Compositio Mathematica

Werner Neudecker
 David Williams
 The "Riemann hypothesis" for the Hawkins random Sieve

Compositio Mathematica, tome 29, no 2 (1974), p. 197-200
http://www.numdam.org/item?id=CM_1974__29_2_197_0
© Foundation Compositio Mathematica, 1974, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE 'RIEMANN HYPOTHESIS' FOR THE HAWKINS RANDOM SIEVE

Werner Neudecker and David Williams

1

Hawkins $([1,2])$ and Wunderlich $([6,7])$ have studied the sequence $\left\{X_{n}: n \in N\right\}$ of 'random primes' caught in the Hawkins Sieve which operates inductively as follows.

Let

$$
A_{1}=\{2,3,4,5,6, \cdots\}
$$

Stage 1. Declare $X_{1}=\min A_{1}$. From the set $A_{1} \backslash\left\{X_{1}\right\}$, each number in turn (and each independently of the others) is deleted with probability X_{1}^{-1}. The set of elements of $A_{1} \mid\left\{X_{1}\right\}$ which remain is denoted by A_{2}.

Stage n. Declare $X_{n}=\min A_{n}$. From the set $A_{n} \mid\left\{X_{n}\right\}$, each number in turn (and each independently of the others) is deleted with probability X_{n}^{-1}. The set of elements of $A_{n} \backslash\left\{X_{n}\right\}$ which remain is denoted by A_{n+1}.

Define

$$
Y_{n}=\prod_{k \leqq n}\left(1-X_{k}^{-1}\right)^{-1}
$$

Notation and conventions. For $\mathrm{x}>1$, we write $\mathrm{li}(x)$ for the value of the logarithmic integral at x :

$$
\operatorname{li}(x)=\lim _{\delta \downarrow 0}\left(\int_{0}^{1-\delta}+\int_{1+\delta}^{x}\right) \frac{\mathrm{d} z}{\log z} \sim \frac{x}{\log x} .
$$

Qualifying 'with probability one' phrases will be suppressed. An equation involving the symbol ' ε ' is to be understood as true for every positive ε.

2

Recall that the 'real' Riemann Hypothesis about the zeros of the Riemann zeta-function is equivalent to the statement:

$$
\begin{equation*}
\operatorname{li}\left(p_{n}\right)=n+O\left(n^{\frac{1}{2}+\varepsilon}\right) \tag{1}
\end{equation*}
$$

(where p_{n} denotes the nth prime) and that equation (1) is the result which Riemann really wished to prove. See for example Ingham [3].

Theorem: The following 'Riemann Hypothesis for the Hawkins Sieve' holds:

$$
\begin{equation*}
L \operatorname{li}\left(X_{n} L^{-1}\right)=n+O\left(n^{\frac{1}{2}+\varepsilon}\right) \tag{2}
\end{equation*}
$$

where L denotes the random limit

$$
\begin{equation*}
L=\lim _{n \rightarrow \infty} X_{n} \exp \left(-Y_{n}\right) . \tag{3}
\end{equation*}
$$

This theorem was motivated by the exactly analogous 'diffusion' result in Williams [5]. The proof now given mirrors that in [5].

3
The process $\left\{\left(X_{n}, Y_{n}\right): n \in N\right\}$ is Markovian with

$$
\begin{gather*}
P\left[X_{n+1}-X_{n}=j \mid \mathscr{F}_{n}\right]=Y_{n}^{-1}\left(1-Y_{n}^{-1}\right)^{j-1} \quad(j \in N), \\
Y_{n+1}=Y_{n}\left(1-X_{n+1}^{-1}\right)^{-1}=Y_{n}\left(1+Z_{n+1}^{-1}\right) \tag{4}
\end{gather*}
$$

and $X_{1}=Y_{1}=2$. We have written (for $n \in N$):

$$
Z_{n}=X_{n}-1, \quad \mathscr{F}_{n}=\sigma\left\{\left(X_{k}, Y_{k}\right): k \leqq n\right\},
$$

the latter equation signifying that \mathscr{F}_{n} is the smallest σ-algebra with respect to which X_{k} and Y_{k} are measurable for every $k \leqq n$. Introduce

$$
\begin{equation*}
U_{n+1}=\left(Z_{n+1}-Z_{n}\right) Y_{n}^{-1} \quad(n \in N) \tag{5}
\end{equation*}
$$

Elementary properties of geometric distributions now make things particularly neat. For $x>0$ and $n \in N$,

$$
P\left[U_{n+1}>x \mid \mathscr{F}_{n}\right] \leqq\left(1-Y_{n}^{-1}\right)^{-1}\left(1-Y_{n}^{-1}\right)^{x Y_{n}} \leqq 2 e^{-x} .
$$

(Recall that $Y_{n} \geqq 2$ for every n.) By the Borel-Cantelli Lemma,

$$
\begin{equation*}
U_{n+1}=O(\log n)=O\left(n^{\varepsilon}\right) . \tag{6}
\end{equation*}
$$

Because

$$
E\left[\left(U_{n+1}-1\right) \mid \mathscr{F}_{n}\right]=0,
$$

$\left\{\left(U_{n+1}-1\right): n \in N\right\}$ is a family of orthogonal random variables. Since also

$$
E\left[\left(U_{n+1}-1\right)^{2} \mid \mathscr{F}_{n}\right]=1-Y_{n}^{-1} \leqq 1,
$$

Theorem 33B(ii) of Loève [4] provides the estimate:

$$
\begin{equation*}
\sum_{k \leqq n}\left(U_{k+1}-1\right)=O\left(n^{\frac{1}{2}+\varepsilon}\right) . \tag{7}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
n^{-1} \sum_{k \leqq n} U_{k+1} \rightarrow 1 . \tag{8}
\end{equation*}
$$

4

The remainder of the proof is divided into three stages.

Proposition 1: $Y_{n} \uparrow \infty$ and $Z_{n} \sim n Y_{n}$.
Proof: If $Y_{n} \uparrow Y<\infty$, then we could conclude from (4) that $\sum Z_{n}^{-1}<\infty$ and from (5) and (8) that (in contradiction) $n^{-1} Z_{n} \rightarrow Y$.

Thus $Y_{n} \uparrow \infty$ and

$$
\begin{equation*}
Z_{n+1} Y_{n+1}^{-1}-Z_{n} Y_{n}^{-1}=U_{n+1}-Y_{n+1}^{-1}=U_{n+1}+o(1) \tag{9}
\end{equation*}
$$

so that (from (8)) $Z_{n} \sim n Y_{n}$.
Proposition 2: If $H_{n}=\log Z_{n}-Y_{n}(n \in N)$, then

$$
\begin{equation*}
H_{n}=C+O\left(n^{-\frac{1}{2}+\varepsilon}\right) \tag{10}
\end{equation*}
$$

for some (random) C.
Proof: Since $x(1+x)^{-1} \leqq \log (1+x) \leqq x$ for $x \geqq 0$,

$$
\begin{aligned}
H_{n+1}-H_{n} & =\log \left(1+\alpha_{n} U_{n+1}\right)-\alpha_{n}\left(1+\alpha_{n} U_{n+1}\right)^{-1} \\
& =\beta_{n}\left(U_{n+1}-1\right)+O\left(\alpha_{n}^{2} U_{n+1}^{2}\right)
\end{aligned}
$$

where

$$
\alpha_{n}=Y_{n} Z_{n}^{-1}=O\left(n^{-1}\right) \text { and } \beta_{n}=Y_{n} Z_{n+1}^{-1}=O\left(n^{-1}\right)
$$

Proposition 2 now follows by partial summation using (6), (7) and the further estimate:

$$
\beta_{n-1}-\beta_{n}=\beta_{n-1} \beta_{n} U_{n+1}-\beta_{n-1} Z_{n+1}^{-1}=O\left(n^{-2+\varepsilon}\right) .
$$

Note. From equation (3), in which of course $L=\exp (C)$, and Proposition 1, it follows that

$$
\begin{equation*}
Y_{n} \sim \log n, \quad X_{n} \sim n \log n . \tag{11}
\end{equation*}
$$

In other words, 'Mertens' Theorem' and the 'Prime Number Theorem' hold. (One could not expect the e^{γ} factor which is the rather tantalising feature of the real Mertens Theorem.) Wunderlich obtained both results at (11) by a more complicated method.

5

On summing equation (9) over n and utilising the exponentiated form:

$$
\begin{equation*}
Z_{n}=L \exp \left(Y_{n}\right)\left(1+O\left(n^{-\frac{1}{2}+\varepsilon}\right)\right) \tag{12}
\end{equation*}
$$

of equation (10), we obtain

$$
L Y_{n}^{-1} \exp \left(Y_{n}\right)=n-\sum_{k \leqq n} Y_{k}^{-1}+O\left(n^{\frac{1}{2}+\varepsilon}\right)
$$

Extend the random function Y from $\{1,2,3, \cdots\}$ to $(1, \infty)$ by linear interpolation. Then it is easily checked that

$$
L Y_{t}^{-1} \exp \left(Y_{t}\right)=\int_{1}^{t}\left(1-Y_{s}^{-1}\right) \mathrm{d} s+f(t)
$$

where $f(t)=O\left(t^{\frac{1}{2}+\varepsilon}\right)$. But now we may compute

$$
\begin{aligned}
{\left[L \operatorname{li}\left(\exp \left(Y_{s}\right)\right)\right]_{1}^{t} } & =\int_{1}^{t}\left(1-Y_{s}^{-1}\right)^{-1} \mathrm{~d}\left[L Y_{s}^{-1} \exp \left(Y_{s}\right)\right] \\
& =t-1+\int_{1}^{t} f^{\prime}(s)\left[1-Y_{s}^{-1}\right]^{-1} \mathrm{~d} s
\end{aligned}
$$

Integration by parts using $Y_{s}^{\prime}=O\left(s^{-1}\right)$ establishes the following strong form of 'Mertens' Theorem':

$$
\begin{equation*}
L \operatorname{li}\left(\exp \left(Y_{t}\right)\right)=t+O\left(t^{\frac{1}{2}+\varepsilon}\right) \tag{13}
\end{equation*}
$$

Equation (2) now follows on combining equations (12) and (13).

REFERENCES

[1] D. Hawkins: The random sieve. Math. Mag., 31 (1958) 1-3.
[2] D. Hawkins: Random Sieves II. J. Number Theory 6 No. 3 (1974) 192-200.
[3] A. E. Ingham: The distribution of prime numbers. Cambridge University Press, 1932. Reprinted by Stechert-Hafner Service Agency, Inc., New York and London, 1964.
[4] M. Loève: Probability Theory, van Nostrand, Princeton, N.J., 1963.
[5] D. Williams: A study of a diffusion process motivated by the Sieve of Eratosthenes (to appear in Bull. London Math. Soc.).
[6] M. C. Wunderlich: The prime number theorem for random sequences (to appear in J. Number Theory).
[7] M. C. Wunderlich: A probabilistic setting for prime number theory (to appear in Acta Arithmetica 27, 1).

