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Introduction

In this paper we discuss closures of open analytic polyhedra. The main
problem is to find conditions on the defining functions for the polyhedron
under whieh the closure is a holomorphic set.
A complex analytic manifold of dimension n is called a Stein manifold

if three conditions are satisfied: Hol (M), the collection of holomorphic
functions on M, separates the points of M; for every x ~ M there exist n
functions in Hol (M) which provide local coordinates at x; finally for
every compact subset K of M, hullHol(M)(K) = {x~M: |f(x)| ~ ~f~K for
all f~Hol(M)} is a compact subset of M. Here ~ . 1 IK denotes the supre-
mum norm on K. A compact set K in M is called Hol (M) - convex if
K = hullHol(M)(K). Note that an open subset M of C" is a Stein manifold
if the last condition in the above definition is satisfied. In this paper we

only consider Stein manifolds which are open subsets of Cn.
A compact subset K of Cn is called a holomorphic set if K is the inter-

section of Stein manifolds in Cn . K is said to be holomorphically convex
if K is the continuous homomorphism space of the function algebra H(K)
consisting of uniform limits on K of restrictions to K of functions holo-
morphic in a neighborhood of K. From a characterization by Birtel, [3],
of holomorphically convex subsets of Cn it is evident that holomorphic
sets are also holomorphically convex. The converse is not true, see [4],
[12].
One can show that the interior of a holomorphically convex set in Cn

is a Stein manifold, [2]. We are interested in the converse statement : is the
closure of a relatively compact Stein manifold in Cn always a holomorphi-
cally convex set? Or perhaps a holomorphic set? The answer is no;
take for M

Now the closure M of M contains the topological boundary of the closed
unit polydisc in e2 and the origin in e2 is not contained in M. So the
smallest holomorphic set containing M is the closed unit polydisc in e2
and hence does not coincide with M.
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We here try to solve this problem for special types of Stein manifolds :
open analytic polyhedra. An open analytic polyhedron in a Stein mani-
fold M is a relatively compact subset of M of the form

where f1,···, fN E Hol (M) and N ~ n. In a similar way one defines a com-
pact analytic polyhedron in M. This is a compact subset of M of the form

where f1,···, fN~Hol(M) and N ~ n. In case N = n, the polyhedron is
called a special analytic polyhedron. For convenience we will always as-
sume that none of the defining functions are constant on any of the com-
ponents of M. Note that an open analytic polyhedron is a Stein manifold
and that a Hol (M)-convex subset K of a Stein manifold M is the inter-
section of open analytic polyhedra, so a holomorphic set. For information
on (special) analytic polyhedra, see [1].

It is easy to see that the closure of an open analytic polyhedron

is not always a compact analytic polyhedron defined by the same func-
tions as the open one. Just take M = C, N = 2, fi = (2z + 1 )/3, f2 =

(z2 - 3)/2. Here Q = {z~C}f1(z)| ~ 1, |f2(z)| ~ 1} is not connected and
the closure of P consists of one of the components of Q.

It can also happen that Q = {x~M: |fi(x)| ~ 1, i = 1,···, N} is not a
compact subset of M : M = C, N = 3, fi = ez2, f2 = eiz-1, f3 = ecz,
c = e-1 403C0i. Note that Q contains the half line

In these examples every irreducible component of a variety of the form

where J ~ {1,···,N}, is either entirely contained in the closure of

{x~M: |fj(x)|  1, j ~ J} or else does not meet this set. This also need not
always be the case : let M = e2, N = 3, fl (z, w) = (w(z-1)-1)(z-1)+1,
f2(z, w) = z, /,(z, w) = 1 4w. Let V = {(z, w) E e2: f1(sz, w) = f2(Z, w) = 1},
so V = {(z, w) E e2: z = 1}. Then (1, w), |w|  1 4, is not in the closure of
P’ = {(z, w) E e2: fi(z, w)1  1, f2(z, w)1  1}, since points (z, w) with
|z|  1 and |w|  1 4 are not in P’. Indeed, let (z, w) as above, hence x = z -1
= So |w(z-1)2| 
1 4|03B1|2 = 1 4(x2 + y2)  -1 2x. Hence Re ( fl(z, w) -1) = Re(-03B1+w03B12)~-x
+1 2x = -1 2x &#x3E; 0. So - 03B1 + w03B12 ~ D, therefore fl(z, w)| ~ 1. But (1, 2) is
in the closure of P’ since the points (x + 1 + i- 3x/2, 2) are in the
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closure of P’ if x  0, x sufficiently close to 0.
In the next we will show that if Q is a compact special analytic poly-

hedron then Q is the closure of its interior. We also show that under
certain conditions on the set of points where the defining functions for an
open analytic polyhedron P in M c Cn do not provide local coordinates,
the closure P of P (this notation will be used throughout the following) is
Hol (M)-convex, hence a holomorphic set. Note that this condition is of
the type Hoffman needs in some of his results ([9]). Finally in the case
dim M = 2 we completely solve our problem by proving P is a holo-
morphic set.
We will make use freely of results concerning function algebras, com-

plex analytic manifolds and analytic varieties, stated in [6], [7], [8].

The simplest type of an open analytic polyhedron is the interior of a
compact special polyhedron. The next result is well-known but the proof
gives an indication of the techniques we want to use.

THEOREM 1: Let Q =  compact
special analytic polyhedron in the Stein manifold M c cn. Then the open
analytic polyhedron P = {x E M: 1 fi(x)l  1, i = 1, - nl is dense in Q.

This result follows immediately from a theorem in [10], p. 132:
Let N be an n-dimensional complex analytic manifold and f : N ~ Cm

holomorphic. Then f is open iff dimx f-1f(x) = n - m for all x E N.
Now in a neighborhood N c M of Q, the varieties {z E N : (f1,···, fn)(z)

= (f1,···, fn)(x)l for x~ N are compact hence consist of a finite number
of points. The above result shows that f = (fil, fn) is open hence P
is dense in Q.
Another way to see this is the following : the varieties {z E M : fj(z) = ei03B8j,

j = 1, ..’, nl consist of a finite number of points. So every irreducible
component B of {z~M : jj(s)(z) = ei03B8j(s), s = 1,···, m},m~n, which meets
Q is n - m dimensional. If x~ B is a regular point of {z E M : jj(slz) = ei03B8j(s),
s = 1,···,m} there exists a neighborhood U of x such that {z~U:
fj(s)(Z) = eiOj(s), s = 1, ’ ’ ’, 11 is purely n - 1 dimensional for l ~ m. It then
follows easily that x is in the closure of {z~M: |fj(s)(z)|  1, s = 1, ..., m}.
So B is in this closure. Hence P is dense in Q.

Let P be an open analytic polyhedron, defined by fi, ..., fN . If a variety
of the form

with J~{1,···, N} consisting of m elements, is under consideration we
always will assume Oj = 0, j ~ J and J = {1, ···, m}. This causes no loss
of generality since we always may multiply h by unimôdular constants
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and reorder the functions fil , ..., fN .
We now prove several lemmas to be used later on. We denote the Silov

boundary of a function algebra A on a compact space X by vA. It is well-
known that the peak points for A are dense in aA if X is metrizable. If F
is a collection of functions on a topological space X, separating the points
of X and containing the constant functions on X, and if Y is a compact
sub set of X, then [FI Y] will be the function algebra on Y generated by the
restrictions to Y of the elements in F.

PROOF : Suppose the lemma were not true, then there is g E Hol (M)

for sufficiently large k, in contradiction with x ~ hullH,I(M)(P).

Now {y~M : fi(y) = 1, i = 1,···, m} is a subvariety of M, so {y~M:
f (y) = 1, i = 1,  where V is the union of the branches
of the variety which do not meet x and W is the union of those branches
which do meet x. Both Tl and W are subvarieties of M.

LEMMA 2: With notation as above

PROOF: Suppose the lemma is false. Since M is Stein, there exists
G E Hol (M) with G(x) = 1, G = 0 on h Let a = ~G~P. Note that a &#x3E; 0.
We can find H E Hol (M) such that H(x) = 1 and ~H~(P~(WBV)) - ~ 1/(2a).
So GH(x) = 1,  GH = 0 on P ~ E Hence the supre-
mum norm of GH on P n {y ~ M: fi(y) = 1, i = 1,···, m} is ~ 1 2 while
GH(x) = 1, in contradiction with the initial assumption.

PROOF: We abbreviate A =  Let z be a peak
point for A which is contained in E Let X be the closure of the set of peak
points for A which are not contained in E Suppose z ~ X. Now the
function f E A, peaking at z is such that f (z) = 1, ~f~x  a, 0  a  1.
Now there is a point w~P~(WBV) such that |f(w)|=b&#x3E;a. Since
w ~ V there exists g E Hol (M) such that g(w) = 1 and g = 0 on E Now
|(gfk)(w)| = bk  ak ~g~ for sufficiently large k, a
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contradiction. Hence z is a limit point of peak points for A which are con-
tained in P n (WBV).

Let y be a peak point of A which is not coiltained in E Let f be a
peak function for y. So there are fn E Hol (M) such that lim fn = f on

(P~(WBV))- and ~fn~(P~(WBV)) = 1. Let U, U ~~ M, be a neighbor-
hood of y in huUHol(MlP) which has a positive distance to V. We may
assume that 1 fn(x)  8 for all XE hUUHOl(Mlp n (WB V))-, x 0 U if n suf-
ficiently large, where 8 is a positive number smaller than 1.
Now let h be the peak function of lemma 1. For k sufficiently large, a

component of

is contained in U.

Now we use the following form of Rossi’s local maximum modulus
principle [ 13, theorem 5.3] : Let A be a function algebra on d A, f E A and

03B1~R, 0~03B1~~f~0394A. Then every component of {y~0394A:|f(y) ~ 03B1}
meets aA. So U contains a point of è[Hol(M)IP]. We can do this for any
neighborhood U of y. Hence y~~[Hol(M)P]. So aA c ~[Hol(M)P].
Let B(P) denote the set of all points of M at which at least n = dim M

of the defining functions for P are 1 in absolute value.

LEMMA 4: ôH(P) and ê[Hol(M)IP] are contained in B(P).
Comment: In [5] Bremermann states the same result in section 5.2,

page 253. It seems to us that the argument produced in his proof is incom-
plete. However using similar arguments as in section 6.5, page 258, the
result can be proved, using the analogue result for compact analytic
polyhedra, [9].

The statement follows immediately from the previous two lemmas.

Let fi,..’, fn be elements of Hol(M). We define the Jacobian of
ri , ..., fn as follows.

It is clear that J(f1,···, fn)(y) ~ 0 if and only if fil , ..., fn provide local
coordinates at y.

Let S be the set of all y E B(P) such that J(fI)(y) = 0 for all I ~ {1, ···, NI
consisting of n elements such that |fi(y)| = 1 for all i~I; Here fi stands
for (!ï(1)’ ..., fi(n)) where {i(1), ···, i(n)} = I.

THEOREM 2: Suppose there is an open neighborhood U of P such that
U n S = 9. Then P is Hol(M)-convex.
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PROOF: Let x ~ hullHOl(MlP), X 0 P; then fi (x) = ... = f.(x) = 1,
Ifm+l(x)1  1,..., 1 fN(x)  1 for some m ~ N (see the remark before
lemma 1). As in lemma 2 we consider the varieties V and W

Suppose m ~ n. Now dim W &#x3E; 0, otherwise W = {x}, in contradiction
with x 0,P. By lemma 5, W n P n B(P) ~ 0, say y is contained in this inter-
section. There are k functions f such that |fi(y)| = 1, k ~ n. By assumption
there is a subset I of {1, ···, N} consisting of n elements such that J( fI)(y)
~ 0 and 1 fi(y)l = 1, i E 1. If 1 ~ {1, ···, m} then y is an isolated point of the
variety {z~M:fi(z) = 1, i~I}, hence of W, in contradiction with the fact
that W is connected. Suppose I  {1, ···, m}. By the Jacobian condition
not all f , i E I, are constant (near y) on W So close to y, i.e. in U n W, we
can find a point y’ where at most k - 1 ~ n functions are 1 in absolute
value. Repeating this process, we end op with yo E W, I ~ {1, ···, m} con-
sisting of n elements and fI such that 1 fi(yo)l = 1 for i E 1, J(fI)(y0) ~ 0,
as above a contradiction.

Now suppose m  n, hence dim W &#x3E; 0. First, since x 0,P, the dimension
of every branch of W is &#x3E; n - m (see proof of theorem 1). Also since
x ~ P, for any gm+ 1, ..., gn E Hol(M), there is a neighborhood of x in W
where J(f1,···,fm, gm+1,···, gn) = 0. Hence by the identity principle for
analytic functions on irreducible varieties, J(fl"’" fm, gm+1,···, gn)
vanishes identically on W for all choices of gm +1,···, gn E Hol (M).
Again, let y E W n P n B(P). As before there is I ~{1, ···, N} consisting
of n elements such that 1.fi(y)1 = 1, i~I, and J(fI)(y) ~ 0. If I ~ {1, ···, m}
we have a contradiction with the above observation about Jacobians.

If {1, ····, m}  I, we find y’ ~ W close to y such that at least n functions
are 1 in absolute value at y’. Moreover the number of functions f which
are 1 in absolute value at y’ is at least one less than this number at y. This
is possible since the dimension of every branch of W is &#x3E; n - m. Con-

tinuing the above process we end up with n functions fi, i ~ I, I ~ {1, ···,
m}, and a point y0 ~ W such that |fi(y0)| = 1, i E 1 and J(fI)(y0) ~ 0.
A contradiction. Hence hUIlH.I(M)(P) = P, so P is a holomorphic set.

REMARK: One can prove a slightly stronger result :
Let T be the set of all y E B(P) such that y is not an isolated point of

{z~M : fi(z) = fi(y)) for all 1 ~ (1,···, N} consisting of n elements such
that 1.fi(y)1 = 1 for all i~I.

If there is a neighborhood U of P such that U n T = Ø, then P is
Hol (M)-convex.
The proof of theorem 2 depends on the fact that for an n-tuple fi with

J(f¡)(x) =1= 0, 1 fi(x)l = 1, i E I, and a positive-dimensional variety W
through x, not all fi are constantly 1 in absolute value on W. The same is
true replacing J(fI)(x) ~ 0 by: x is isolated point of {z~M : fI(z) = fI(x)}
(cf. theorem 11, p. 108 of [8]).
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For our main result we need the following theorem, due to Stein
[14, proposition 2].

Let X be a connected complex analytic manifold, Y a complex space,
03C4:X ~ Y a holomorphic mapping such that dimx {03C4-1(03C4(x))} does not
depend on x. Let L, Ln (n = 1, 2, ···) be connected components of level
sets of i. Assume that there is a point xo E L such that every neighborhood
of xo is met by almost all Ln. Then every point of L has the same property.

THEOREM 3 : Let P be an open analytic polyhedron in a Stein manifold M
which is a subset of C2 . Then P is a holomorphic set.

PROOF : Assume M is connected. This causes no loss of generality be-
cause we may restrict our attention to components of M.

Let XE hullHol(M)(P), x 0 P. Let P be defined by fl , ’ ’ ’, fN and suppose
f1(x) = ··· = fm(x) = 1, fm + 1(x)|  1, ···, IfN(x)l  1. Let W as before be

the union of the branches of {y~M: fi(y) = 1, i = 1, ···, m} through x.
Now dim W = 1, otherwise x would be in P since x ~ hullHol(M)(P ~ W).

Let I be the subvariety of M defined as

and let J be the variety defined by J =  fj)(z) = 0 for some
i, j for which J( f , fi) is not identically zero}. Then I and J are of dimension
~ 1. We will show x ~ I ~ J. Suppose x ~ I ~ J then

Let

and suppose y 0 A. In a neighborhood U of y fi and z2 provide local co-
ordinates. Since J( fl , fi)(x) = 0 for all i, 2 ~ i ~ m, because dim W = 1,
J( fl , fi) is identically zero by the assumption x 0 J. So the value of f
on U depends only on the value of fl , i.e. dimy {z E M : (f1,···, fm)(z) =
(fi, ..., fm)(y)} = 1. 

_

Now there is a point y E P n W which is not contained in A. Take a
neighborhood U of y as above and choose a sequence {yn} of points in
P n U converging to y. Let Ln be the connected component of the level
set {z~MBA: ( fl , ’ ’ ’, fm)(z) = (fi, ..., fm)(yn)} through yn . These sets are
1-dimensional.
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Now apply Stein’s theorem to MBA and the map (f1,···, fm). This
shows that every point of WBA, in particular x, is met by almost all Ln’
i.e. x ~ P, a contradiction.

REMARK : To prove that hullHol(MlP)Bp is contained in a one-dimension-
al analytic variety one also could use the remark on convergence of ana-
lytic varieties on page 5 of [14].

The above shows that for every x ~ hull there is a neigh-
borhood U of x in C2BP and a one-dimensional subvariety vof U such that
U n hullHol(M)(P) c Ji: Let f be a polynomial such that f(x) = 0 and f
has no other zeroes on V (after shrinking U if necessary). Let U1 be an
open neighborhood of x, relatively compact in U. We may assume that if
Z = {z~U:f(z)=0}, ZBU1 has a positive distance to hullHol(M)(P) (by
shrinking U if necessary). Since hullHol(M(P) is a holomorphic set there is
a Stein manifold S --D hullHol(MlP) such that S n Z ce U, . Consider the fol-
lowing data for a Cousin I problem: (S n U; 1/ f ), (SB 01; 0). On the Stein
manifold S this problem is solvable, so there is a meromorphic function m
on S such that m - 1/f ~ Hol(S ~ U) and m is holomorphic on SB 01 .
Therefore the Stein manifold {z E S: 1 m(z)  CI for C sufficiently large
contains P, but does not contain x. In other words P is a holomorphic set.

REMARK: All results stated above can be proved for the more general
situation where M is a Stein manifold which is a Riemann domain.

COROLLARY : Let P be an open rational polyhedron in a Stein manifold M
in C2, i.e. P is defined by rational functions with pole sets which do not meet
M. Suppose that every function in Hol (M) can be approximated on K by
rational functions with poles off K for every compact subset K of M. If
H2(hullHol(M)(P); Z) = 0, then P is rationally convex.

PROOF: The condition on M means that hullHol(M)(P) contains the
rationally convex hull of P. As in the proof of theorem 3 every point
x ~ hullHol(MlP), X 0 P, is contained in a one-dimensional variety V such
that for small enough neighborhoods U of x

As above choose Z and a Stein manifold S. Since H2(hullHol(M)(P); Z) = 0,
we may assume, replacing S by a smaller Stein manifold, there is an
f E Hol (S) such that Z n S = {f = 01 (see [ 15], p. 286). Now f’ has no
zeroes on P and f is holomorphic on the rationally convex hull of P,
so can be approximated on the rationally convex hull of P by rational
functions. This shows that x is not contained in the rationally convex hull
of P, hence P is rationally convex.
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