicharacteristic classes. Topology, 12 (1973) 183-199. | MR | Zbl

[6] G. Lusztig, J. Milnor and F.P. Peterson: Semicharacteristics and cobordism. Topology, 8 (1969) 357-359. | MR | Zbl

[7] R.E. Stong: Complex and oriented equivariant bordism, in Topology of Manifolds, edited by J. C. Cantrell, and C. H. Edwards, Jr., Markham Publ. Co., 1970; pp. 291-316. | MR | Zbl