@article{CM_1973__27_1_25_0, author = {Altman, Allen B. and Hoobler, Raymond T. and Kleiman, Steven L.}, title = {A note on the base change map for cohomology}, journal = {Compositio Mathematica}, pages = {25--38}, publisher = {Noordhoff International Publishing}, volume = {27}, number = {1}, year = {1973}, mrnumber = {337971}, zbl = {0267.14001}, language = {en}, url = {http://www.numdam.org/item/CM_1973__27_1_25_0/} }
TY - JOUR AU - Altman, Allen B. AU - Hoobler, Raymond T. AU - Kleiman, Steven L. TI - A note on the base change map for cohomology JO - Compositio Mathematica PY - 1973 SP - 25 EP - 38 VL - 27 IS - 1 PB - Noordhoff International Publishing UR - http://www.numdam.org/item/CM_1973__27_1_25_0/ LA - en ID - CM_1973__27_1_25_0 ER -
%0 Journal Article %A Altman, Allen B. %A Hoobler, Raymond T. %A Kleiman, Steven L. %T A note on the base change map for cohomology %J Compositio Mathematica %D 1973 %P 25-38 %V 27 %N 1 %I Noordhoff International Publishing %U http://www.numdam.org/item/CM_1973__27_1_25_0/ %G en %F CM_1973__27_1_25_0
Altman, Allen B.; Hoobler, Raymond T.; Kleiman, Steven L. A note on the base change map for cohomology. Compositio Mathematica, Tome 27 (1973) no. 1, pp. 25-38. http://www.numdam.org/item/CM_1973__27_1_25_0/
Théorie des Topos et Cohomologie Etale des Schémas, Tome 2. Séminaire de Géométrie Algébrique du Bois Marie 1963/64, Lecture Notes in Math., V. 270. Springer-Verlag (1972). (cited SGA 4). | MR | Zbl
, and [1]Topologie algébrique et théorie des faisceaux. Hermann, Paris (1958). | MR | Zbl
[2]Eléments de géométrie algébrique I. Springer-Verlag (1971). (cited EGA 0I, EGAI). | Numdam | Zbl
and [3]Eléments de géométrie algébrique III, IV. Publ. Math. IHES 11, 20. (cited EGA 0III, EGA III, EGA IV), Paris (1961, 1964). | Numdam | Zbl
and [4]Topos annelés et schémas relatifs. Springer-Verlag (1972). | MR | Zbl
[5]Non-abelian sheaf cohomology by derived functors. Category Theory, Homology Theory and their Applications III, Lecture Notes in Math., V.99, pp. 313-365, Springer-Verlag (1969). | MR | Zbl
[6]