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Let X be a non-singular cubic threefold in 4-dimensional projective
space P4, defined over an algebraically closed field k.

If k is the field C of complex numbers Clemens and Grifhths [4] have
proved that X is not a rational variety. After this another proof, again for
k = C, has been given by Mumford; this proof is outlined in Appendix C
of [4]. The principal tool in both proofs is the intermediate Jacobian of
the threefold; this is, in this case, a principally polarized abelian variety.
One shows that the rationality assumption for X has as a consequence
that the intermediate Jacobian of the threefold is isomorphic, as polar-
ized abelian variety, to a product of Jacobians of curves ([4], 3.26). The
impossibility of this consequence is obtained via an investigation of the
singularities of the ’0-divisor’. Mumford proves that the intermediate
Jacobian of X is isomorphic, as polarized abelian variety, to a so-called
Prym variety. This Prym variety is associated with X via the geometry of
lines on X (see section 2.1 for a precise description). From his very de-
tailed study of the singularities of the ’0-divisor on Prym varieties (see
[4], Appendix C page 354 and 355) Mumford concludes that the Prym
variety associated with X is not the product of Jacobians of curves. This
last part of Mumford’s proof is essentially algebraic.

In the case of a field of arbitrary characteristic we don’t have the inter-
mediate Jacobian at our disposal. However in [12] we have shown that the
Prym variety associated with X can also be studied via the Chow group
of 1-dimensional cycle-classes on X. Moreover, by Mumford’s general
theory of Prym varieties, a Prym variety has a canonical principal po-
larization (see [11 ]). In the case k = C the polarization on the intermedi-
ate Jacobian is studied via the classical cohomology on X ; it is therefore
natural to use, in the case of an arbitrary field, the étale cohomology on
X in order to get information concerning the polarization of the Prym
variety. In doing so we get the following theorem, which is the main
result of this paper:

THEOREM.: Let char. (k) ~ 2. The assumption that X is a rational variety
implies that the canonically polarized Prym variety associated with X,
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is isomorphic, as polarized abelian variety, to a product of Jacobian varie-
ties of curves.
Combining this with the last part of Mumford’s proof, one has the

following: ’ 2)

COROLLARY (of the theorem and Mumford’s proof) : Let char. (k) :0
2. Let X be a non-singular cubic threefold in 4-dimensional projective
space defined over k. Then X is not a rational variety.

In Section 1 we have collected some auxiliary results; in Section 2
we state the results of [12] which are needed for our present paper. In
Section 3 we adopt the rationality assumption and prove the above
theorem. Finally, in an appendix, we answer a question raised by Mum-
ford concerning a universal property of the Prym associated with X.

1 should like to thank Mumford, Deligne and Jouanolou for stimulat-
ing correspondence or discussion on the topic of this paper.

1. Notations and auxiliary results

1.1. Notations

Let k be an algebraically closed field of characteristic p ~ 2. Let 1 be
a prime number, 1 ~ p. Choose, once for all, a (non canonical) identifica-
tion

In the following canonical isomorphism means: canonical after choice of
this identification.
For an abelian variety A the Tate group is denoted by T,(A):

and put

1 The part of Mumford’s proof which is needed is the part dealing with the question
when polarized Pryms are Jacobians. For this see [11 ] § 7, in particular the last

paragraph preceding the appendix.
2 Manin has informed me that Tjurin also has proved that the Prym variety associat-

ed with a cubic is not a Jacobian of a curve and that an outline of this proof is in Tjurin’s
paper in Uspekhi, 1972, No. 5, on p. 30-31. Since, at the time of writing this footnote,
the translation is not yet available, I don’t know in how far Turin’s methods overlap
or supplement the one in this paper. (Forthcoming translation in Russian Math. Sur-
veys).
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For a variety (or scheme) X write

where the cohomology is with respect to the étale topology.
Finally, A(X) denotes the Chow ring of X in the sense of Chow [3]:

where Ai(X) is the group of cycle classes, with respect to rational equiv-
alence, of codimension i.3 Moreover by Aialg(X) we denote those classes
which are algebraically equivalent to zero (and which are of codimen-
sion i).

1.2. Correspondences between curves

Let C and C’ be irreducible, non-singular curves, proper over k and
let E c C x C’ be a correspondence between C and C’ with dim. E = 1.
In general a divisorial correspondence defines a homomorphism of abe-
lian varieties Alb(C) ~ Pic (C’); in our case of curves this may also be
considered as a homomorphism u : Pic (C) ~ Pic (C’). Therefore E

defines:

On the other hand, using Poincaré duality, 1 defines also (cf. [7], 1.2

and 1.3):

Note that formally both maps are defined by the same formula:

where p (resp. q) denotes the projection from C x C’ to C (resp. to C’).
Furthermore, for the group of points of order 1" one has canonically
([2], cor. 4.7):

and this gives ’canonically’ E,(Pic (C)) ~ H1(C) and similarly for C’.

LEMMA 1: With the above canonical identifications (j alg = (jtop (and we
write u in the following).

3 In [12], page 197 we have used subscripts for the A(-) to indicate the dimension
of the cycles. Since in this paper we have to use mappings of the Chow groups into
cohomology we prefer, now, to use superscripts to indicate codimension.
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PROOF: Case 1. Suppose E = ro with 0 : C" ~ C a morphism. In that
case we have that U alg is induced from ~*alg : Pic (C) ~ Pic (C’) and
a from ~*topH1(C, Gm) ~ H1 (C’, Gm). Looking to the description of
these maps in terms of invertible sheaves on the one hand and cocycles on
the other hand we have ~*alg = ~*top after the usual identifications Pic (C)
= H1(C, Gm) and Pic (C’) = H1 (C’, Gm).

Case 2. Suppose E = t0393~ with 0 : C ~ C’ a morphism. Then 6alg is,
by definition, induced (via the points of order 1") by the homomorphism
of Albanese varieties ~* : Alb (C) - Alb (C’). The dual homomorphism
is ~* : Pic (C’) ~ Pic (C), i.e. the one coming from ’l and therefore

Ualg is the dual of CU)alg where ’a belongs to tE (see formula I, p. 186,
[10]). On the other hand let ~* : H1(C) ~ H1(C/) be the usual map for
cohomology (see [7] 1.2), then atp = ~* by [7], 1.3.7 (iii); hence it is the
dual of (t03C3)top = 0* (again by [7], 1.3.7(iii)). The assertion follows now
by duality from Case 1.

Case 3. Suppose 1 is an irreducible, non-singular, curve on C x C’.
Put i : 1 - C x C’, p 1 = p . i and q 1 = q - i. The mappings are defined
by formula (1) above; using the so-called projection formula (see, for in-
stance, [7], p. 362 and 363) the right hand side of (1) can be written as
q*[i*{i*p*(class (U)) · 1}] = (q1)* [(p1)*(class (3t))], both in the sense
of algebraic cycle classes and in the sense of cohomology. The assertion
follows then from case 1 and 2, applied respectively to p1 : 03A3 ~ C and to
q1 : 03A3 ~ C’.

Case 4. E arbitrary. By formula (1) in both cases the homomorphisms
are linear in the class of E and they depend only on the linear equiva-
lence class of E on C x C’ (in the case of cohomology this follows from
[7 ] 1.2.1 ). By [9 ], lemma 2 the linear system |03A3+Hn|, where Hn denotes a
hypersurface section of degree n, contains a non-singular irreducible
curve l’ provided n is large. The assertion follows now from case 3 ap-
plied to l’ and to Hn.

1.3. Resumé of some results on monoidal transformations

Here we collect some results which are essentially contained in [13 ], [5 ]
and [6]. In this section X denotes a projective, non-singular, irreducible
3-dimensional variety and s : Y ~ X a non-singular, irreducible curve in X
(lemma 2 and 3 hold more generally for dim X = n, dim Y = n - 2). Let
X’ = By(X) be obtained by blowing up X along Y. Let Y’ be the total
transform of Y in X’.
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(a) Behaviour of the Chow groups

LEMMA 2: For the additive structure there are isomorphisms a and fi,
inverse to each other, as follows

with a = (f*, -g*r*) and fi = f*+r*g*. Moreover the same is true if
A( - ) is replaced by A.lg( - ). 4

PROOF: [13 ], proposition 13 and lemma 1 on page 481 (this reads in our
present terminology g*r*r*g* = -idY).5

(b) Behaviour of the cohomology groups
LEMMA 3: For the additive structure there are isomorphisms a and fl,

inverse to each other, given by the same formulas as in lemma 2, as follows

PROOF: This is [6], 4.2.2. There the additional assumption is made

that Y is the intersection of two hyperplanes; however, that assumption
is only used to prove the following (formula 4.2.10 in [6]):

Therefore it suffices here to prove this formula. We borrowed the argu-
ments from [13], p. 481-482.

First, consider in the Chow group A’(X) the class of Y’, i.e. r*(1Y’).
We claim that in the Chow group A1(Y’)

where g*(03B61) = 0 and g*(03B6) = 1Y. In order to prove (4) we take a

4 The above formula should be interpreted explicitly as follows:

Aq(X) ~ AQ-l(Y) ~ Aq(X)
for q = 0, 1, 2 or 3 with A-1(-) = 0. Similar interpretations for similar formulas
below.

5 Jouanolou has informed me that lemma 2, and similar statements for Y of higher
codimension, can also be obtained from his results in [5] section 9. His method works
also for cohomology.
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sufficiently general linair space L in the ambient projective space PN of X,
of dimension (N-dim Y-2). Consider the cone C = C(Y, L) with vertex L
and base Y. Consider a generic point Q of Y, the tangent space Tx, Q to
X in Q meets L only in one point; from this it follows easily that X and
the cone are transversal in Q. Therefore we have

where the divisor D is the sum of a variety D 1, going through Y and such
that Q is simple on Dl, and a divisor D2 such that Q 0 Supp (D2).
Hence D2 - Y is defined. Finally, we take D* ~ D such that D* . Y is de-
fined. From the fact that D* . Y and D2. Y are defined follows that

9* (Y’. f-1(D*)) = 0 and g*(Y’ . f-1(D2)) = 0. Furthermore

where f-1[D1] is the so-called proper transform ([15], p. 4). The as-
sertion about the coefficient of Y’ is justified because of the fact that
in a generic point Q* of Y’ we have for the tangentspaces

where Q, resp. Q’, is the projection of Q* on X, resp. on X’. Namely, if
we take in X a ’generic arc’ through Q we get by lifting in 0393f an arc
hitting Y’ in Q* and the tangent to this arc is not vertical and its projec-
tion on X is the tangent to the original arc, hence outside TD1, Q. Moreover
we have

where Z is a variety with g*(Z) = Y and g*(Z*) = 0. In order to see
this we note (see [15], 18) that the points of Y’ above a point P E Y
correspond 1-1 with the linear subspaces contained and of codimension
1 in the tangentspace Tx,p to X in P and containing the tangentspace
Ty, p. Now a generic point Q of Z corresponds with the tangentspace
TD1, Q where Q is the projection of Q on X; TD1, Q is rational over k(Q) and
from this follows k(Q) = k(Q). Finally, the component Z* has as pro-
jection on X singular points of Dl and from this follows easily g*(Z*) = 0
Now we have

Therefore if we put

then the relation (4) is fulfilled because r*r*(ly,) is the class of the inter-
section of the right hand side of (5) with Y’ when the class of that inter-
section is considered as class on Y’.
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Returning to cohomology we now remark that the relation (4) also
holds if considered in H2(y’), with the same relations g*(03B6) = ly and
g*(03B61) = 0. This follows by applying the ’cycle maps’ y : A.( - )--+
H2.(-)([7], p. 363).

In order to prove (3) we use the crucial formula, proved by Jouanolou
([5], th. 4.1),

where y’ E H’(Y’) and where cl is the first Chern class of the normal

bundle of Y’ in X’. Keeping in mind that c1(NY’/X’) = r*r*(1Y’), we
see that in order to prove (3) we must prove

for y E H.(Y) and where we have applied (7) to y’ = g*(y). Using (4),
in the cohomological sense, and the projection formula for g : Y’- Y
we get g*{g*(y) · r*r*(1Y’)} = -g*{g*(y) . 03B6}+g.{g*(y) 03B61} =
- y . 9*«)+y. g*(03B61) = -y . 1Y + 0 = -y. This completes the proof
of lemma 3.

(c) Behaviour of the cohomology ring
In fact here we need only some special results. We use the following

notation: use . for the product sign in H’(-); however if we are in com-
plementary dimension, then after application of the orientation map we
use the symbol u; i.e. a u b is always an element of QI. Furthermore, for
convenience, rewrite (7) as

LEMMA 4: With the above notations, let Yl, Y2 E H1(y). Then:

PROOF: First note that now our assumptions are dim X = 3 and dim
Y= 1.

(i) Using the projection formula and (7’) we have r*g*(y1) . r*g*(y2)

(ii) The left hand side of (ii) is obtained from the left hand side

of (i) after application of the orientation map for X’. Since the orientation
map of X’ and Y’ commute with r* the result is the same if we apply the
orientaton map of Y’ on r*r*(1Y’). g*(y1. y2 ). Applying the same re-
mark to g : Y’ - Y we see that we get 03B4Y [g*{r*r*(1Y’) . g*(y1. y2)}]
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where by is the orientation map for Y. Using the relations (4) and the
projection formula we get

(d) Remark
If we take for Y a point instead of a curve then we have decompositions

similar as in lemmas 2 and 3, both for the Chow ring and for cohomo-
logy (cf. also footnote 4). We don’t give these lemmas in detail here, partly
because we are eventually only interested in A 2g( and H3 (... ) and
a point Y does not give contributions to these terms.

1.4. Algebraic families of cycles

DEFINITION: Let U be a non-singular, quasi-projective variety. A map
p : U ~ Aq(X) is called algebraic if for every uo E U there exists an open
Zariski neighbourhood Uo and a E Aq(Uo x X) such that for u E Uo
we have p(u) = a(u) where Õ(u) = class [prX{(u  X). 311.
LEMMA 5: The assumptions are as in 1.3. Let p : U ~ Aq(X’) be an al-

gebraic map. Then prx . oc . p : U ~ Aq(X) and pry . oc . p : U ~ Aq-1(Y)
are also algebraic. There are similar statements with algebraic families
on X, resp. on Y, and where we make the composite with fi.

PROOF: Consider for instance U ~ Aq-l(y). This is defined (in Uo)
by the correspondence

where r denotes the graph.

2. Resumé of some results of [12]

2.1. From now on X denotes a non-singular, cubic threefold in P4 de-

fined over an algebraically closed field of characteristic not two.
Fix a sufficiently general line 1 on X (see [12], prop. 1.25 for precise

conditions). The 2-dimensional linear spaces (shortly 2-planes) L
through 1 are parametrized by a projective space P2. Let d c P2 be
the set of 2 planes as follows:

Then L1 is a non-singular, absolutely irreducible curve in P2 of degree
5 and genus 6 ([12], 1.25ii).6 Furthermore let

6 L1 and A are denoted in [12] by H and Je respectively.
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then Â is an absolutely irreducible curve on the Fano surface of lines on
X([12] 1.25iv). There is a natural morphism q : Â - L1 given by q(l’) = L,
where L is the 2-plane spanned by 1 and l’; clearly q-1(L) = {l’, /"}.
In fact, due to the assumption that 1 is sufficiently general it follows that
q : Â - 4 is an étale, 2-1 covering ([12] 1.25iv). By Mumford’s general
theory of Prym varieties [11] we have therefore a Prym variety

where 7(J) is the Jacobian variety of J (cf. also [12], p. 198). We call
this the Prym variety associated with X, obtained via the geometry of
lines on X.

2.2. Consider the restriction to 1 of the tangent bundle over X and let
V be the bundle of associated projective spaces of 1-dimensional linear
subspaces.

For S ~ l consider the fibre Vs ; in Vs there are 5 + 1 special points cor-
responding with the 6 lines on X through S (and 1 is one of them) ([12]
1.25vi) Varying S over 1 the 5 points give a curve in V, this curve is non-
singular ([12], prop. 2.5) and can be identified with à ([12] 2.4). The 6th-
point in Vs, corresponding with 1 itself, gives rise to a rational, non-sin-
gular curve I and I n J = 0 in V([12], 2.5). Let X be obtained by ap-
plying to V a monoidal transformation with centre à u I ; then X’ is non-
singular and by [12], equation (51) we have

where J() is the Jacobian variety of d. Furthermore there is a morphism
([12], 4.2) ~ : X’ ~ X, which is generically 2-1 [12], 4.6). Consider the
corresponding homorphisms for the Chow groups

w

Now the main results, 10.8 and 10.10, of [12] can be summarized as:

LEMMA 6:

(i) ~* . ~* = 2
(ii) 0* is factorized (cf. (8)):

and
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(iii) 
(a) T = ker (~*) consists of 2-torsion elements,
(b) P = Im (~*)(P(/0394)) ana (~*|P) : P 

(iv) (~* . ~*)|P(Â/0394) = 2
For the statements which are not explicit in [12] 10.8 or 10.10 we refer
to the proof of [12] 10.10 on page 201.

3. Conséquences of the assumption that X is rational

From now on we make the assumption that X is birational with P3 and
we study the consequences for the Prym P(/0394) associated with X and for
its canonical polarization.

3.1. According to Abhyankar [1] there exists a commutative diagram
of the following type

where the dotted arrow is the given birational transformation, where
f is a sequence or monoidal transformations with as centres non-singular
curves 03A9i(i = 1, ..., 2) or points (which we have suppressed in the nota-
tion) and where 03BB is a birational morphism.

A. Consequences of the rationality assumption for Aâlg(X).
3.2. Let X’ and X* be as in 2.2 and 3.1 respectively. Put as abbreviation

J’ = J(Â) and J* = ni J(03A9i). Using lemma 3 we have Aâlg(X’) = J(Â)
and A2alg(X*) = ni J(03A9i).7 The situation can be summarised in the fol-
lowing diagram (cf. also lemma 6):

7 An equality of this kind has to be interpreted as follows: Take a sufficiently large
algebraically closed overfield K of k (a so-called ’universal domain’). Take on the one
hand the group of the cycle classes which have representatives rational over and on
the other hand the group of the K-rational points of the abelian variety.
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Note that 03BB* . 03BB* = 1 since Â. is a birational morphism. Furthermore by
lemma 6 (iii) (~*|P) is an isomorphism.

LEMMA 7: Assuming X to be rational we have:

(i) 03BB* . (~*|P)-1 : P(/0394) ~ J* defines a homomorphism of abelian
varieties p : P(/0394) ~ J*.

(ii) T = 0.

PROOF

(i) Let 03BE be a generic point of P(/0394) over k; put’ = (~*|P)-1(03BE),
then ( E P. We want to prove first

Let -9 c J()   be the Poincaré divisor of à . Then Â*2. 0*. 
defines, by lemma 5, an algebraic map: P(/0394) ~ A;tg(X*). This map
is defined by the following formula (where J ~ P(/0394) and (0) is the neu-
tral element on P(/0394)) :

REMARK: For the sake of simplicity we have suppressed some other
morphisms which also enter in the definition of this map, namely we have

where A1alg() ~ A2alg(X’) is defined via the map 03B2 in lemma 3 and where
A2alg(x*) ~  is defined via the map ce in lemma 3; it is pre-

cisely for these maps that lemma 5 is used.
Returning to the proof of (i) the above algebraic map defines a homo-

morphism of abelian varieties 03C8: P(/0394) ~ J*.8 Take Z E P(/0394) such
that 2e = 03BE; by lemma 6(iii) and (iv) we have ~*(03BE) = 03B6, hence 03C8(03BE) =
03BB*(03B6) and hence

Varying e such that 203BE = 03BE we have that 03BB*(03B6) is invariant, therefore it is
invariant under the action of the Galois group of k(03BE)/k(03BE). Hence it
has its coordinates in k(03BE) itself; i.e. k(03BB*(03B6)) c k(03BE).

This gives a morphism p : P(/0394) ~ J* such that

for a generic point 03BE on P(/0394). However, then by a specialization ar-
gument we get that (12) holds for any point 03BE’ onP(Â/L1). Namely extend
the speciaiization 03BE ~ 03BE’ to (03BE, 03BE, () ~ (03BE’, 1’, 1’), then 203BE’ = 03BE’ and

1 Remember that ifJ* =F (ifJ*) -1; in fact ~* . 0, = 2 on P(4 M ) 
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1’ =  hence   = 2ç’ = 03BE’, 1.e. i’ = 
Furthermore p(j’) = 03C8(03BE’) because both are unique. Finally p(j’) =
03C8(03BE’) = 03BB*~*(03BE’) = 03BB*(03BE’) and this proves the assertion. Applying (12)
to the neutral element 0 we see that p actually is a homomorphism.

(ii) Let t1 E T and i : U ~ A 2g(X) be an algebraic map, with U a
non-singular connected variety and uo, u 1 E U such that i(uo) = 0,
03C4(u1) = tl . Consider the mapping v : U ~ J* defined b 03BD = 03BB* ·03C4-
p. .4J* . i. For any point u E U, we have by lemma 6 (iii) 03C4(u) = (p, t),
p ~ P, t ~ T and v(u) = 03BB*(p) + 03BB*(t) -03C1~*(p) = À (t) by the definition
of p (lemma 7). Hence Im (v) c J*. Furthermore v(uo) = 0. Since
v is a morphism and U is connected we have that v(u) = 0 for all u E U.
In particular 03BB*(t1) = v(ul ) = 0. Since 03BB* is injective we have t1 = 0.
Hence T = 0.

3.3. Identify P and P(/0394) by means of (~*|P)-1; then p = 03BB*.

Using the result T = 0, the diagram (10) simplifies with these identifi-
cations to (10’):

B. Consequences of rationality assumption for P(/0394) and its canonical
polarization.

3.4. General result of Mumford [11 ]. Let i : P(ÂIL1) --+ J() be a Prym
variety and 0 the canonical theta divisor of J(). Then

where E is a principal polarization on P(/0394).
3.5. Main problem of this paper: Apply this result to the present si-

tuation i : P(/0394) ~ J() as described in 2.1, i.e., to the Prym variety
associated with the cubic threefold X. In order to get a coherent notation
we write 0’ for the canonical theta divisor on J’ ; hence (13) reads:

On the other hand we have on J* = ni J(03A9i)(see 3.1) the principal
polarization 0* with 03B8* = 03A3 03B8*i and
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where 0; is the canonical polarization on the Jacobian i(Qi). Furthermore
we have the homomorphism Â* : P(/0394) ~ J* (see diagram (10’)). Main
problem: do we have

3.6. 0’ on J’ defines on T,(J") x TI(J") a Riemann form e8’ ([10] p. 186
or [8] p. 189). Identifying El(J’) ~ H1(Â), we have for ç, 11 c- T,(JI) c
El(J’) :

modulo algebraic equivalence?

This follows from the construction of the duality theorem for étale
cohomology (for coefficients Zll"Z and passing to the limit; see [14]
5.5.2 on page 198). There is a similar statement for 0*.

3.7. Let 0 : X’ - X be the morphism from 2.2; combined with the
birational morphism A. : X* - X we get a rational transformation as
indicated below. Moreover since 0 is generically 2-1, this rational trans-
formation is generically 2-1

By Abhyankar [1] we can construct for 03BB-1 . ~ the following commuta-
tive diagram:

X" is obtained by a sequence of monoidal transformations from X’,
with as centres non-singular curves 0394j(j &#x3E; 0) and points. Putting à = d o
we can also say: obtained from (see 2.2) by a sequence of monoidal
transformations with centres 0394j(j ~ 0). Summarizing we have:

À and 4f are birational morphisms
(16’) {~ and ju are morphisms, generically 2-1

03BB.03BC = ~.03C8 = x (for abbreviation)

Beside the principally polarized abelian varieties (J’, 03B81) and (J*, 0*)
introduced before we have also to consider (J", 0") with
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where the 03B8j are the canonical polarizations on the Jacobian varieties
J(0394j). Again this is a principally polarized abelian variety and since
J’ = J(03940), 03B8’ = 03B80 , we have (modulo algebraic equivalence)

Finally from (16) we get, using lemma 2, the following commutative
diagram (see also (10’)):

3.8. Starting with 03BE E Tl(P(/0394)) there are two ways of associating
with 03BE a cohomology class in H3(X"), namely

(i) 03BE Ho h1(03BE) e H3(X") by applying the following homomorphisms:

where x is from (16’), 03B2 is from lemma 3 and the other map comes from
the well-known identifications Tl(J(0394j)) ~ El(J(0394j)) ~ H1(0394j).
(ii)  and next h2(03BE) H Jl*h2(ç) E H3(X") as fol-

lows :

with similar explanations.

3.9. LEMMA 8: For 03BE E Tz(P(Â/L1) we have h1(03BE) = Jl*h2(ç).
PROOF: Consider a curve 03A9i (see 3.1) and a curve L1j (see 3.7; note

j ~ 0, i.e. à = 03940 is included). Using y : X" ~ X* from (16) we get
correspondences 03A3ji E A1(Qi  0394j) from the product of graphs

where the maps are indicated in the following diagram (compare also
with diagram (2) where the role of the J, d’ is played by Y and Y’ and
similar for Q, Q’):
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The 03A3ji give rise to homomorphisms 03C3ji and commutative diagrams:

Similar for cohomology:

The proof of lemma 8 follows from X* = 03BC*. 03BB*, from the description
given in 3.8 and from the commutativity of the following diagram:

Commutativity of (*): the map a is as in lemma 2. The commutativity
follows from the description of the maps a and fl in lemma 2, from
a = p-l and from the commutative diagram (18’).

Commutativity of (**): lemma 1

Commutativity of (***) : as for (*) with lemma 2, (18’) and oc replaced
by lemma 3, (18") and P respectively.

COROLLARY: For 03BE, ~ e Ti(P(d/d)) we have 2(h2(03BE) ~ h2(~)) =
h1(03BE) ~ h1(~).

REMARK: Recall the convention that we use . for the product in H( - ),
but u after the orientation map has been applied (see 1.3c).

PROOF: Follows from

(a) h1(03BE) = Jl*h2(Ç) and h1(~) = 03BC*h2(~)
(b) li* is a ring homomorphism
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(c) the commutativity of the following diagram, where the horizontal
maps are the orientation maps 03B4([7] 1.2):

and where the right-hand vertical arrow is multiplication by 2. This

in turn comes from the fact that y : X" - X* is generically 2-1, hence
p* p* = 2 and p* commutes with the orientation map.

3.10. PROPOSITION 1: With the notations of 3.5, one has

E z (03BB*)-1(03B8*) modulo algebraic equivalence.
PROOF: Consider the two corresponding Riemann forms on Tl(P(/0394)).

Abbreviate

and

with 03BE, ~ ~ Tl(P(/0394).
LEMMA 9: e1(03BE, il) = e2(03BE, ~) for all ç, il E T,(P(Â/L1).
PROOF: By linearity on the divisor we have 2e1(03BE, il) = e2E(ç, il). Next

by the definition of 0398 (see (13’)) and by ([10], page 187 (II) or [8], page
191 prop. 6) we have e20398(03B6, il) = e03B8’(~*03BE, ~*~) = e6"(x*(ç), X*(11». Fi-
nally using 3.6 and lemma 4 (ii) and the definition of hl in 3.8 we have
e03B8"(~*(03BE), X*(~)) = -h1(03BE) ~ h1(~), hence 2e1(03BE, ~) = - h1(03BE) ~ h1(~).
Similarly

Hence by the corollary of lemma 8 2e1(03BE, il) = 2e2(03BE, 11)- and hence
e1(03BE, ~) = e2(ç,11).
LEWWA ~ PROPOSITION: Put as abbreviation D =  - (03BB*)-1(03B8*). From

e1(-) = e2(-) we get by using again the linearity of the symbol with
respect to the divisor ([8], p. 189) eD(03BE, ~) = 0 for all ç, 11 E Tl(P(/0394)).
But then, using the notation of [8], p. 189, proposition 3 we have
e(03BE, D~-D = 0 for all points 03BE and q on P(/0394) which are of order
ln (all n). Then by [8], p. 189 proposition 4 we have D~-D ~ 0 for all
points q on P(/0394) which are of order l n (all n). However the points 11
for which D~(-D ~ 0 (linear equivalence) form an algebraic subgroup
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of P(ÂjA); the above assertion implies that it is P(/0394) itself. Then D is
algebraically equivalent to zero ([8], p. 100 cor. 3). This completes the
proof of the proposition.

3.11. THEOREM: Let char (k) 1= 2. Let X be a non-singular cubic three-
fold in P4 , defined over k. If there exists a birational transformation between
X and P3 then the canonically polarized Prym variety (P(ilA), E) associat-
ed with X, is isomorphic, as polarized abelian variety, to a product of cano-
nically polarized Jacobian varieties of curves (cf. with [4] 3.26).

PROOF: Consider, as before in 3.5, the product (J*, 0*) = ITi(J(Qi)’ Oj),
where the (J(Qi)’ 0 ) are the canonically polarized Jacobians of the curves
Oi from 3.1. Now remark that the Jacobian of a curve is ’irreducible’ as
principally polarized abelian variety (i.e. does not split up in a product of
principally polarized abelian varieties). The theorem follows now at once
from the following three facts:
(a) Â* in (10) is injective;
(b) 3 ~ (A *)-1(0*), modulo algebraic equivalence, by the proposition
in 3.10;
(c) the following well-known, general lemma on the decomposition of
principally polarized abelian varieties (see [4] 3.23):

LEMMA 10: (i) Let (A, 0) be a pair consisting of an abelian variety and
a positive divisor 0 defining a principal polarization on A. Let (A’, 0’) be
another such pair and i : A’ ~ A an injective homomorphism such that
i-1(O) == 0’. Then there exists a third pair (A", 0") with the same proper-
ties and an injection j : A" ~ A such that j -1 (o) = 0". Furthermore, with
the obvious map, A’ x A" ~ A and 0 ~ 0’ x A"+ A’ x 0" (the equivalence
is always algebraic equivalence).

(ii) A principally polarized abelian variety has a unique decomposition
into a product of irreducible principally polarized abelian varieties.

PROOF: (i) Without loss of generality we can assume 0. A’ = 0’. Con-
sider the homomorphism f : A - Â’ (dual of A’) defined by

where class is in the sense of linear equivalence. From the assumptions
we have that f . i : A’ ~ Â’ is the morphism (cf. [8 ], p. 75):

This is an isomorphism by the assumption that 0’ is principal. Therefore
f is onto and i-1(Ker (f)) = 0, i.e.



80

as group schemes on A. Let A" be the connected component of the zero
element in Ker ( f ), then A" is an abelian variety and A’ n A" - {0} as
group schemes; also we have dim A = dim A’+dim A". Let j : A" - A
be the natural embedding and consider p : A’ x A" - A given by p(a’,
a") = i(a’)+j(a"). Using the fact that A’ n A" = {0} as group schemes
we get that p is injective in the sense of group schemes; next we see, by
counting dimensions, that it is surjective. Therefore p is an isomorphism;
in the following we identify A’ x A" 1 A.
From the relation

we get 03B8(a’, a"). A’ f’tt.I 03B8’a’. Next consider on A’ x A" the divisor D =
03B8 - 03B8’  A", then

From the remarks above we have

Hence D(a") - 0 and hence by [8], theorem on page 241, we have
D - A’ x 0" for some divisor 0" on A". Therefore we have

Applying the Riemann-Roch theorem for the principal divisor 0 ([10],
p. 150) we get, if we put n = dim A, ni = dim A’, n2 = dim A" (and
hence n = n1+n2),

Using the fact that 0’ is principal on A’ this gives 03B8"(n2) = n2 !, i.e. 0" is
principal on A". Therefore we can assume 0" to be positive and then we
must have

From this we see that j-1(03B8) = 0". This completes the proof of (i).
(ii) For the proof we refer to [4] to the proof of 3.20. The proof there

works also for positive characteristic provided we read the set theoretical
intersections in [4] as intersections of group schemes.

Appendix

In correspondence on this topic, Mumford raised the question whether
the (P(/0394), E) is canonically associated with the cubic; i.e. satisfies some
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universal property. As far as P(/0394) is concerned the answer is affirma-
tive as will be shown in this appendix. For the pair (P(Â/L1), E) we have
not settled the question yet.

Consider homomorphisms À : A2alg(X) ~ A, where A is an abelian

variety and where for every algebraic map 03C8 : S ~ A:Ig(X), with S a non-
singular variety, we have that 03BB . 03C8 : S ~ A is a morphism.
Using the splitting A ig(X) = P @ T of lemma 6, we have a homo-

morphism Ao : A2alg(X) ~ P(/0394), and by [12], proposition (10.5) that
Ào has the required property concerning composition with algebraic
families.

PROPOSITION: For every À : A2alg(X) ~ A as above we have a unique
homomorphism of abelian varieties 03BB : P(/0394) ~ A such that the following
diagram is commutative

PROOF: Group theoretically 03BB is obtained, using lemma 6, by the com-
position

In order to see that this is actually a homomorphism of abelian varieties
we repeat the argument given in the proof of lemma 7 (i). This gives
À : P(/0394) ~ A and by construction it follows that 03BB-03BB.03BB0 = 0 on
P c A2 g(X). In order to complete the proof we must see that the com-
position

is zero (where j is the natural inclusion T - T ~ P). For t E ?’there exists
an algebraic map 03C8 : S - A2alg(X), with S a connected, non-singular
curve and two points sl , so E S such that 03C8(s0) = 0 and prT03C8(s1) = t.

Then we have a morphism 03C8 : S - A given by 03C8 = (03BB-03BB. 03BB0) . 03C8. Then
03C8(S) ~ A2, 03C8(s0) = 0, hence 03C8 = 0, i.e. 03BB.j(t) = (03BB-03BB. Âo). 03C8(s1)
= 03C8(s1) = 0.
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