A note on translates of bounded measures
Compositio Mathematica, Tome 26 (1973) no. 3, pp. 309-312.
@article{CM_1973__26_3_309_0,
     author = {Pigno, Louis},
     title = {A note on translates of bounded measures},
     journal = {Compositio Mathematica},
     pages = {309--312},
     publisher = {Noordhoff International Publishing},
     volume = {26},
     number = {3},
     year = {1973},
     mrnumber = {333588},
     zbl = {0279.43003},
     language = {en},
     url = {http://www.numdam.org/item/CM_1973__26_3_309_0/}
}
TY  - JOUR
AU  - Pigno, Louis
TI  - A note on translates of bounded measures
JO  - Compositio Mathematica
PY  - 1973
SP  - 309
EP  - 312
VL  - 26
IS  - 3
PB  - Noordhoff International Publishing
UR  - http://www.numdam.org/item/CM_1973__26_3_309_0/
LA  - en
ID  - CM_1973__26_3_309_0
ER  - 
%0 Journal Article
%A Pigno, Louis
%T A note on translates of bounded measures
%J Compositio Mathematica
%D 1973
%P 309-312
%V 26
%N 3
%I Noordhoff International Publishing
%U http://www.numdam.org/item/CM_1973__26_3_309_0/
%G en
%F CM_1973__26_3_309_0
Pigno, Louis. A note on translates of bounded measures. Compositio Mathematica, Tome 26 (1973) no. 3, pp. 309-312. http://www.numdam.org/item/CM_1973__26_3_309_0/

R. Doss [1] 'On the multiplicators of some classes of Fourier transforms', Proc. London Math. Soc., (2) 50 (1949), 169-195. | MR | Zbl

R.E. Edwards [2] 'Translates of L∞ functions and of bounded measures', J. Austr. Math. Soc., IV (1964), 403-409. | Zbl

E. Hewitt and K.A. Ross [3] Abstract Harmonic Analysis, Vol. I, Springer-Verlag, Heidelberg and New York, 1963. | MR | Zbl

E. Hewitt and K.A. Ross [4] Abstract Harmonic Analysis, Vol. II, Springer-Verlag, Heidelberg and New York, 1964. | MR | Zbl

L. Pigno [5] 'A multiplier theorem', Pacific J. Math., 34 (1970), 755-757. | MR | Zbl

W. Rudin [6] 'Measure algebras on abelian groups', Bull. Amer. Math. Soc., 65 (1959), 227-247. | MR | Zbl

D.A. Raikov [7] 'On absolutely continuous set functions', Doklady Akad. Nauk. S.S.S.R. (N.S.), 34 (1942), 239-241. | MR | Zbl

S. Saks [8] Theory of the Integral, Second Ed., Hafner, New York, 1937. | JFM