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A classical theorem of J. H. C. Whitehead [2, 8] states that a con-
tinuous map between CW-complexes is a homotopy equivalence iff it
induces an isomorphism of fundamental groups and an isomorphism on
the homology of the universal covering spaces. This paper deals with
the problem of finding an algebraic criterion for a proper map between
locally finite CW-complexes to be a proper homotopy equivalence. The
results are an extension of those announced in [1].
The first section treats generalities about the category of locally finite

CW-complexes and proper maps and the second section outlines the
homology and homotopy theories needed to work within this category.
In § 3 we prove the ’Proper Whitehead Theorem’. Section 4 presents
some special cases of this general theorem where the criteria that a map
be a proper homotopy equivalence are more algebraic than in § 3. For
example, any proper, degree one map between open n-manifolds which
are simply connected and simply connected at infinity is a proper homo-
topy equivalence iff the map induces an isomorphism on homology and
on cohomology with compact supports.

1. Preliminary remarks about proper maps

The term map means a continuous function. A proper map f : X -+ Y
is a map such that f-1(C) is compact whenever C is a compact subset
of Y. A proper homotopy from X to Y is a homotopy, that is a map
h : X x 1 --+ Y, which is a proper map. Here 1 = [0, 1 ]. Let Y be a
collection of subsets of a topological space X; Y is said to be locally
finite iff every point in X has a neighborhood which meets only finitely
many members of Y. If X happens to be locally compact then one
easily deduces that Y is locally finite iff each compact subset of X meets
only finitely many members of Y. Recall that a CW-complex K is
locally finite iff the collection consisting of all the closed cells of K is

1 Partially supported by NSF grant GP 29697.
2 N.S.F. graduate fellow
3 Partially supported by NSF grant GP 29073.



2

locally finite. This condition is equivalent to K being locally compact.
Also K is locally finite iff each point of K has some neighborhood which
is a finite subcomplex. We will say that K is strongly locally finite iff K
can be covered in a locally finite way by finite subcomplexes. Clearly,
a strongly locally finite CW-complex is locally compact and hence
locally finite. In this section we have three objectives: first, to prove that
a finite dimensional, locally finite CW-complex is strongly locally finite;
second, to prove a version of the homotopy extension theorem for proper
homotopies when the domain space is strongly locally finite and the
range space is arbitrary; and third, to prove that a proper map between
strongly locally finite complexes is properly homotopic to a cellular map.
Note that one can also define the notion of an indexed family of sets

being locally finite.

LEMMA 1.1. Let f : X ~ Y be a proper map and let Y be a locally
finite collection of subsets of X. Also, assume that Y is locally compact.
Then, the indexed family f(Y) = {f(S)|S E Y} of subsets of Y is locally
finite. Here f (,.9’) is indexed by Y.

The proof of (1.1) is left to the reader.
If S is a subset of a CW-complex K, then K(S) denotes the carrier of

,S in K.

LEMMA 1.2. Let K be a locally finite CW-complex, W = {K(e)|e is a
cell in KI, and Y be an arbitrary locally finite collection of compact
subsets of K. If Y is a locally finite collection, then K(Y) = {K(S)|S E Y}
is a locally finite collection indexed by Y.

PROOF. Since W is locally finite, K is locally compact. Let C be a
compact subset of K. Denote the cells of K whose carriers meet C by
e1, e2, ···, en. Let C’ = e1 u ... u ën and denote the members of Y
which meet C’ by Sl, ..., Sm . Suppose that K(S) meets C. Recall that
K(S) equals the union of the carriers of all the cells which meet S.
See [8, p. 97]. Therefore, there exists a cell e of K which meets S and
whose carrier meets C. Therefore, e is one of the cells el , e2, ..., en;
and hence S meets C’ and is one of the finite collection S1, ···, Sm .

COROLLARY 1.3. If K is a strongly locally finite CW-complex, and Y
is a locally finite collection of compact subsets of K, then K( Y’) is a locally
finite collection indexed by Y.

PROOF. Since K has a locally finite cover by finite subcomplexes, the
collection W = {K(e)|e a cell of KI is locally finite. Now apply (1.2).
THEOREM 1.4. Every locally finite, finite dimensional CW-complex K

is strongly locally finite.
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PROOF. We proceed by induction on the dimension of K. When
dim = 0, K is discrete and hence strongly locally finite. Let us next
suppose that (1.4) has been proved for all locally finite CW-complexes
whose dimension is less than n = dim K. Denote the (n -1 )-skeleton
of K by Kn-1. Let Y = {K(e)|e a cell of K) ; Y’ = {K(e)|e an n-dimen-
sional cell of K}; and Y" = {K(e)|e a cell of Kn-1}. By the inductive
assumption and (1.3), Y" is locally finite; and hence once we show that
Y’ is locally finite we will have proved (1.4) because Y = Y’ u W". If
e is an n-dimensional cell of L then K(e) = e ~ Kn-1(~e) where ~e =
è n Kn-1. By our inductive assumption and (1.3), we see that {K(~e)|e
an n-dim cell of K} is a locally finite collection indexed by Y’. Since the
set of all n-dimensional cells of K is also locally finite, we see that rc’ is
locally finite.

ADDENDUM. Every locally finite simplicial complex (whether finite

dimensional or not) is strongly locally finite since the collection of closed
simplexes is a locally finite cover by finite subcomplexes.

LEMMA 1.5. Let K be a connected, strongly locally finite CW-complex.
Then K has a locally finite cover of the form {An, Bnln = 0, 1, 2, ···}
where each Ai i and Bi is a finite subcomplex of K and Ai n Ai = ø =
Bi n Bj whenever i :0 j.

PROOF. Note that K has only a countable number of cells and hence
only a countable number of finite subcomplexes. See [8]. Hence K has
a countable locally finite cover by finite subcomplexes; say

Inductively, we define a strictly increasing sequence of integers n i as
follows: ni - 1; and if nj-1 has been defined, let nj be the first integer
larger than nj-1 such that for all m ~ nj we have

Define

REMARK. Each connected component of a CW-complex is an open
subcomplex.

THEOREM 1.6. (Homotopy Extension Theorem). Let K be a strongly
locallyfinite CW-complex, L a subcomplex of K, and Y an arbitrary
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topological space. Let h : L x [0, 1 ] ~ K x 0 ~ Y be a proper map. Then
there exists a proper map h : K x [0, 1] ~ Y which extends h.

PROOF. To prove (1.6), it is necessary and sufficient to prove that the
hat on L, i.e. L x [0, 1 ] u K x 0, is a proper retract of K x [0, 1 ]. By the
remark above, it is sufficient to consider the case when K is connected.
Via (1.5), we can express K as the union of two subcomplexes A and B
where

and each Ai and Bi is a finite subcomplex of K with Ai n Aj = 0 =
Bi n Bj when i ~ j. In order to show that the hat on L is a proper
retract of K x [0, 1 ], we first show that the hat on L ~ A in K is a proper
retract of K x [0, 1 ] and then that the hat on L in K is a proper retract of
the hat on L ~ A in K. To define a proper retract of K x [0, 1 ] onto
K x 0 u A x [0, 1 ] ~ L x [0, 1 ], we express K x [0, 1 ] as the union of the
two closed subspaces A x [0, 1 ] and B x [0, 1 ]. On A x [0, 1 ] define a map
r to be the identity. Since B x [0, 1 ] intersected with the hat on A ~ L
in K is the hat on (A ~ L) n B in B, and since the inclusion map of
(A ~ L) n B into B is a cofibration, (see [6, p. 402]) there exists a

retraction s of B x [0, 1 ] onto the hat on (A ~ L) n B in B. Since B
is a disjoint union of finite subcomplexes, we see by a connectivity
argument that s is a proper map. Both r and s agree where their domains

overlap; and hence we can piece them together to obtain a proper
retraction of K x [0, 1 ] onto the hat on L u A in K. The hat on L ~ A
in K can be expressed on the union of the two closed subsets A x [0, 1 ]
and the hat on L in K. On the hat on L in K define the identity map.
Since A x [0, 1 ] intersected with the hat on L in K is the hat on L n A
in A, and the inclusion map of L n A into A is a cofibration, there exists
a retraction map s of A x [0, 1] onto the hat on L n A in A. By connec-
tivity considerations s is a proper map. Piecing this map together with
the identity map on the hat on L in K, we obtain a proper retraction of
the hat on L u A in K onto the hat on L in K.

THEOREM 1.7 (Cellular ’Approximation’ Theorem). Let K and M be
strongly locally finite CW-complexes, L a subcomplex of K, and f : K ~ M
a proper map with f IL cellular; then f is properly homotopic to a cellular
map g through a homotopy fixed on L.

PROOF. Applying (1.5) to each connected component of K, we de-
compose K as the union of two subcomplexes A and B where both A
and B can be expressed as the disjoint union of finite subcomplexes; i.e.
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where each a E Y and j8 E Y’ is a finite subcomplex and if (Xi, Ce 2 E Y

and rxl =1= a2 then 03B11 n OE2 = 0; and likewise if 03B21, 03B23 ~ Y’ and Pl 0 P2
then fli n 03B22 = 0. By (1.1)f(Y) is a locally finite collection of compact
subsets of M indexed by Y. By (1.3), M(f(Y)) is a locally finite collec-
tion indexed by f(Y), and hence by Y. For each a E Y, there exists a
homotopy of f|03B1 : ce -+ M(f(03B1)) to a cellular map which is fixed on

L n a. See [6, p. 404]. Piecing all of these homotopies together, we
obtain a proper homotopy of f|A: A ~ M to a cellular map where the
homotopy is fixed on L n A. We can extend this homotopy to a proper
homotopy of f|A u L : A u L ~ M where this homotopy is fixed on L.
Then we use (1.6) to extend this homotopy to a homotopy of f : K ~ M.
Hence we have properly deformed f : K ~ M to a map fi : K ~ M
which is cellular on A ~ L through a homotopy fixed on L. Now f1|B
is cellular on (A ~ L) n B. By an argument similar to the one given
above, f1|B is properly homotopic to a cellular map gl through a homo-
topy fixed on (A ~ L) n B. Hence fi : K ~ M is properly homotopic
(through a homotopy fixed on L ~ A) to a cellular map g where g 1 A = f,
and glB = gl . If we string together the proper homotopy from f to fl
with the proper homotopy from fl to g, then we obtain a proper homo-
topy of f to a cellular map g. This homotopy is fixed on L.

REMARK 1.8. Theorem 1.7 is not true in general if the condition

’strongly locally finite’ is dropped as the following example shows: Let
K be an infinite set of points {p1,p2,···} with the discrete topology.
Let M = e’ u el ~ e2 ~ ··· where / is attached to

by collapsing all of oen to a point qn e int en-1. M is not strongly locally
finite because any subcomplex of M must contain eo. The proper map
f : K ~ M given by f(pi) = qi can certainly not be deformed (properly
or otherwise) to a proper cellular map.
REMARK 1.9. Define a pair (K, L) of locally finite CW-complexes to be

strongly locally finite if K = LuKa. where {K03B1} is a locally finite collec-
tion of finite subcomplexes of K. If dim (K- L)  oo, then the pair
(K, L) is strongly locally finite. Furthermore (1.6) and (1.7) still hold
under the weakened hypothesis that the pair (K, L) is strongly locally
finite.

Finally we say that a proper map f : X ~ Y is a proper homotopy
equivalence provided that there exists a proper map g : Y ~ X such that
both g o f and f o g are properly homotopic to the identity map.
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2. A-homology and A-homotopy

In this section we review from [7] the definitions and results concerning
A-homology and A-homotopy, which take the place in the proper

category of ordinary homology and homotopy in the categories of spaces
and all continuous maps.

Let V denote the category of pointed sets and base point preserving
functions. Let S = {S03B1} denote a collection of objects in Y’ where oc

runs through some indexing set. Define p(S) to be 03A003B1S03B1 modulo the
equivalence relation which identifies {s03B1} E 03A003B1S03B1 with {s’03B1} E 03A003B1S03B1
provided that s03B1 = s’03B1 except for possibly finitely many values of a.
If each Sa is actually a group (with base point the identity element),
then p(S) is a group and in fact

If f = {f03B1 : S03B1 ~ T03B1} is a collection of morphisms, there is a natural

morphism 03BC(f) : 03BC(S) ~ 03BC(T) induced by 03A003B1f03B1 : ITaSa ~ ITaTa. If each
fa is a homomorphism, so is p(f). Sometimes we shall denote p(S) by
Jla(S) to indicate what indexing set is being used.

Let X be a locally finite CW-complex. A locally finite collection {p}
of points in X will be called a set of base points for X provided that (a)
for any compact set K c X each infinite component of X- K (i.e. each
component not contained in a compact subset of X) contains an element
of {p} and (b) any subset of {p} satisfying condition (a) has the same
cardinality as {p}. Note that if X is compact and connected any set
of base points consists of just one point.
Now suppose G is a functor from the category Yo of based topological

spaces and base point preserving maps to the category Y. Let {p} be a
set of base points for X. We define pointed sets e(X, {p}; G) and
4(X, {p}; G) as follows: For each compact set C c X and base point
p ~ {p} let

Then form 03BCp(G(C, p)) and note that if C c D there is a morphism

Define

Define L1 as the pull-back of the diagram
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Note that if G is actually a functor into the category of groups and
homomorphisms, then s and d are groups. Also, if {C03B1} is any cofinal

collection of compacta in X (i.e. given a compactum D c X there is
some CQ containing D), one can just as well take the inverse limit in
(2.2) over the sets Ca to calculate 8 and then d.

REMARK. In all of the examples of interest in this paper the isomor-
phism class of s or 0394 is independent of the choice of the set of base points
{p}. See [7]. Any natural transformation of functors G ~ H induces a
morphism 0394(X, {p}; G) ~ 0394(X, {p}; H).
For any space X set

where the limit runs through the compact subsets of X. Any proper map
f : X ~ Y will be called properly 0-connected provided X and Y are
connected and H0e(Y) ~ H°(X) is an isomorphism. The map f is
properly 0-connected iff the inclusion X c- M f of X into the mapping
cylinder M f of f is properly 0-connected.
Now let f : X -+ Y be properly 0-connected and let {p} denote a set

of base points for X. Then {f(p)} is a set of base points for Y and by
refining {p} we can insure that f : {p} ~ {f(p)} is a bijection. We
define the induced map

as follows: The set of compacta f -I(C) where C is a compactum of Y is
cofinal and hence the G(f-1(C), p) can be used to compute 0394(X, {p}; G).
The map BI * is the one induced by the collection of maps G(f-1(C), p) -+
G(C,f(p)). The map ef* induces a map

The E and d constructions can also be described by a direct limit
process (see [7]): Let Q denote the set of collections {gp} where
gp E G(Cp, p), p runs through the set of base points {p}, and {Cp} is a
collection of compacta such that p E X - Cp and such that any compactum
of X is contained in Cp for all but finitely many p. Two such collections
{g’p} and {g"p} are E-equivalent, written ( g)) ~ 03B5 {g"p}, iff there is a collec-
tion {gp} such that for all but at most finitely many p’s
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(i) Cp c Cp and Cp c C"p, and
(ii) under the maps G(C;,p) ~ G(Cp, p) and

We say that {g’p} and {g"p} are 0394-equivalent, written {g’p} = 
iff conditions (i) and (ii) hold for all p e {p}. Then

and

If G is a functor to the category of groups both 8 and Li are groups.
The multiplication is given by

where Ap and h"p are the images of g p and g"p under the maps

In what follows the functor G will, with one or two exceptions (see
2.7 and 2.10) always be a functor to the category of groups and, more
often then not, to the category of abelian groups. Thus the general
theorems concerning exact sequences, conditions insuring triviality of E,
etc. will be stated in the category of groups for the sake of economy.
We leave it to the reader to interpret things in the category of pointed
sets when necessary.

THEOREM 2.4. 03B5(X, {p}; G) = 0 iff for any compact set C there is a

compact set D containing C such that for all base points p E X - D

is the zero homomorphism. Furthermore J(X, {p}; G) = 0 iff 8 = 0 and
G(0, p) = 0 for all p E {p}.
REMARK. The direct limit description of 8 also implies that whenever

each morphism G(f-1(C03B1), p) ~ G(ca,f(p» is surjective for a cofinal
collection {C03B1} of compacta Ca c Y then the map

is also surjective.
As usual, let {p} be a set of base points for X. A covering functor,

denoted by ~, assigns to each pair (C, p), where C is a compact subset
of X and p ~ {p} lies in X - C, a subgroup 03C0(C, p) c 03C01(X - C, p) such
that i*(03C0c(D, p)) c x(C, p) whenever C c D. Here i* : 7r(D, p) ~
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03C01(X-C,p) is the homomorphism induced by the inclusion X - D c
X - C. For each compact C c X and base point p ~ {p} lying in X - C,
let p : X - C ~ X - C denote the covering space of the connected com-
ponent of X - C containing p corresponding to the subgroup 03C0(C, p) ~

03C01(X-C, p). Choose a lifting  ~ X - C of p ~ X - C such that

03C1*(03C01 (X- C, )) = 03C0(C, p). Now let C ~ D. Since i*(03C0(D, p)) ~ 03C0(C, p)
there is a unique map :X-D~X-C covering the inclusion

i : X - D m X - C such that the base point p E X - D goes to the base

point p E X - C. Thus each choice of liftings {} determines a functor
from To to itself.
Now let ~ be a covering functor of X and choose a set of liftings {}

as above. Define 03B5(X, {p}; G, ~) and 0394(X, {p}; G, ~) by the e and Li
constructions using the pointed sets (or groups) G(C, p) = G(X - C, p).
Then 03B5(X, {p}; G, ~) and 0394(X,{p}; G, ~) are independent, up to

isomorphism, of the choice of liftings {} of {p}. See [7].
Two covering functors’ and - " of X are pre-equivalent provided

there is a cofinal collection of compacta {C03B1} in X such that 0 E {C03B1}
and such that if C03B1 ~ { C03B1} and p ~ {p} then 03C0’(C03B1,p) = 03C0"(C03B1, p).
Equivalence of covering functors is the equivalence relation generated by
’pre-equivalence’. If ~’ and are equivalent there are natural iso-
morphisms

and

EXAMPLES.

(i) n(c,p) = 03C01(X-C, p). Then X-C = X-C and fi = p.
(ii) 03C0(C, p) = trivial group. Then X-C is the universal cover of the

component of X-C containing p. In this case we let ’univ’ denote the
covering functor.

(iii) n(c,p) = ker [03C01(X-C, p) ~ 1tl(X,P)]. Let Yp c X-C be the
component containing p and let x : U ~ X be the universal cover. Then
X-C is just one of the components of 7r (YP) and the lifting of p to fi
picks out which component it is.

(iv) Let f : X ~ Y be a proper map. Let {p} be a set of base points
for X such that {f(p)} is a set of base points for Y and f : {p} ~ {f(p)}
is a bijection. Let - be a covering functor for Y. We shall define the
induced covering functor f*(~) on X. Although the construction of
f*(~) involves some ambiguity, the equivalence class of f*(~) is well
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determined and it is in this sense we speak of ’the’ induced covering
functor.

Choose a cofinal sequence 0 = Do c Dl ce ... of compacta in Y.

Given p E {p} and any compactum C in X let

where k is the largest integer such that f(X-C) c Y-Dk. The 03C0*(C,p)
are the subgroups which define f*(~ ).
From now on we shall not distinguish between equivalent covering

functors.

The induced morphisms.
Let f : X ~ Y and {p} be as in (iv) above. The induced morphisms

and

are induced by the morphisms

where the Dk are as in (iv).
The rest of this section lists the examples of the d-construction used

in this paper and states some of their general properties.

The absolute groups.
In each of the following examples it suffices to define the G(C, p).

The morphism G(D, p) ~ G(C, p) is induced by X - D ~ X - C. We
adopt the convention that whenever p ~ X - C then G(C, p) = trivial
group. For the d-group in each example use the notation as indicated.

Let

Let

The relative groups.
Let A 4 X be a properly 0-connected inclusion. This allows one to

choose a set of base points {p} for A which is also a set of base points
for X. Let - be a covering functor on X and ne : X - C ~ X - C be the
associated covering maps (strictly speaking the range of ne is a connected
component Yp of X - C containing a base point p ~ {p} and ne depends
on p). Let A - C denote 03C0-1c(Yp n (A - C)).
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Let

Let

Let where as in

modulo the action of

Let

Note that in example (2.7) the Li construction gives a pointed set for
k = 1 and groups for k ~ 2. Example (2.10) gives a pointed set.
The following general properties of the d groups are analogous to

those which hold in ordinary homology and homotopy.

THEOREM 2.11. Let f : X ~ Y be a proper homotopy equivalence. Let
~ and - be covering functors of X and Y respectively such that - is

equivalent to f * ( - ). Let G = nk or Hk. Then ef* and df* are isomorphisms.
An inclusion A  X is properly n-connected provided it is properly

0-connected and 0394(X, A; {p}; nk, no cov) = 0 for 1 ~ k ~ n. Here
’no cov’ is the covering functor in example (i).

In (2.12) below we set

etc.

THEOREM 2.12. Let (X, A) be properly 1-connected and let be a covering
functor on X. Form 039403C0k(A) with respect to the covering functor on A induced
by the inclusion A y X. Then there is a long exact sequence

Similarly there is a long exact sequence using the 0394-homology groups
of (2.6).
REMARK. For simplicity we have assumed that (X, A) is properly

1-connected. When this is not the case it is possible to define 11 functors
which extend the sequence to the right several terms. Also (2.12) and
(2.11) hold for any homotopy functor. See [7].
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In the next theorem set 039403C0’k(X,A) = 0394(X, A; {p}; 03C0’k ~) and

0394hk(X, A) = 0394(X, A; {p} Hk, ~). The ordinary Hurewicz homomorphism
induces a Hurewicz homomorphism

THEOREM 2.14. (Proper Hurewicz Theorem. c.f. [6, p. 397]). Suppose
(X, A) is properly n-connected (n ~ 1). Let - be any covering functor.
Then 0394hk(X, A) = 0 for 1 ~ k ~ n and

is an isomorphism. Conversely, if A  X is properly 0-connected, A and
X are properly 1-connected (i. e. 0394(A, {p}; 1tl, no cov) = 0 and similarly
for X), and there is an n ~ 1 with dh(X, A) = 0 for 1 ~ k ~ n, then

(X, A) is properly n-connected and there is an isomorphism

THEOREM 2.15. Suppose 0394(A, {p}; 03C01, -) = 0 where ’-’ is the

covering functor on A induced by a covering functor - on X. Then for
k ~ 2 there is an isomorphism

EXAMPLE 2.16. Suppose that the composite map

is a monomorphism. Let ~ be the covering functor of X obtained from
the universal covering space of X as in (iii). Then 0394(A, {p} ; 03C01, - ) = 0,
so Theorem 2.15 applies. For example, suppose A and X each have one
stable end (c.f. [4]) with fundamental groups 1tl Ba and 1tl Bx respectively.
Suppose that 03C0103B5a ~ 03C0103B5x and 03C01A ~ 03C01X are isomorphisms and that
03C0103B5a ~ 03C01A is a monomorphism. Then (*) holds.

EXAMPLE 2.17. Let - = universal covering functor of X as in example
(ii). Suppose that 0394(A; {p}; 03C01, no cov) - d (X, {p}; 03C01, no cov) is a
monomorphism. Then 4(A, {p}; 03C01, -) = 0 because 0394(X, {p}; 03C01,
univ cov) = 0.

THEOREM 2.18. Suppose that

is an isomorphism. Let - be any covering functor of X. Then the natural
homomorphism
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is an isomorphism whenever k ~ 2.
The following theorem will be useful for applications in § 4.

THEOREM 2.19. Let (X, A) be a properly 0-connected pair. Suppose
(a) 0394(A, {p}; 03C01, no cov) - 0394(X, {p}; 7cl, no cov) is an isomorphism
(b) 0394(A, {p}; 03C01, no cov) ~ 03A0p03C01(A, p) is a monomorphism
(c) 0394(X, A; {p}; Hk, ~) = 0 where - is as in example (iii). Then

(X, A) is properly n-connected for all n ~ 1.

Condition (a) implies (X, A) is properly 1-connected (c.f. [7]). When
n &#x3E; 1 the proof of (2.19) is an induction argument along classical lines
using (2.14), (2.15), (2.16), and (2.18).

3. The Proper Whitehead Theorem

Let f : X -+ Y be any proper map between locally finite C W-complexes.
Then f is a proper homotopy equivalence iff the inclusion X c Mg is a
proper homotopy equivalence, where Mg is the mapping cylinder of any
cellular map g : X ~ Y properly homotopic to f. Therefore in this section
we shall always work with inclusions A c X where A is a subcomplex of
X. We shall also assume A c X is properly 0-connected.

THEOREM 3.1. (Proper Whitehead Theorem). Suppose dim (X - A) =
n  00. Then A is a proper deformation retract of X if

(a) A (X, A; {p}; 03C0k, no cov) = 0 for 1 ~ k ~ n or
(b) 0394(A, {p} ; 03C01, no cov) ~ 0394(X, {p}; 03C01, no cov) is an isomorphism

and L1(X, A; {p}; Hk, univ) = 0 fo r 1 ~ k ~ n.
Conditions (a) and (b) in (3.1) are certainly necessary conditions.
First we shall show that (a) implies A is a proper deformation retract

of X and then we show that (b) implies (a). Part (a) is a special case of

PROPOSITION 3.2. (c.f. p. 402 of [6]). Let (X, A) be a properly n-
connected pair. Let f : (K, L) ~ (X, A) be any proper map. Suppose L
is a subcomplex of K and that dim (K-L) ~ n  co. Then f can be
properly deformed rel L to a map into A.

The following will be needed in the proof of (3.2):
LEMMA 3.3. Let K = L ~ (Pl U P2 ~ ···) where {Pi} is a locally

finite collection offinite subcomplexes of K and L is a subcomplex of K.
Suppose that the Pi - (L n Pi) are all disjoint. Let (X, A) be a pair of
locally finite, countable CW-complexes and let f : (K, L) ~ (X, A) be a
proper map such that

(i) For each i ~ 1, f : (Pi, L n Pi) ~ (X, A) deforms rel L n Pi down
into A.

(ii) Given any compact set C c X there is a compact set D c X
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containing C and there is a positive integer m such that f maps (Pi, L n Pi)
into (X - D, A - D) whenever i ~ m and such that the map

deforms rel L n Pi down into A - C within X - C. Then f : (K, L) ~ (X, A)
deforms properly rel L to a map into A.

PROOF. Let no = 1 and choose a compactum Ci c X so that

f : Pi ~ X can be deformed into A rel L n Pi within Cl . Choose a
compactum C2 containing Ci and an nl &#x3E; no such that for i ~ n,
f(Pi) c X - C2 and f : Pi ~ X - Cl can be deformed rel L n Pi into A
within X-C1. Choose a compactum C3 containing C2 so that

Pli , ... Pnl-1 can be deformed into A rel L n Pi within C3. Choose a
compactum C4 containing C3 and an integer n2 &#x3E; nl such that for i ~ n2,
f(Pi) c X-C4 and f : Pi ~ X-C3 can be deformed rel L n Pi into A
within X - C3 . Choose a compactum CS so that f : Pl ~ X - Ci can be
deformed rel L n Pi into A within C5-C1 for n1 ~ i ~ n2-1. Con-
tinuing in this way we can construct a cofinal sequence of compacta

and an increasing sequence

such that Pnk through Pnk+ 1-1 deform rel L into A within C2k+3-C2k-1.
These deformations clearly give a proper deformation of f : K ~ X into
A keeping f fixed on L.

PROOF oF 3.2. Part (a). Write K = L ~ P ~ Q where both P and Q
are the disjoint union of finite complexes P = Pl U P2 ~ ··· and
Q = Q1 ~ Q2 ~ ··· such that dim Pi ~ n and dim Qi ~ n. We show
that f|L ~ P can be properly deformed rel L down into A. The proper
homotopy extension theorem then implies that f : K ~ X can be properly
deformed rel L to a map g : K ~ X with g(L u P) c A. Then a repeat
of the first half of the argument shows that g can be properly deformed
rel L ~ P to a map of K into A, which completes the proof.
To show thatflL u P can be pulled down into A it suffices to show

that the conditions of Lemma 3.3 are satisfied. For short let

Since dk = 0 for 1 ~ k ~ n, 03C0k(X, A; p) = 0 for 1 ~ k ~ n and hence
standard obstruction theory says that (i) of (3.3) holds.
To get (ii) let C c X be any compactum. Use (2.4) to get a sequence

of compacta C = Co c Ci c C2 c ... c Cn such that for all p in
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any infinite component of A - Ci the morphism

is the zero map for 0 ~ i ~ n - 1. Choose D = en. Choose the m of (ii)
to be an integer so large that whenever m, f(Pj) is contained in an
infinite component of X-D. Standard obstruction theory shows that
this choice of D and m satisfies (ii) of (3.3).

Proof that (b) - (a) in (3.1).
Since 4 (A, {p}; 1tl, no cov) --+,A (X, {p}; 03C01, no cov) is an isomor-

phism the pair (X, A) is properly 1-connected. That (b) ~ (a) now
follows inductively as in ordinary homotopy theory using (2.14), (2.15),
(2.17), and (2.18).

This completes the proof of (3.1).
Let f : X ~ Y be a properly 0-connected map between locally finite,

countable C W-complexes. We say f is a proper n-equivalence iff the pair
(Mf, X) is properly n-connected where Mf is the mapping cylinder of f.
If K is a space let [K, X]p denote the set of proper homotopy classes of
proper maps of K into X. The argument proving Corollary 23 on p. 405
in [6] can be mimiced in the proper category using (3.2) to show

THEOREM 3.4. Let K be a connected, locally finite CW-complex of
dimension k  oo. Let f : X -+ Y be a proper n-equivalence. The natural
map

is surjective if k ~ n and injective if k  n.

Here is another proper Whitehead theorem.

THEOREM 3.5. Suppose (X, A) is strongly locally finite. Then A is a

proper deformation retract of X iff

The proof is similar to that of (3.1) and is left to the reader. In practice
(3.1) is more useful than (3.5).
A result similar to (3.1) and to (3.5) when dim (X-A)  oo has been

obtained by L. C. Siebenmann in [5].

4. Applications

In this section we show that when the fundamental group system at

infinity maps monomorphically into the fundamental group of the whole
space it is possible to prove a proper Whitehead theorem with hypotheses
more algebraic than those of (3.1 ).
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For any space X, let H*c(X) denote the singular cohomology with
compact supports.
The main theorem of this section is

THEOREM 4.1. Let f : X ~ Y be a properly 0-connected map between

locally finite, finite dimensional CW-complexes. Suppose that

is a monomorphism. Then f is a proper homotopy equivalence iff

(1 ) The map f# : 4 (X, ( p) ; 1tl, no cov) ~ 0394(Y, {f(p)}; xi, no cov) is
an isomorphism

(2) f* : H*(X) ~ H*() and f* : H*c() ~ H*c(X) are isomorphisms
where X and  are the universal covering spaces of X and Y.

The proof of (4.1) is given after a sequence of propositions and lemmas
(4.2 through 4.7).

Let R be a ring with identity and M a countably based free R module
whose basis is denoted by B. By ’countable’, we mean either countably
infinite or finite. A submodule U of M is called a neighborhood of infinity
if U contains all but a finite number of basis elements from B. Let

f : M ~ N be a R-module homomorphism between countably based
R-modules M and N. We say that f is locally finite if for every neighbor-
hood U of infinity in N there exists a neighborhood of infinity in M
such that f(V) ~ U. By Homf (M, N), we denote the set of all locally
finite homomorphisms from M to N.

In particular, we denote Hom (M, R) by M* and Homf (M, R)
by M. (Since R is a ring with identity, say 1, R has a natural
countable basis namely {1}.) Note that M consists of those R-homo-
morphisms from M to R which vanish on all but finitely many
basis elements in B. M is again naturally countably based with basis
B = {b|b E B} where b(b) = 1 and b(b’) = 0 for b’ E B, b’ :0 b. Although
M* may not be countably based, we still define neighborhoods of infinity
for M* as follows: A submodule U of M* is a neighborhood of infinity
if there exists a finite subset of B such that U contains all elements of M *

which annihilate this subset. Note that the intersection of a neighborhood
of infinity in M* with M is a neighborhood of infinity in M; and that
any neighborhood of infinity in M can be so expressed. Also note that
if f : M -+ N is an R-module homomorphism then f* : N * ~ M* is a
locally finite R-module homomorphism. If in addition f is locally finite,
then f*(N) ~ M; and hence we can then define f : N ~ M as f* restricted
to N. Note that f is a locally finite R-module homomorphism. A chain
complex is said to be countably based, locally finite if each chain group is
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countably based and the boundary maps are locally finite. If C is a
countably based, locally finite chain complex, we define a countably
based, locally finite cochain complex C as follows: (C)n = (en) and
a" : (C)n-1 ~ (C)n is an where an : Cn ~ Cn-1. There exists a natural
isomorphism a : M ~ M if M is a countably based R-module; 03B1 is

natural in the sense that if f : M ~ N is locally finite, then a o f = f 0 a.

THEOREM 4.2. Let C be a finite dimensional, countably based, locally
finite chain complex; and assume that both C and C are acyclic
(i.e. H*(C) = H*(C ) = 0). Then C is locally finitely contractible (i.e. there
exist locally finite maps s. : en ~ Cn+ 1 such that ~n+1 Sn -f- sn-1 ~n = id).

In order to prove (4.2) it is sufficient to show that C is locally finitely
contractible. The proof of this fact depends on the following lemma.

LEMMA 4.3. Let C be a finite dimensional, countably based, locally
finite chain complex such that both C and C are acyclic; then given any
neighborhood U of infinity in Cn+ 1 there exists a neighborhood V of
infinity in Cn which has the property that for any cycle x E V there exists
a chain y E U with an+ lY = x.

This lemma and its proof were motivated by a result of S. P. Novikov.
See [3], proof of Theorem 2.

PROOF OF 4.3. Let ti : Ci --+ Ci-1 be contraction operators which exist
since C is finite dimensional and acyclic. These maps satisfy the equations
~iti+ti+1~i+1 = id. Let U’ be a neighborhood of infinity for C*n+1 such
that Cn+ 1 n U’ = U. Since t*n+1 is locally finite, there exists a neighbor-
hood V’ of infinity in C*n such that t:+l(V’) S; U’. Let V = V’ n en.
From the equation

we see that if x is a cycle in V then there exists a chain z E Cn+ 1 (namely
z = t:+1X) such that z E U’ and â*z = x. Since C is acyclic, there exists
a chain y’ from Cn+1 such that ày’ = x ; and hence ~*y’ = x. Therefore,
z-y’ is a cycle in C +1. Since C is contractible, C* is acyclic; and hence
there exists w e C*n+2 with a*w = z - y’. Since 8* is locally finite, we can
write w as the sum of two chains W1 and w2 such that W1 e Cn+2 and
. Let  and- = x. We need only
show that y ~ U to complete the proof of (4.3). To see this, consider the
following équation :

But
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In order to prove (4.2), use (4.3) to inductively define the locally
finite sn . Compare [6, p. 164]. We leave the details of this construction
to the reader.

Let X be a connected, finite dimensional CW-complex and A a sub-

complex of X. Let p : X ~ X denote a universal cover of X and A the
induced cover over A. (i.e. A = p-1(A)). Define a chain complex
C(X, A) as follows: Cn(X, A) = Hn(Xn ~ A, Xn-1 ~ A). Here, we are
using singular homology. The boundary map from Cn(X, A) to Cn-1 (X, A)
is defined as the composite of the two maps

and

where ô and j appear in the exact homology sequences for the pairs
(Xn ~ A, Xn-1 u A), and (Xn-1 u A, Xn-2 U A ) respectively. For each
n cell e" of X - A, pick a characteristic map f : (En, Sn-1) ~ (e", en)
and a lifting 1 of f to X ; then * : Hn(En, Sn-1) ~ Cn(X, A ) maps the
generator for Hn(En, Sn-1) to an element of Cn(X, A). In this fashion
we have constructed a countable basis for C.(X, A) as a Z[03C01 X]-module.
Note that we have made choices in constructing this basis; but that the
neighborhood system of infinity for Cn(X, A) is independent of the
choices made. In this way, C(X, A) becomes a finite dimensional,
countably based, locally finite chain complex.

LEMMA 4.4. If C(X, A) is locally finitely contractible, then for any
compact subset K of X there exists a bigger compact subset L such that
the map induced by inclusion from H*(X-L, A -L) to H*(X - K, A - K)
is the zero map.

PROOF. Our technique of proof is to construct two subcomplexes Y
and Z of X such that both omit only a finite number of cells from X,
Z c Y, Y n K = 0, and the map from H*(Z, Z n A) to H*(Y, Y n A)
induced by inclusion is zero. If we can do this, we have clearly proved
(4.4). Since the carriers of cells in X form a locally finite collection,
we define Y to be the union of the carriers of all cells whose carriers

do not meet K. Recall that the n-cells of X - A are in one to one corre-

spondence with the basis elements of Cn(X, A); let Un be the submodule of
Cn(X, A); let Un be the submodule of Cn(X, A) generated by all the basis
elements corresponding to n-cells of Y- A. Then Un is a neighborhood of
infinity for Cn(X, A). Let sn : Cn(X, A) ~ Cn+1(X, A) be the locally
finite contraction operators. There exist neighborhoods of infinity Un
for C.(X. A) such that sn(U’n) ~ Un+1. Since Un is a neighborhood of
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infinity for Cn(X, A), there exist a finite set of n-cells of X which we
denote by Sn such that Un contains all the basis elements of Cn(X, A)
except those corresponding to the cells in S’n . Let L denote the union of
the closures of all the cells from all the S’n s. Let V be the union of all the
carriers of all the cells whose carriers do not meet L; and let Z = V n Y.
Define the chain complex C’(Y, Y n A) as follows:

The boundary maps are defined in the usual way. Likewise define
C’(Z, Z n A). Then we see that C’(Z, Z n A) is a based chain sub-
complex of Cx(Y, Y n A ) which in turn is a based chain subcomplex of
C(X, A). Since Sn(C:(Z, Z nA» c Cxn+1(Y, Y n A), we see that the
inclusion map from C"(Z, Z n A) to C"(Y, Y n A) induces the zero
map on homology. By a standard argument, this shows that the map
induced by inclusion from H*(Z, Z n A) to H*(Y, Y n A) is zero.

If M is a countably based Z[G ]-module and G is a countable group,
then M is a countably based Z-module with basis elements of the form
g - e where 9 E G and e is a member of the basis for M. If N is also a
countably based Z[G ]-module and h : M ~ N is locally finite Z[G]-
homomorphism, then it is also a locally finite Z-homomorphism.
Hom( (M, Z) can be made into a Z[G ]-module by defining, for each
c- Hom ( (M, Z) and g E G, the homomorphism (~)g : M ~ Z to be
the function that sends m E M to ~(g · m). If h : M ~ N is a locally
finite Z[G ]-module homomorphism, then

is a Z[G ]-module homomorphism. Hence, Homfz( , Z) is a functor
from the category of countably based Z[G ]-modules and locally finite
Z[G] homomorphisms to the category of Z[G]-modules. We can
consider HomfZ[G] ( , Z [G]) as another such functor.

LEMMA 4.5. The two functors HomfZ[G]( , Z [G ]) and HomfZ ( , Z)
are naturally isomorphic.

PROOF. Define h : Z[G ] ~ Z to be the Z-linear map such that h(1) = 1

and h(g) = 0 if g E G, g :0 1. Define the natural isomorphism from
HomfZ[G] (M, Z[G]) to HomfZ (M, Z) to be Hom (id, h).
COROLLARY 4.6. If C is a countably based, locally , finite chain complex

over Z[G] where G is countable, then C is isomorphic (as a cochain
complex) to the cochain complex HomfZ (C, Z).
LEMMA 4.7. Let X be a connected, finite dimensional, locally finite

CW-complex and A a subcomplex of X. Assume that the homology and
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cohomology with compact supports of the pair (X, À) vanish; then C(X, A)
is locally finitely contractible.

Pitoox. In view of (4.2) and (4.6), we need only show that the chain
complex C(X, A) and the cochain complex Homf (C(X, A), Z) are both
acyclic. A standard argument shows that C(X, A) is acyclic and that the
cochain complex D(X, A) is acyclic where

and the coboundary maps are defined in the obvious way. But one can
show, using the universal coefficient theorem relating homology to
cohomology together with the expression for cohomology with compact
supports as a direct limit of the cohomology of appropriate spaces, that
D(X, A) is isomorphic HomZ (C(X, A), Z).

Finally, here is the proof of (4.1):
The necessity of (1) and (2) is clear. We prove they are sufficient

conditions. First deform f : X ~ Yto a cellular map g : X ~ Y. We show
that the hypothesis (a), (b), and (c) of (2.19) are satisfied for the pair
(Mg, X) where M, is the mapping cyclinder of g. Since X and M, are
finite dimensional, (3.1) says that X is a proper deformation retract of
Mg. Hence f is a proper homotopy equivalence.
Now (a) and (b) of (2.19) are satisfied by assumption. Condition (2)

implies by (4.4) and (4.7) that for any compact set C of M, there is a
compact subset D containing C such that

is the zero map. This says that e(M., X; {p}; Hk ~) = 0 where - is

as in example (iii) of § 2. Condition (1) implies 1tl X ~ 1tl Mg is an

isomorphism. Since f* : H*(X) ~ H*(Y) is an isomorphism by (2) the
ordinary Whitehead theorem says that f is a homotopy equivalence.
Hence 0394(Mg, X; {p}; Hk, - = 0, which is just (c).

Q.E.D.

COROLLARY 4.8. Let X and Y be connected, finite dimensional, locally
finite CW-complexes and assume that each has a finite number of stable
ends (see [4]). Let 03B51, ···, 03B5n denote the ends for X and el’ ..., em denote
the ends of Y. Suppose that n = m and that n Bi maps monomorphically
into 03C01 (X) for each integer i, 1 ~ i ~ n. Let f be a proper map from X
to Y such that f takes the end ci and to the end ei for each i, 1 ~ i ~ n.

Then f is a proper homotopy equivalence iff (1) f induces isomorphisms
from 03C01 X to 1Cl Y and from 1tl Bi to 03C01 ei for each i, 1 ~ i ~ n; (2) f induces
an isomorphism from H*(X) to H*(Y) and from H*c(Y) to H:(X).
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COROLLARY 4.9. Let X and Y be finite dimensional, locally finite
CW-complexes which are simply connected and simply connected at

infinity. Let f be a proper map from X to Y. Then f is a proper homotopy
equivalence iff f induces isomorphisms from H*(X) to H*(Y) and from
H*c(Y) to H:(X).
The derivation of Corollaries (4.8) and (4.9) from Theorem (4.1)

will be left to the reader.

Let X" be an open, smooth or piecewise linear, connected manifold
of dimension n. Denote by Hl.f.*(X; Z’) the homology groups based on
locally finite, infinite simplicial chains (with respect to a given triangula-
tion) with twisted integral coefficients Z’. Then Hn (X; ZI) = Z. The
first Stiefel-Whitney class of X determines the orientation homomorphism
cvx : 03C01 X ~ {± 1}. Let f : X n ~ Y" be a properly 0-connected map
between two open connected n-manifolds X and Y. Suppose there is a
commutative diagram

Then f induces a map

and the degree of f, written deg f, is the integer determined by

in the usual way.

COROLLARY 4.10. Let f ’ : X’i ~ Y" be a properly 0-connected map
between open smooth or p.l. manifolds of dimension n. Suppose
03B8 : 0394(X, {p}; 1tl, no cov) ~ 03A0p03C01(X, p) is a monomorphism. Then f is
a proper homotopy equivalence iff f is a homotopy equivalence and
deg f = 1.
To prove (4.10) we must show that conditions (1) and (2) of (4.1) hold.

Condition (2) follows by Poincaré duality from the fact that f is a
homotopy equivalence. It remains to get condition (1). Since f is a
homotopy equivalence and 0 is a monomorphism, to show that (1) holds
it is sufficient to show that

is surjective.
It is no loss of generality to assume that n is large. This is because
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f : X ~ Y is a proper homotopy equivalence iff f x id : Xx Sk --+ Y x Sk
is a proper homotopy equivalence for any large integer k. Now write Y
as an increasing union Y = u Li where Lo c int L1 c int L2 ci ’ ’ ’
and Li is a compact, connected n-submanifold of Y. Since f has degree
= + 1, an easy surgery argument shows f can be deformed so that
there is a sequence K0 c int K1 ~ ··· of connected, compact n-sub-
manifolds Ki of X satisfying

(a) f-1(Li) = Ki andf -’(Y-Li) = X - Ki
(b) f : X-Ki ~ Y- Li maps each infinite component 4 of X - Ki

onto exactly one infinite component Y03B1 of Y-Li.

Now in view of the remark following (2.4), to show that y is onto it
suffices to show that for any i and any pair (X03B1, Y03B1) as in (b) above we
have

(4.11) f# : 03C01(X03B1) -+ 03C01(Y03B1) is surjective.
To show this first note

LEMMA 4.12. Suppose f : X" ~ Yn is a map of degree one. Then
f# : 1tlX ~ 1tl Y is surjective.

PROOF OF 4.12. Consider the commutative diagram

where x :  ~ Y is the covering space of Y corresponding to the sub-
group f#(03C0pX) ~ 03C01 Y. Let H03C0*(Y; Z’) be the homology with twisted
integral coefficients based on locally finite, infinite simplicial chains c
on  with the property that for each k-simplex u in Y there are at most
finitely many k-simplices lying over a in  which appear with a non-zero
coefficient in c. The group H03C0n(Y; Z’) is 0 or Z and is Z iff x is a finite
sheeted cover. The map

factors as f* = 03C0* o f* where

and

Since deg f = 1 ~ 0, 03C0 must be a finite sheeted cover. Since degf* =
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deg 03C0* o degf* = 1 we see that 1t must be a one-sheeted cover. Hence

f# (03C01 X = 1tl Y.
Now (4.11) follows from the lemma because whenever f : X ~ Y

has degree one so does f : X03B1 ~ Y03B1.
Corollary (4.10) applies, for example, when both X and Y are simply

connected and simply connected at infinity.
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