@article{CM_1973__27_2_197_0, author = {Galambos, J\'anos}, title = {On infinite series representations of real numbers}, journal = {Compositio Mathematica}, pages = {197--204}, publisher = {Noordhoff International Publishing}, volume = {27}, number = {2}, year = {1973}, mrnumber = {332700}, zbl = {0274.10011}, language = {en}, url = {http://www.numdam.org/item/CM_1973__27_2_197_0/} }
Galambos, János. On infinite series representations of real numbers. Compositio Mathematica, Tome 27 (1973) no. 2, pp. 197-204. http://www.numdam.org/item/CM_1973__27_2_197_0/
[1] The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals. Quart. J. Math. Oxford Ser., 21 (1970) 177-191. | MR | Zbl
:[2] A generalization of a theorem of Borel concerning the distribution of digits in dyadic expansions. Amer. Math. Monthly, 78 (1971) 774-779. | MR | Zbl
:[3] On a model for a fair distribution of gifts. J. Appl. Probability, 8 (1971) 681-690. | MR | Zbl
:[4] Some remarks on the Lüroth expansion. Czechosl. Math. J., 22 (1972) 266-271. | MR | Zbl
:[5] Probabilistic theorems concerning expansions of real numbers. Periodica Math. Hungar., 3 (1973) 101-113. | MR | Zbl
:[6] Further ergodic results on the Oppenheim series. Quart. J. Math. Oxford Ser., 25 (1974) (to appear). | MR | Zbl
:[7] Lüroth series and their ergodic properties. Proc. Nederl. Akad. Wet, Ser. A, 72 (1969) 31-42. | MR | Zbl
and :[8] Representations of real numbers by series of reciprocals of odd integers. Acta Arith., 18 (1971) 115-124. | MR | Zbl
:[9] The representation of real numbers by infinite series of rationals. Acta Arith., 21 (1972) 391-398. | MR | Zbl
:[10] Zur metrische Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czechosl. Math. J., 18 (1968) 489-522. | MR | Zbl
:[11] Metrische Sätze über Oppenheimentwicklungen. J. Reine Angew. Math., 254 (1972) 152-159. | MR | Zbl
:[12] Success epochs in Bernoulli trials with applications in number theory. Math. Centre Tracts, Vol. 42, (1972) Amsterdam. | MR | Zbl
: