On infinite series representations of real numbers
Compositio Mathematica, Tome 27 (1973) no. 2, pp. 197-204.
@article{CM_1973__27_2_197_0,
     author = {Galambos, J\'anos},
     title = {On infinite series representations of real numbers},
     journal = {Compositio Mathematica},
     pages = {197--204},
     publisher = {Noordhoff International Publishing},
     volume = {27},
     number = {2},
     year = {1973},
     mrnumber = {332700},
     zbl = {0274.10011},
     language = {en},
     url = {http://www.numdam.org/item/CM_1973__27_2_197_0/}
}
TY  - JOUR
AU  - Galambos, János
TI  - On infinite series representations of real numbers
JO  - Compositio Mathematica
PY  - 1973
SP  - 197
EP  - 204
VL  - 27
IS  - 2
PB  - Noordhoff International Publishing
UR  - http://www.numdam.org/item/CM_1973__27_2_197_0/
LA  - en
ID  - CM_1973__27_2_197_0
ER  - 
%0 Journal Article
%A Galambos, János
%T On infinite series representations of real numbers
%J Compositio Mathematica
%D 1973
%P 197-204
%V 27
%N 2
%I Noordhoff International Publishing
%U http://www.numdam.org/item/CM_1973__27_2_197_0/
%G en
%F CM_1973__27_2_197_0
Galambos, János. On infinite series representations of real numbers. Compositio Mathematica, Tome 27 (1973) no. 2, pp. 197-204. http://www.numdam.org/item/CM_1973__27_2_197_0/

[1] J. Galambos: The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals. Quart. J. Math. Oxford Ser., 21 (1970) 177-191. | MR | Zbl

[2] J. Galambos: A generalization of a theorem of Borel concerning the distribution of digits in dyadic expansions. Amer. Math. Monthly, 78 (1971) 774-779. | MR | Zbl

[3] J. Galambos: On a model for a fair distribution of gifts. J. Appl. Probability, 8 (1971) 681-690. | MR | Zbl

[4] J. Galambos: Some remarks on the Lüroth expansion. Czechosl. Math. J., 22 (1972) 266-271. | MR | Zbl

[5] J. Galambos: Probabilistic theorems concerning expansions of real numbers. Periodica Math. Hungar., 3 (1973) 101-113. | MR | Zbl

[6] J. Galambos: Further ergodic results on the Oppenheim series. Quart. J. Math. Oxford Ser., 25 (1974) (to appear). | MR | Zbl

[7] H. Jager and C. De Vroedt: Lüroth series and their ergodic properties. Proc. Nederl. Akad. Wet, Ser. A, 72 (1969) 31-42. | MR | Zbl

[8] A. Oppenheim: Representations of real numbers by series of reciprocals of odd integers. Acta Arith., 18 (1971) 115-124. | MR | Zbl

[9] A. Oppenheim: The representation of real numbers by infinite series of rationals. Acta Arith., 21 (1972) 391-398. | MR | Zbl

[10] T. Salát: Zur metrische Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czechosl. Math. J., 18 (1968) 489-522. | MR | Zbl

[11] F. Schweiger: Metrische Sätze über Oppenheimentwicklungen. J. Reine Angew. Math., 254 (1972) 152-159. | MR | Zbl

[12] W. Vervaat: Success epochs in Bernoulli trials with applications in number theory. Math. Centre Tracts, Vol. 42, (1972) Amsterdam. | MR | Zbl