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We construct an example of a subspace ’ V of the conjugate E* = l’
of E = 11 with characteristic r(V) = 0 and satisfying the following two
conditions:

(K1) if xn ~ xo for 03C3(E, V), then lim ~xn~ ~ I xo I I 
(K2) If xn ~ xo for 03C3(E, V) and

Introduction

Let E be a Banach space, E* its conjugate and Tl a subspace of E*.
The unit ball of E(E*, V respectively) we denote by SE(SE*, SV respec-
tively). Dixmier ([2]) defined the characteristic r(V) of Vas follows:

r(V) = sup {03B1 : a ~ 0 and USE- C SV03C3(E*,E)}.
Clearly r( ) &#x3E; 0 implies that Y is 03C3(E*, E)-dense in E*, but the converse
is not true (see [2] for an example).
The following two results involve characteristics.

PROPOSITION 1: ( [6, proposition 4.1 ]). Let E be a Banach space and let V
be a separable subspace of E*. Then (Kl) is equivalent to r(V) = 1.

PROPOSITION 2: ([3], see also [9, p. 486]) Let E be a separable Banach
space and let V be a subspace of E* with r(V) &#x3E; 0. Then there exists an

equivalent norm |||·||| on E for which (K1) and (K2) hold.

Our example shows that in proposition 1 the separability of Y is essen-
tial and also that in proposition 2 the condition r(V) &#x3E; 0 is not necessary.

First we prove, setting E = 11, E* = l~, that for each k E N there
exists a (non-separable) subspace Vk of E* such that (K1) and (K2) hold
whereas

1 Apparently the problem of the existence of such a subspace was raised by Kadec.
We thank Prof. Singer for communicating it to us and for some discussions resulting
in the proof of proposition 1.



196

This Yk will be a suitable quasi-complement of co in E*, which we define
by modifying a construction of Rosenthal ([8]). This leads, by a proce-
dure of taking 11-sums, to a subspace V of E* satisfying both (Kl ) and
(K2) and with r(V) = 0.
We begin by sketching a proof of proposition 1 which differs from the

one suggested by Mil’man.

PROOF OF PROPOSITION 1: We first observe that (Kl ) is equivalent to the
sequential 03C3(E, V)-closedness of SE. Since V is separable, the topology
03C3(E, V) is metrizable when restricted to bounded subsets of E. Hence
the sequential Q(E, V)-closure and the 03C3(E, V)-closure of ,S’E coincide.
Thus (K1) means that SE is 6(E, V)-closed and this in turn is equivalent,
by [2, Théorème 8], to r(V) = 1.

Observe that r(V) = 1 implies (K1) also for non-separable V, by [2,
Théorème 8]. The separability of V is needed only for the proof of the
converse implication.
One should also note that (K1) implies that Y is u(E*, E)-dense, wheth-

er Y is separable or not.
Our example will be based on the following
LEMMA: Let E = ll, E* = 100 and let V be a 03C3(l~, ll)-dense quasi-com-

plement of co in 100 (We assume co to be imbedded in l’ in the canonical
way). Then we have: If xn ~ xo for a(ll, V) and {xn} is norm-bounded,
then ~xn - x0~ ~ 0. In particular, (K1) and (K2 ) are satisfied.

Proof: Let {xn’} be any subsequence of {xn}. Since 11 is the dual of the
separable space co, {xn’} contains (see [1]) a 03C3(l1, co )-convergent sub-
sequence {xn"}. Thus {xn"} is u(ll, co)-Cauchy as well as 03C3(l1, V)-Cauchy
and therefore a(Il, co + V)-Cauchy. Since co + V is norm-dense in 100,
the boundedness of {xn"} now implies that {xn"} is 03C3(l1, l’)-Cauchy and
therefore norm-convergent (see [4, p. 281 ]), say to x. V being 03C3(l~, l1)-
dense in l~, u(ll, V)-limits are unique. This evidently implies that
x = xo. We have now shown that any subsequence of {xn} contains a
subsequence converging to xo in norm. Hence ~xn - x0~ ~ 0.
The statement proved clearly implies (K2), and also (Kl ), since (K1) is

equivalent to the sequential U(ll, V)-closedness of Sl1.
In order to understand our example it is necessary to recall briefly

Rosenthal’s construction of a quasi-complement of co in 100 (cf. [8]).
This construction is based on the following observations, the complete
proofs of which can be found in [8].
(i) A subspace X of a Banach space E is quasi-complemented in E if

and only if there exists a 6(E*, E)-closed subspace Y of E* such that
Y n Xl. = {0} and Yl n X = {0}. Indeed, if Y has these properties,
then Y~ is a quasi-complement of X in E.
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(ii) If Y is a reflexive subspace of E*, then Y is Q(E*, E)-closed. This
follows from the Krein-Smulian theorem.

(iii) If an infinite compact topological space S contains an infinite per-
fect subset, then C(S)* contains a subspace isomorphic to 12.

Rosenthal’s construction ([8]) of a quasi-complement of Co now pro-
ceeds as follows. We may identify 100 with C(03B2N), where 03B2N denotes the
Stone-Cech compactifation of N. Then ci can be identified with

C(PNIN)*. Since 03B2NBN is an infinite perfect compact Hausdorff space,
(iii) implies that cô contains 11 isomorphically. Let H c ci be isomorphic
to l’ and let {03BC1, ···, 03BCn, ···} be a basis of H equivalent to the ortho-
normal basis of 1’. We assume that ~03BCn~ = 1 (n = 1, 2, ... ). For each
n E N let bn be the Dirac measure on N concentrated at n. Then the closed
linear span of {03B4n : n ~ N} in (l~)* can be identified with l’, by the ca-
nonical map. Now let G be the closed linear span of

It is easily verified that G is isomorphic to H and therefore 03C3((l~)*, l~)-
closed, by (ii). Finally, G n ci = Gl n co = {0}, so Tl = Gl is a quasi-
complement of co by (i).

Since, in this construction, Vol n 11 = G n 11 = {0}, V is 03C3(l~, l1)-
dense in l~, so the lemma applies.

EXAMPLE: We now show that by a slight modification of the construc-
tion described above we can obtain for each k ~ N a 03C3(l~, 11 )-dense
quasi-complement Vk of co with r(Vk) ~ 1/k.

Let k E N be arbitrary and let Gk be the closed linear span of k03B41 + 111 1
and

Clearly Gk is isomorphic to H and therefore u«1’)*, l’)-closed, by (ii).
Again, as before it is easily verified that

Therefore Vk = (Gk)~ is a quasi-complement of co in l~, by (i). Also

so that Vk is 03C3(l~, l1)-dense in l~.
Next we show that
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By [2, Théorème 9] it suffices to prove that

(Here (X, Y), for arbitrary subspaces X and Y of a Banach space E, de-
notes the inclination of X to Y, i.e. the distance of the unit sphere of X
to Y (cf. [9]). Clearly, since 03B41 E SI, and

we have

which proves our claim, since G, = V/.
Now, for each k E N, let Ek = 11, E*k = 100 and let Vk be the 03C3(E*k, Ek)-

dense quasi-complement of Co in E*k with

that was constructed above. Then, putting

we have

We will show that

satisfies (Ki ) and (K2) whereas r(V) = 0.
To prove (K1), it suffices to show that SE is sequentially a(E, V)-closed.

Let {x(n)}~n= 1, with x(n) = (x(n)1, x(n)2···) E E(n E N), be a sequence in SE
which converges for u(E, V) to x(0) = (x(0)1, x(0)2, ···) E E. We must
show that ~x(0)~ ~ 1. For this it is enough to prove that for an arbi-
trary k e N

where 1tk is the natural projection of E onto (El E9... E9 Ek E9 {0}
~ ···)l1, which we identify with (El E9 E2 E9 ... E9 Ek)l1. Clearly
the sequence 

converges to 7rk(x(o» for 03C3(03C0k(E), n:(V» = U((E1 ~ ... ~ Ek)l1,
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(V1 ~ ··· O Vk)l~). Since ~03C0k(x(n))~ ~ 1 for all n ~ N, (El ~ ··· O
Ek)l1 (which is isometric to l1) is isometric to the dual of the separable
space

and (V1 ~ ... O Vk)l~ is a

quasi-complement of (co O ’ ’ ’ O c0)l~ in

the Lemma applies here and yields that ~03C0k(x(0))~ ~ 1. Hence ~x(0)~ ~ 1,
since k e N was arbitrary.
To show that (K2) holds, let us assume that x (n) ~ x(0) for u(E, V) and

that ~x(n)~ ~ ~x(0)~. We may also assume that ~x(0)~ = 1. Let e &#x3E; 0 be

arbitrary and let k E N be such that

As in the proof of (Kl ) it follows from the Lemma that

(n - oo ). Hence there exists an no E N such that

and therefore, by (1),

We may also assume that

Thus

It follows now from (1), (2), (3), (4) and (5) that

This proves (K2).
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Finally, let us show that r(V) = 0. We have

and it is easily seen that

By the definition of r(Vk)

It follows that

Thus r(V) = 0. This completes the example.
We conclude with a general result on quasi-complements of co in 100.

All such quasi-complements obtained by Rosenthal’s construction are
03C3(l~, 11 )-dense in 100. This may not be the case in general. However,
all quasi-complements of co are ’almost’ 03C3(l~, l1)-dense in l~, as we show
in the following

PROPOSITION 3: Let V be a quasi-complement of co in l~. Then the

03C3(l~, l1)- closure V’ of V in 100 has finite codimension in 100.

PROOF: Suppose that dim l~/V’ = oo. Then we have, since Yl - V’~,
that dim V~ = oo and, of course, dim l1/V~ = oo. By [7, Lemma 2]V,-
contains a subspace L with dim L = oo which is complemented in 1’.
Let M be a complement of L in 11. Then 100 = L~ Q Ml. By [5] both
L~ and M~ are isomorphic to 100. In particular M~ is non-separable. Since
L c V~ we have Y ~ L~. Furthermore, l~/V is separable, by the defi-
nition of V, whereas l~/L~ ~ Ml is not. This is a contradiction, since
the canonical map l~/V ~ l~/L~ is a continuous surjection.
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