COMPOSITIO MATHEMATICA

D. VAN DULST A certain subspace of characteristic zero of (l^1)

Compositio Mathematica, tome 28, nº 2 (1974), p. 195-201 <http://www.numdam.org/item?id=CM 1974 28 2 195 0>

© Foundation Compositio Mathematica, 1974, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A CERTAIN SUBSPACE OF CHARACTERISTIC ZERO OF $(l^1)^*$

D. van Dulst

Abstract

We construct an example of a subspace ¹ V of the conjugate $E^* = l^{\infty}$ of $E = l^1$ with characteristic r(V) = 0 and satisfying the following two conditions:

 (K_1) if $x_n \to x_0$ for $\sigma(E, V)$, then $\lim ||x_n|| \ge ||x_0||$, (K_2) If $x_n \to x_0$ for $\sigma(E, V)$ and

 $\lim_{n \to \infty} ||x_n|| = ||x_0||, \text{ then } \lim_{n \to \infty} ||x_n - x_0|| = 0.$

Introduction

Let *E* be a Banach space, E^* its conjugate and *V* a subspace of E^* . The unit ball of $E(E^*, V \text{ respectively})$ we denote by $S_E(S_{E^*}, S_V \text{ respectively})$. Dixmier ([2]) defined the characteristic r(V) of *V* as follows:

 $r(V) = \sup \{ \alpha : \alpha \ge 0 \text{ and } \alpha S_{E^*} \subset \overline{S_V}^{\sigma(E^*, E)} \}.$

Clearly r(V) > 0 implies that V is $\sigma(E^*, E)$ -dense in E^* , but the converse is not true (see [2] for an example).

The following two results involve characteristics.

PROPOSITION 1: ([6, proposition 4.1]). Let E be a Banach space and let V be a separable subspace of E^* . Then (K_1) is equivalent to r(V) = 1.

PROPOSITION 2: ([3], see also [9, p. 486]) Let E be a separable Banach space and let V be a subspace of E^* with r(V) > 0. Then there exists an equivalent norm $||| \cdot |||$ on E for which (K_1) and (K_2) hold.

Our example shows that in proposition 1 the separability of V is essential and also that in proposition 2 the condition r(V) > 0 is not necessary.

First we prove, setting $E = l^1$, $E^* = l^\infty$, that for each $k \in N$ there exists a (non-separable) subspace V_k of E^* such that (K_1) and (K_2) hold whereas

$$r(V_k) \leq \frac{1}{k}.$$

¹ Apparently the problem of the existence of such a subspace was raised by Kadec. We thank Prof. Singer for communicating it to us and for some discussions resulting in the proof of proposition 1. This V_k will be a suitable quasi-complement of c_0 in E^* , which we define by modifying a construction of Rosenthal ([8]). This leads, by a procedure of taking l^1 -sums, to a subspace V of E^* satisfying both (K_1) and (K_2) and with r(V) = 0.

We begin by sketching a proof of proposition 1 which differs from the one suggested by Mil'man.

PROOF OF PROPOSITION 1: We first observe that (K_1) is equivalent to the sequential $\sigma(E, V)$ -closedness of S_E . Since V is separable, the topology $\sigma(E, V)$ is metrizable when restricted to bounded subsets of E. Hence the sequential $\sigma(E, V)$ -closure and the $\sigma(E, V)$ -closure of S_E coincide. Thus (K_1) means that S_E is $\sigma(E, V)$ -closed and this in turn is equivalent, by [2, Théorème 8], to r(V) = 1.

Observe that r(V) = 1 implies (K_1) also for non-separable V, by [2, Théorème 8]. The separability of V is needed only for the proof of the converse implication.

One should also note that (K_1) implies that V is $\sigma(E^*, E)$ -dense, whether V is separable or not.

Our example will be based on the following

LEMMA: Let $E = l^1$, $E^* = l^\infty$ and let V be a $\sigma(l^\infty, l^1)$ -dense quasi-complement of c_0 in l^∞ (We assume c_0 to be imbedded in l^∞ in the canonical way). Then we have: If $x_n \to x_0$ for $\sigma(l^1, V)$ and $\{x_n\}$ is norm-bounded, then $||x_n - x_0|| \to 0$. In particular, (K_1) and (K_2) are satisfied.

Proof: Let $\{x_{n'}\}$ be any subsequence of $\{x_n\}$. Since l^1 is the dual of the separable space c_0 , $\{x_{n'}\}$ contains (see [1]) a $\sigma(l^1, c_0)$ -convergent subsequence $\{x_{n''}\}$. Thus $\{x_{n''}\}$ is $\sigma(l^1, c_0)$ -Cauchy as well as $\sigma(l^1, V)$ -Cauchy and therefore $\sigma(l^1, c_0 + V)$ -Cauchy. Since $c_0 + V$ is norm-dense in l^{∞} , the boundedness of $\{x_{n''}\}$ now implies that $\{x_{n''}\}$ is $\sigma(l^1, l^{\infty})$ -Cauchy and therefore norm-convergent (see [4, p. 281]), say to x. V being $\sigma(l^{\infty}, l^1)$ -dense in l^{∞} , $\sigma(l^1, V)$ -limits are unique. This evidently implies that $x = x_0$. We have now shown that any subsequence of $\{x_n\}$ contains a subsequence converging to x_0 in norm. Hence $||x_n - x_0|| \to 0$.

The statement proved clearly implies (K_2) , and also (K_1) , since (K_1) is equivalent to the sequential $\sigma(l^1, V)$ -closedness of S_{l^1} .

In order to understand our example it is necessary to recall briefly Rosenthal's construction of a quasi-complement of c_0 in l^{∞} (cf. [8]). This construction is based on the following observations, the complete proofs of which can be found in [8].

(i) A subspace X of a Banach space E is quasi-complemented in E if and only if there exists a σ(E*, E)-closed subspace Y of E* such that Y ∩ X[⊥] = {0} and Y_⊥ ∩ X = {0}. Indeed, if Y has these properties, then Y_⊥ is a quasi-complement of X in E.

- (ii) If Y is a reflexive subspace of E^* , then Y is $\sigma(E^*, E)$ -closed. This follows from the Krein-Šmulian theorem.
- (iii) If an infinite compact topological space S contains an infinite perfect subset, then $C(S)^*$ contains a subspace isomorphic to l^2 .

Rosenthal's construction ([8]) of a quasi-complement of c_0 now proceeds as follows. We may identify l^{∞} with $C(\beta N)$, where βN denotes the Stone-Cech compactifation of N. Then c_0^{\perp} can be identified with $C(\beta N/N)^*$. Since $\beta N \setminus N$ is an infinite perfect compact Hausdorff space, (iii) implies that c_0^{\perp} contains l^2 isomorphically. Let $H \subset c_0^{\perp}$ be isomorphic to l^2 and let $\{\mu_1, \dots, \mu_n, \dots\}$ be a basis of H equivalent to the orthonormal basis of l^2 . We assume that $||\mu_n|| = 1$ $(n = 1, 2, \dots)$. For each $n \in N$ let δ_n be the Dirac measure on N concentrated at n. Then the closed linear span of $\{\delta_n : n \in N\}$ in $(l^{\infty})^*$ can be identified with l^1 , by the canonical map. Now let G be the closed linear span of

$$\left\{\frac{\delta_n}{n}+\mu_n:n\in N\right\}.$$

It is easily verified that G is isomorphic to H and therefore $\sigma((l^{\infty})^*, l^{\infty})$ closed, by (ii). Finally, $G \cap c_0^{\perp} = G_{\perp} \cap c_0 = \{0\}$, so $V = G_{\perp}$ is a quasicomplement of c_0 by (i).

Since, in this construction, $V^{\perp} \cap l^1 = G \cap l^1 = \{0\}$, V is $\sigma(l^{\infty}, l^1)$ -dense in l^{∞} , so the lemma applies.

EXAMPLE: We now show that by a slight modification of the construction described above we can obtain for each $k \in N$ a $\sigma(l^{\infty}, l^1)$ -dense quasi-complement V_k of c_0 with $r(V_k) \leq 1/k$.

Let $k \in N$ be arbitrary and let G_k be the closed linear span of $k\delta_1 + \mu_1$ and

$$\left\{\frac{\delta_n}{n} + \mu_n : n = 2, 3, \cdots\right\}.$$

Clearly G_k is isomorphic to H and therefore $\sigma((l^{\infty})^*, l^{\infty})$ -closed, by (ii). Again, as before it is easily verified that

$$G_k \cap c_0^{\perp} = (G_k)_{\perp} \cap c_0 = \{0\}.$$

Therefore $V_k = (G_k)_{\perp}$ is a quasi-complement of c_0 in l^{∞} , by (i). Also

$$V_{k}^{\perp} \cap l^{1} = G_{k} \cap l^{1} = \{0\},\$$

so that V_k is $\sigma(l^{\infty}, l^1)$ -dense in l^{∞} .

Next we show that

$$r(V_k) \leq \frac{1}{k}.$$

[3]

By [2, Théorème 9] it suffices to prove that

$$\overline{(l^1, V_k^{\perp})} \leq \frac{1}{k}$$

(Here (X, Y), for arbitrary subspaces X and Y of a Banach space E, denotes the inclination of X to Y, i.e. the distance of the unit sphere of X to Y (cf. [9]). Clearly, since $\delta_1 \in S_{l^1}$ and

$$\delta_1 + \frac{1}{k} \mu_1 \in G_k,$$

we have

$$\overline{(l^1, G_k)} \leq \left| \left| \delta_1 - \left(\delta_1 + \frac{1}{k} \mu_1 \right) \right| \right| = \frac{1}{k},$$

which proves our claim, since $G_k = V_k^{\perp}$.

Now, for each $k \in N$, let $E_k = l^1$, $E_k^* = l^\infty$ and let V_k be the $\sigma(E_k^*, E_k)$ -dense quasi-complement of c_0 in E_k^* with

$$r(V_k) \leq \frac{1}{k}$$

that was constructed above. Then, putting

$$E = (E_1 \oplus E_2 \oplus \cdots \oplus E_k \oplus \cdots)_{l^1},$$

we have

$$E^* \equiv (E_1^* \oplus E_2^* \oplus \cdots \oplus E_k^* \oplus \cdots)_{l^{\infty}}.$$

We will show that

$$V = (V_1 \oplus V_2 \oplus \cdots \oplus V_k \oplus \cdots)_{l^{\infty}} \subset E^*$$

satisfies (K_1) and (K_2) whereas r(V) = 0.

To prove (K_1) , it suffices to show that S_E is sequentially $\sigma(E, V)$ -closed. Let $\{x^{(n)}\}_{n=1}^{\infty}$, with $x^{(n)} = (x_1^{(n)}, x_2^{(n)} \cdots) \in E(n \in N)$, be a sequence in S_E which converges for $\sigma(E, V)$ to $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, \cdots) \in E$. We must show that $||x^{(0)}|| \leq 1$. For this it is enough to prove that for an arbitrary $k \in N$

$$||\pi_k(x^{(0)})|| = \sum_{n=1}^k ||x_n^{(0)}|| \le 1,$$

where π_k is the natural projection of E onto $(E_1 \oplus \cdots \oplus E_k \oplus \{0\} \oplus \cdots)_{l^1}$, which we identify with $(E_1 \oplus E_2 \oplus \cdots \oplus E_k)_{l^1}$. Clearly the sequence

$$\{\pi_k(x^{(n)})\}_{n=1}^{\infty}$$

converges to $\pi_k(x^{(0)})$ for $\sigma(\pi_k(E), \pi_k^*(V)) = \sigma((E_1 \oplus \cdots \oplus E_k)_{l^1},$

 $(V_1 \oplus \cdots \oplus V_k)_{l^{\infty}})$. Since $||\pi_k(x^{(n)})|| \leq 1$ for all $n \in N$, $(E_1 \oplus \cdots \oplus E_k)_{l^1}$ (which is isometric to l^1) is isometric to the dual of the separable space

$$\underbrace{(\underbrace{c_0 \oplus \cdots \oplus c_0}_{k \text{ factors}})_{l^{\infty}}}_{k \text{ factors}}$$

and $(V_1 \oplus \cdots \oplus V_k)_{l^{\infty}}$ is a

$$\sigma((E_1^* \oplus \cdots \oplus E_k^*)_{l^{\infty}}, (E_1 \oplus \cdots \oplus E_k)_{l^1})$$
-dense

quasi-complement of $(c_0 \oplus \cdots \oplus c_0)_{l^{\infty}}$ in

$$(E_1^*\oplus\cdots\oplus E_k^*)_{l^{\infty}},$$

the Lemma applies here and yields that $||\pi_k(x^{(0)})|| \leq 1$. Hence $||x^{(0)}|| \leq 1$, since $k \in N$ was arbitrary.

To show that (K_2) holds, let us assume that $x^{(n)} \to x^{(0)}$ for $\sigma(E, V)$ and that $||x^{(n)}|| \to ||x^{(0)}||$. We may also assume that $||x^{(0)}|| = 1$. Let $\varepsilon > 0$ be arbitrary and let $k \in N$ be such that

(1)
$$1-\varepsilon < ||\pi_k(x^{(0)})|| \le 1$$

As in the proof of (K_1) it follows from the Lemma that

$$||\pi_k(x^{(n)}) - \pi_k(x^{(0)})|| \to 0$$

 $(n \to \infty)$. Hence there exists an $n_0 \in N$ such that

(2)
$$||\pi_k(x^{(n)})-\pi_k(x^{(0)})|| < \varepsilon \ (n \ge n_0),$$

and therefore, by (1),

(3)
$$||\pi_k(x^{(n)})|| > ||\pi_k(x^{(0)})|| - \varepsilon > 1 - 2\varepsilon \ (n \ge n_0)$$

We may also assume that

$$(4) ||x^{(n)}|| < 1 + \varepsilon \ (n \ge n_0)$$

Thus

(5)
$$||x^{(n)} - \pi_k(x^{(n)})|| = ||x^{(n)}|| - ||\pi_k(x^{(n)})|| < 1 + \varepsilon - (1 - 2\varepsilon) = 3\varepsilon$$

($n \ge n_0$)

It follows now from (1), (2), (3), (4) and (5) that
$$||x^{(n)} - x^{(0)}|| \le ||x^{(n)} - \pi_k(x^{(n)})|| + ||\pi_k(x^{(n)}) - \pi_k(x^{(0)})|| + ||\pi_k(x^{(0)}) - x^{(0)}|| < 3\varepsilon + \varepsilon + \varepsilon = 5\varepsilon \ (n \ge n_0)$$

This proves (K_2) .

Finally, let us show that r(V) = 0. We have

$$S_{E^*} = \prod_{k=1}^{\infty} S_{E^*_k}$$

and it is easily seen that

$$\overline{S_V}^{\sigma(E^*, E)} = \prod_{k=1}^{\infty} \overline{S_V}_k^{\sigma(E_k^*, E_k)}$$

By the definition of $r(V_k)$

$$\alpha S_{E_k^*} \notin \overline{S_V}_k^{\sigma(E^*_k, E_k)} \text{ for all } \alpha > \frac{1}{k} \ (k \in N).$$

It follows that

$$\alpha S_{E^*} \not\subset S_V^{\sigma(E^*, P)} \text{ for all } \alpha > 0.$$

Thus r(V) = 0. This completes the example.

We conclude with a general result on quasi-complements of c_0 in l^{∞} . All such quasi-complements obtained by Rosenthal's construction are $\sigma(l^{\infty}, l^1)$ -dense in l^{∞} . This may not be the case in general. However, all quasi-complements of c_0 are 'almost' $\sigma(l^{\infty}, l^1)$ -dense in l^{∞} , as we show in the following

PROPOSITION 3: Let V be a quasi-complement of c_0 in l^{∞} . Then the $\sigma(l^{\infty}, l^1)$ - closure V' of V in l^{∞} has finite codimension in l^{∞} .

PROOF: Suppose that dim $l^{\infty}/V' = \infty$. Then we have, since $V_{\perp} = V'_{\perp}$, that dim $V_{\perp} = \infty$ and, of course, dim $l^1/V_{\perp} = \infty$. By [7, Lemma 2] V_{\perp} contains a subspace L with dim $L = \infty$ which is complemented in l^1 . Let M be a complement of L in l^1 . Then $l^{\infty} = L^{\perp} \oplus M^{\perp}$. By [5] both L^{\perp} and M^{\perp} are isomorphic to l^{∞} . In particular M^{\perp} is non-separable. Since $L \subset V_{\perp}$ we have $V \subset L^{\perp}$. Furthermore, l^{∞}/V is separable, by the definition of V, whereas $l^{\infty}/L^{\perp} \cong M^{\perp}$ is not. This is a contradiction, since the canonical map $l^{\infty}/V \to l^{\infty}/L^{\perp}$ is a continuous surjection.

REFERENCES

- [1] S. BANACH: Théorie des opérations linéaires. Warszawa (1932).
- [2] J. DIXMIER: Sur un théorème de Banach. Duke Math. J. 15 (1948) 1057-1071.
- [3] M. I. KADEC and A. PELCZYNSKI: Basic sequences, biorthogonal systems and norming sets in Banach and Fréchet spaces. *Studia Math.* 25 (1965) 297-323 (Russian).
- [4] G. KÖTHE: Topological vector spaces I. Springer Verlag (1969).
- [5] J. LINDENSTRAUSS: On complemented subspaces of m. Israel J. Math. 5 (1967) 153-156.
- [6] V. D. MIL'MAN: The geometric theory of Banach spaces, Part II. Uspehi Math. Nauk, 26, (1971) 73-149 (Russian). English translation in Russian Math. Surveys 26 79-163 (1971).

200

- [7] A. PELCZYNSKI: Projections in certain Banach spaces. Studia Math. 19 (1960) 209-228.
- [8] H. P. ROSENTHAL: On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L^{p}(\mu)$ to $L^{r}(\mu)$. J. Funct. Anal. 4 (1969) 176-214.
- [9] I. SINGER: Bases in Banach spaces I. Springer Verlag (1970).

(Oblatum 22-X-1973)

Mathematisch Instituut der Universiteit van Amsterdam Roetersstraat 15, Amsterdam-C.