# Compositio Mathematica 

## B. Hartley <br> Complements, baseless subgroups and sylow subgroups of infinite wreath products

Compositio Mathematica, tome 26, $\mathrm{n}^{\circ} 1$ (1973), p. 3-30
[http://www.numdam.org/item?id=CM_1973__26_1_3_0](http://www.numdam.org/item?id=CM_1973__26_1_3_0)
© Foundation Compositio Mathematica, 1973, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numbam

## COMPLEMENTS, BASELESS SUBGROUPS

## AND SYLOW SUBGROUPS OF INFINITE WREATH PRODUCTS

by
B. Hartley

## 1. Introduction

Throughout this paper $\bar{W}$ will denote the complete standard wreath product $H \bar{\imath} K$ of two non-trivial groups $H$ and $K$. We have

$$
\bar{W}=\overline{\bar{H}} K, \overline{\bar{H}} \cap K=1
$$

where $\overline{\bar{H}}$ is the base group, that is the set of all functions $f: K \rightarrow H$ made into a group by pointwise multiplication, and acted on by $K$ according to the rule

$$
f^{k}\left(k^{\prime}\right)=f\left(k^{\prime} k^{-1}\right)\left(f \in \overline{\bar{H}}, k, k^{\prime} \in K\right)
$$

By the support $\operatorname{supp} f$ of an element $f \in H$ we mean as usual the set of all $k \in K$ such that $f(k) \neq 1$. If $\alpha$ is any infinite cardinal then the set $\bar{H}_{\alpha}$ of all $f \in \overline{\bar{H}}$ such that $|\operatorname{supp} f|<\alpha$ is clearly a normal subgroup of $\bar{W}$. The group

$$
W_{\alpha}=\bar{H}_{\alpha} K
$$

will be denoted by $H\rangle_{\alpha} K$ and called the $\alpha$-restricted wreath product of $H$ by $K ; \bar{H}_{\alpha}$ is its base group. When $\alpha=\boldsymbol{\aleph}_{0}$ of course we obtain the usual standard restricted wreath product $H \geqslant K$. We shall denote this by $W$, and its base group by $\bar{H}$.

A subgroup $X$ of $W_{\alpha}$ will be called baseless if $\bar{H}_{\alpha} \cap X=1$. Evidently every baseless subgroup of $W_{\alpha}$ is isomorphic to some subgroup of $K$. The questions which concern us here are:

Q1. Which baseless subgroups of $W_{\alpha}$ are conjugate in $W_{\alpha}$ to subgroups of $K$ ?

Q2. What are the isomorphism types of the maximal baseless subgroups of $W_{\alpha}$ ?

In Section 2 we shall show how some of the answers obtained to Q2 may be used to construct locally finite groups containing certain given sets of locally finite $p$-groups as Sylow (that is, maximal) $p$-subgroups, thereby justifying the title of the paper.

The answers to the above questions are particularly simple when $\alpha>|K|$, in which case we are dealing with the complete wreath product. For every baseless subgroup of $\bar{W}$ is conjugate to a subgroup of $K$ (Lemma 3.2 (i), which is essentially [5] Theorem 10.1), and so every maximal baseless subgroup of $\bar{W}$ is isomorphic to $K$ itself. In general, however, the situation is more complicated. Most of the methods of this paper only allow us to deal with baseless subgroups of $W_{\alpha}$ with the property that every subset of cardinal $<\alpha$ generates a subgroup of cardinal $<\alpha$, and so we call groups with this property $\alpha$-bounded. Of course this is no restriction unless $\alpha=\boldsymbol{\aleph}_{0}$, in which case it amounts to local finiteness. Our first main result is then as follows; here an $N$-group is one which satisfies the normalizer condition, and a cardinal $\alpha$ is regular if $\alpha$ is not the sum of fewer than $\alpha$ cardinals each $<\alpha$.

Theorem A. Suppose that $\alpha \leqq|K|$ and let $S$ be any $\alpha$-bounded $N$ subgroup of $K$ of cardinal $\alpha$. Then there exists a maximal baseless $\alpha$ bounded $N$-subgroup $S^{*}$ of $W_{\alpha}$ such that $\bar{H}_{\alpha} S^{*}=\bar{H}_{\alpha} S$. In particular $S^{*} \cong S$.

Suppose further that $\alpha$ is regular, and let $T$ be any baseless $\alpha$-bounded $N$-subgroup of $W_{\alpha}$. Then either $|T|=\alpha$ or $T$ is conjugate in $W_{\alpha}$ to a subgroup of $K$.

We shall see in Section 3 that the assumption that $\alpha$ is regular cannot be omitted above. In the first part of the theorem, notice that we are referring to the maximal members of the set of baseless $\alpha$-bounded $N$-subgroups of $W_{\alpha}$; similar conventions apply in the sequel. In the case when $K$ itself is an $\alpha$-bounded N -group and $\alpha$ is regular we obtain from Theorem A a complete answer to Q2. For in that case every subgroup of cardinal $\alpha$ of $K$ is isomorphic to some maximal baseless subgroup of $W_{\alpha}$, and the only maximal baseless subgroups of $W_{\alpha}$ which do not arise in this way, if any, are the conjugates of $K$. The latter possibility only occurs if $|K|=\beta>\alpha$, and in that case it seems rather surprising that the cardinal of a maximal baseless subgroup of $W_{\alpha}$ must be either $\alpha$ or $\beta$ and intermediate cardinals do not occur.

The case $\alpha=\boldsymbol{\kappa}_{0}$ of Theorem A is of course of special interest and so we state below some of the information obtained from Theorem A for that case. Notice that $\boldsymbol{\aleph}_{0}$ is regular.

Corollary A1. Suppose that $K$ is a locally finite $N$-group. Then every countably infinite subgroup of $K$ is isomorphic to some maximal baseless subgroup of $W$.

Let $T$ be any baseless subgroup of $W$. Then either $T$ is countably infinite or $T$ is conjugate in $W$ to a subgroup of $K$. In particular, if $K$ is uncountable, then the complements to $\bar{H}$ in $W$ are conjugate.

We are not aware to what extent, if any, the normalizer condition may be weakened in Corollary A1. Some information about Q1, and in particular about the conjugacy of the complements, can however be obtained without the hypothesis of local finiteness, and we return to this question later.

In the case of general $K$, the only restriction which we have been able to obtain on the maximal baseless subgroups of $W_{\alpha}$ is the elementary fact that they have cardinal at least $\alpha$, provided that $\alpha$ is regular and $\alpha \geqq|K|$ (Corollary 3.3). Theorem B shows that a wide range of $\alpha$-bounded subgroups of cardinal $\alpha$ of $K$ may be isomorphic to maximal baseless subgroups of $W_{\alpha}$ and it seems conceivable that all such subgroups of $K$ may occur in that way. However this is certainly false without the restriction of $\alpha$-boundedness; for example Theorem D shows that if $K$ is free abelian of rank 3 then the maximal baseless subgroups of $W=H$ 亿 $K$ have rank 1 or 3 .

Theorem B. Suppose that $\alpha \leqq|K|$ and let $S$ be an $\alpha$-bounded subgroup of cardinal $\alpha$ of $K$. Suppose further that $S$ contains a subgroup $U$ such that
(i) $|U|=\alpha$,
(ii) for each $\alpha$-bounded subgroup $L$ with $S<L \leqq K$, there exists an element $x \in L-S$ such that $U^{x} \leqq S$.

Then there is a maximal baseless $\alpha$-bounded subgroup $S^{*}$ of $W_{\alpha}$ such that $\bar{H}_{\alpha} S=\bar{H}_{\alpha} S^{*} . T h u s S \cong S^{*}$.

Evidently (ii) holds whenever $U \triangleleft K$, and in fact it holds whenever $U$ is an ascendant subgroup of $K$ in the sense that there exists an ordinal $\rho$ and subgroups $\left\{U_{\sigma}: \sigma \leqq \rho\right\}$ such that $U_{0}=U, U_{\sigma} \triangleleft U_{\sigma+1}$ if $\sigma<\rho$, $U_{\mu}=\bigcup_{\sigma<\mu} U_{\sigma}$ if $\mu \leqq \rho$ is a limit ordinal, and $U_{\rho}=K$. For suppose $S<L \leqq K$ and let $\sigma$ be the least ordinal such that $U_{\sigma} \cap S<U_{\sigma} \cap L$. Then $\sigma$ is neither a limit ordinal nor zero and we have $U \leqq U_{\sigma-1} \cap S=$ $U_{\sigma-1} \cap L \triangleleft U_{\sigma} \cap L$. Thus $U_{\sigma} \cap L$ contains elements $x \notin S$, and any such element satisfies $U^{x} \leqq S$.

We therefore have
Corollary B1. Suppose that $\alpha \leqq|K|$ and let $S$ be any $\alpha$-bounded subgroup of cardinal $\alpha$ of $K$ which contains an ascendant subgroup of cardinal $\alpha$ of $K$. Then there is a maximal baseless $\alpha$-bounded subgroup $S^{*}$ of $W_{\alpha}$ such that $\bar{H}_{\alpha} S=\bar{H}_{\alpha} S^{*}$.

In the case when $K$ is an $N$-group every subgroup of $K$ is ascendant in $K$ and so Corollary B1 yields an alternative proof of Corollary A1. In fact the obvious similarity between Theorem B and the first half of Theorem A allows us to deduce them both from a simultaneous generali-
zation (Lemma 4.2), the statement of which is unfortunately more complicated than either.

We have not been able to extend the results of Theorem A to cover the baseless locally nilpotent subgroups of $W_{\alpha}$ for general $\alpha$, but the following gives some information about the case $\alpha=\boldsymbol{N}_{0}$.

Theorem C. Let $\pi$ be a set of primes and let $S$ be a countably infinite periodic locally nilpotent $\pi$-subgroup of $K$. Suppose that $H$ is abelian and either
(i) $H$ contains a subgroup of order at least 4 which contains no nontrivial $\pi$-elements, or
(ii) the Sylow 2-subgroup of $S$ is finite and $H$ is not a $\pi$-group.

Then there is a maximal baseless periodic locally nilpotent subgroup $S^{*}$ of $W$ such that $\bar{H} S=\bar{H} S^{*}$.

Evidently conditions (i) and (ii) both hold unless $H$ is the direct product of a $\pi$-group and a cyclic group of order at most 3 . Notice that, in contrast to Theorem A, no information is given here about the uncountable baseless locally finite and locally nilpotent subgroups of $W$. It does not seem clear whether they necessarily lie in conjugates of $K$.

In the last section (Section 6) we consider the baseless subgroups of $W=H$ 乙 $K$ which contain elements of infinite order. These turn out to be surprisingly well behaved, provided they possess a suitable flavour of generalized solubility.

Theorem D. Let $L^{*}$ be a baseless subgroup of $W=H \backslash K$ and suppose that $L^{*}$ is a radical group whose Hirsch-Plotkin radical is not periodic. Then unless $L^{*}$ is a polycyclic group of Hirsch number one, $L^{*}$ is contained in a conjugate of $K$.

Conversely, let $L \leqq K$ be polycyclic of Hirsch number one. Then there is a baseless subgroup $L^{*}$ of $W$ such that $\bar{H} L=\bar{H} L^{*}$ and $L^{*}$ is not contained in a conjugate of $K$.

Here we use the term radical group in the sense of Plotkin [6]; a radical group is one possessing an ascending series with locally nilpotent factors. The Hirsch number of a polycyclic group is the number of infinite factors in a cyclic series of the group.

Corollary D1. Suppose that $K$ is a radical group with non-periodic Hirsch-Plotkin radical. Then the complements to $\bar{H}$ in $W$ are conjugate if and only if $K$ is not a polycyclic group of Hirsch number one.

As a consequence of Corollary D1, Corollary 3.3 and the remarks after Lemma 3.5 we obtain a criterion for the conjugacy of the complements to the base group in the case when $K$ is countable and locally nilpotent.

Corollary D2. Suppose that $K$ is countable and locally nilpotent. Then the complements to $\bar{H}$ in $W$ are conjugate if and only if $K$ is neither infinite periodic nor finite-by-infinite cyclic.

Some information about the uncountable case can be obtained from Theorem A and Lemma 6.5.

## 2. Groups with many Sylow subgroups

There are a number of examples in the literature to show that the Sylow $p$-subgroups of a locally finite group $G$ may fail to be isomorphic in various rather spectacular ways, even when the group $G$ has rather restricted structure (for example [4], [7]). In this section we indicate how a number of other such examples may be constructed on the basis of Theorems B and C. Some rather similar examples have recently been obtained by Heineken [2] in a different way. We make the obvious remark that if a $p$-subgroup $P$ of a group $G$ happens to be a Sylow $\pi$-subgroup of $G$ for some set $\pi$ of primes containing $p$, then $P$ is a Sylow $p$-subgroup of $G$.

Theorem E. Let q be a given prime, let $\alpha$ be a given infinite cardinal, and let $\delta$ be the smallest cardinal satisfying the condition

$$
\gamma<\alpha \Rightarrow \alpha^{\gamma} \leqq \delta
$$

Then there exists a periodic metabelian group $G$ of cardinal $\delta$ which contains as a Sylow $q^{\prime}$-subgroup a copy of every infinite abelian $q^{\prime}$-group of cardinal not exceeding $\alpha$.

Since, if $\gamma<\alpha$, we have $\alpha^{\gamma} \leqq \alpha^{\alpha}=2^{\alpha}$, it follows that $\delta \leqq 2^{\alpha}$. Notice, however, that equality may occur. For example, define $\alpha_{0}=\kappa_{0}$ and $\alpha_{i}=2^{\alpha_{i-1}}$ for $1 \leqq i<\omega$, the first infinite ordinal. Then if $\alpha=\sum_{i<\omega} \alpha_{i}$ we have

$$
\alpha^{\aleph_{0}}=\alpha \alpha \cdots \geqq 2^{\alpha_{0}} 2^{\alpha_{1}} \cdots=2^{\Sigma \alpha_{i}}=2^{\alpha} .
$$

Hence $\delta=2^{\alpha}$ in this case.
However in the case $\alpha=\boldsymbol{\aleph}_{0}$ we evidently have $\delta=\boldsymbol{\aleph}_{0}$, and so we find in particular that there exists a countable periodic metabelian group which contains, as a Sylow $p$-subgroup, a copy of every countably infinite abelian $p$-group for which $p \neq q$. This result is in a sense best possible in view of the following:

Proposition. Let $G$ be a periodic metabelian group which contains, for each prime $p$, a Sylow p-subgroup $S_{p}$ of type $C_{p^{\infty}}$. Then $G$ is locally cyclic and $S_{p}$ is its unique Sylow p-subgroup.

Proof. Let $R$ be the Hirsch-Plotkin radical of $G$. Then $S_{p} \cap R$ is the
unique Sylow $p$-subgroup of $R$ and so $R$ is locally cyclic. Therefore $R$ is the union of finite characteristic subgroups and if $C=C_{G}(R)$ then $G / C$ is residually finite. Hence $S_{p} \leqq C$ for all primes $p$. Now clearly $C$ is nilpotent, whence $C=R$ and so $S_{p} \leqq R$. Therefore $S_{p}$ is the unique Sylow $p$-subgroup of $R$ and $S_{p} \triangleleft G$. It follows that $S_{p}$ is the set of $p$-elements of $G$, whence $G=\left\langle S_{p}\right.$; all $\left.p\right\rangle=R$, as claimed.

However the proof of Theorem E will show that a non-periodic metabelian group may well contain, for every prime $p$, every abelian $p$-group of cardinal at most $\alpha$ as a Sylow $p$-subgroup.

Proof of Theorem E. Let $C$ be the direct product of groups of type $C_{p^{\infty}}$, one for each prime $p \neq q$, and let $K$ be the direct product of $\alpha$ copies of $C$. Now every infinite abelian group $A$ can be embedded in a divisible abelian group of cardinal $|A|$ and it follows from this that $K$ contains a copy of every infinite abelian $q^{\prime}$-group of cardinal not exceeding $\alpha$. Let $H$ be a cyclic group of order $q$ and for each infinite cardinal $\beta \leqq \alpha$ let $L_{\beta}$ denote the base group of $H 2_{\beta} K$. Finally let $L=\mathrm{D} r_{\beta \leqq \alpha} L_{\beta}$ be the direct product of the groups $L_{\beta}$ ( $\beta$ infinite) and let $G=L K$ be the natural semidirect product of $L$ by $K$. Then $G$ is periodic and metabelian.

Let $S$ be any infinite subgroup of $K$. We shall show that $G$ has a Sylow $q^{\prime}$-subgroup isomorphic to $S$. Now $|S|=\beta$ for some $\beta \leqq \alpha$, and since $M_{\beta}=L_{\beta} K \cong H{ }_{\beta} K$, Theorem B shows that there is a subgroup $T$ of $M_{\beta}$ which is isomorphic to $S$ and has the property that any larger subgroup of $M_{\beta}$ meets $L_{\beta}$ non-trivially. Therefore $T$ is a Sylow $q^{\prime}$-subgroup of $M_{\beta}$. Let $U$ be a $q^{\prime}$-subgroup of $G$ containing $T$, let $L_{\beta}^{*}=\mathrm{D} r_{\gamma \neq \beta} L_{\gamma}$ and let $U^{*}=L_{\beta}^{*} U$. Then as $G=L_{\beta}^{*} M_{\beta}$ we have $U^{*}=L_{\beta}^{*}\left(U^{*} \cap M_{\beta}\right)$ and $U^{*} \cap M_{\beta}$ complements $L_{\beta}^{*}$ in $U^{*}$. Therefore $U^{*} \cap M_{\beta}$ is a $q^{\prime}$-subgroup of $M_{\beta}$ containing $T$, whence $U^{*} \cap M_{\beta}=T$. Hence $L_{\beta}^{*} U=L_{\beta}^{*} T$ and $U=\left(L_{\beta}^{*} \cap U\right) T=T$ since $L_{\beta}^{*}$ is a $q$-group. Therefore $T$ is a Sylow $q^{\prime}$-subgroup of $G$.

It remains to consider the cardinal of $G$. Let $\gamma<\alpha$. Now evidently the number of $\gamma$-element subsets of $K$ is at most $\alpha^{\gamma}$, and since $K$ can be partitioned into $\gamma$ subsets each of cardinal $\alpha$ it follows that the number of such subsets is precisely $\alpha^{\gamma}$. Therefore the number of maps of $K$ into $H$ with support of cardinal $\gamma$ is $\alpha^{\gamma} 2^{\gamma}=\alpha^{\gamma}$. Hence $\left|L_{\beta}\right|=\sum_{\gamma<\beta} \alpha^{\gamma}$ and so, since $L$ is generated by the sets $L_{\beta}$ for all $\beta \leqq \alpha$, we have $|L| \leqq$ $\sum_{\beta \leqq \alpha}\left(\sum_{\gamma<\beta} \alpha^{\gamma}\right) \leqq \alpha \delta=\delta$, since $\delta \geqq \alpha$ and in the double sum there occur at most $\alpha$ summands each of which is at most $\alpha \delta=\delta$. Since $\left|L_{\alpha}\right| \geqq$ $\alpha^{y}$ for all $\gamma<\alpha$ it follows that in fact $|L|=\delta$, whence $|G|=\delta \alpha=\delta$.

By similar arguments we can establish the following result which is somewhat more general than Theorem 3 of Wehrfritz [7], although the ideas behind the proof are essentially the same.

Theorem F. Let $q$ be a given prime and for each prime $p \neq q$ let $n_{p} \geqq 0$ be an integer. Then there exists a countable periodic metabelian group satisfying Min-p for all $p \neq q$ and containing, for any $p \neq q, a$ Sylow p-subgroup isomorphic to any given countably infinite abelian p-group of rank not exceeding $n_{p}$.

Proof. We may assume without loss of generality that $n_{p}>0$ for some $p \neq q$. Let $K$ be the direct product of a collection of groups consisting of $n_{p}$ copies of $C_{p^{\infty}}$ for each $p \neq q$, let $H$ be cyclic of order $q$, and let $W=H \imath K$. Then it is immediate from any of Theorems A-C that $W$ has the properties required by Theorem E.

Theorem G. Let $\left\{P_{\lambda}: \lambda \in \Lambda\right\}$ be a given set of infinite locally finite p-groups. Then there exists a locally finite and locally soluble group $G$ containing a copy of each $P_{\lambda}$ as a Sylow p-subgroup.

It will be seen from the proof that $G$ may often be chosen to inherit special properties from the $P_{\lambda}$; for example if the $P_{\lambda}$ are all soluble and of bounded derived length then $G$ may be chosen soluble, and so on. The case $|\Lambda|=2$ of the Theorem $G$ has been known for some time and is due to Heineken [3]. His construction is rather different from ours in that it starts from the free product of the two groups in question. It has since been substantially generalized by Heineken [2].

Proof of Theorem G. Let $K$ be the direct product of the $P_{\lambda}$ and suppose that $|K|=\alpha$. Let $H$ be a cyclic group of order $q \neq p$ and, for each infinite $\beta \leqq \alpha$, let $L_{\beta}$ be the base group of $H \tau_{\beta} K$. Let $L=\operatorname{Dr}_{\beta \leqq \alpha} L_{\beta}$ and let $G$ be the semidirect product $L K$, which is clearly both locally finite and locally soluble.

Let $\lambda \in \Lambda$. Then $\left|P_{\lambda}\right|=\beta$ for some infinite $\beta \leqq \alpha$. Now $M_{\beta}=L_{\beta} K \cong$ $H 2_{\beta} K$ and Theorem B shows, since $P_{\lambda} \triangleleft K$, that $M_{\beta}$ has a Sylow $p$-subgroup $T \cong P_{\lambda}$. It then follows as in the proof of Theorem E that $T$ is a Sylow $p$-subgroup of $G$.

Theorem G allows us, for example, to obtain a locally soluble group containing every countably infinite locally finite $p$-group as a Sylow $p$-subgroup; however the group so obtained has cardinal $2^{s_{0}}$. We can improve on this by using Theorem C, but since it does not seem to be known whether there exists a countable locally finite and locally soluble group in which every countable locally finite $p$-group can be embedded, we have to sacrifice local solubility.

Theorem H. There exists a countable locally finite group which contains, for each prime p, a copy of every countably infinite locally finite p-group as a Sylow p-subgroup.

Proof. It was shown by P. Hall [1] that there exists a countable locally finite group $U$ which contains every countable locally finite group as a subgroup. Let $p_{1}, p_{2}, \cdots$ be the primes in natural order, let $H_{2}$ be a cyclic group of order 9 and let $H_{i}$ be a cyclic group of order $p_{i}$ for $i>2$. We now define $G_{1}=U$ and inductively $G_{i+1}=H_{i+1} 乙 G_{i}$ for $i \geqq 1$. Let $G=\bigcup_{i=1}^{\infty} G_{i}, G_{i}$ being embedded in $G_{i+1}$ in the obvious way. Then for $i>0$ we have $G=N_{i+1} G_{i+1}, N_{i+1} \cap G_{i+1}=1$, where $N_{i+1}$ is the product of the base groups of $G_{i+2}, G_{i+3}, \cdots$. Let $P$ be any countably infinite locally finite $p_{i}$-group. Then $P$ is isomorphic to a subgroup of $G_{i}$ and Theorem C shows that there is a subgroup $P^{*} \cong P$ of $G_{i+1}$ which is such that any larger locally nilpotent subgroup of $G_{i+1}$ meets the base group of $G_{i+1}$ non-trivially. Hence $P^{*}$ is a Sylow $p_{i}$-subgroup of $G_{i+1}$. Since $N_{i+1}$ is a $p_{i}^{\prime}$-group it follows easily that $P^{*}$ is a Sylow $p_{i}$-subgroup of $G$, as claimed.

## 3. Preliminary results

In the notation already established, let $\boldsymbol{X}$ be a set of baseless subgroups of $W_{\alpha}$. We shall say that $X$ is $W_{\alpha}$-contained in $K$, and write $X \leqq W_{\alpha} K$, if every member of $\boldsymbol{X}$ is conjugate in $W_{\alpha}$ to a subgroup of $K$. Let $\boldsymbol{B}$ denote the set of all baseless $\alpha$-bounded subgroups of $W_{\alpha}$ and let $\boldsymbol{B}_{\beta}$ be the set of all members of $\boldsymbol{B}$ of cardinal $<\beta$, where $\beta$ is some infinite cardinal. We shall be interested in investigating the $\boldsymbol{B}_{\beta}$ with respect to the property of being $W_{\alpha}$-contained in $K$, and the following elementary remark will often be used without mention.

Lemma 3.1. Let $G=A B, A \triangleleft G, A \cap B=1$ be the semidirect product of two groups $A$ and $B$.
(i) Suppose $C^{*} \leqq G$ satisfies $C^{*} \cap A=1$, and let $C=A C^{*} \cap B$. Then $C^{*}$ is conjugate in $G$ to a subgroup of $B$ if and only if $C^{* a}=C$ for some $a \in A$.
(ii) Let $X \leqq B$ and $a, a^{\prime} \in A$. Then $X^{a} \leqq B^{a^{\prime}}$ if and only if $a^{\prime} a^{-1} \in C_{A}(X)$.

Proof. (i) Suppose $C^{* g} \leqq B$ for some $g \in G$. Then writing $g=a b$ $(a \in A, b \in B)$, we obviously have $C^{* a} \leqq B \cap A C^{*}=C$. Since also $C \leqq A C^{* a}$, we obtain $C=(A \cap C) C^{* a}=C^{* a}$, as required. The converse is clear.
(ii) Suppose that $X^{a} \leqq B^{a^{\prime}}$, and let $c=a^{\prime} a^{-1}$. Then $X \leqq B^{c}$ and so, for $x \in X$, we have $x=b^{c}=\left[c, b^{-1}\right] b$ for some $b \in B$. Since the product $A B$ is semidirect it follows that $x=b$ and $\left[c, b^{-1}\right]=1$; therefore [ $\left.c, x^{-1}\right]=1$ for all $x \in X$ and we have $c \in C_{A}(X)$. The converse is again clear.

Lemma 3.2. (i) If $\alpha>|K|$ then $\boldsymbol{B} \leqq{ }_{W_{\alpha}} K$.
(ii) Suppose that $\alpha \leqq|K|$ and let $\beta$ be the least cardinal such that $\alpha$ is the sum of $\beta$ cardinals each $<\alpha$. Then $\boldsymbol{B}_{\beta} \leqq W_{\alpha} K$.

Corollary 3.3. If $\alpha$ is regular then $\boldsymbol{B}_{\alpha} \leqq W_{\alpha} K$.
Proof of Lemma 3.2. (i) As previously explained, this is essentially well known (cf. [5] Theorem 10.1) since the condition $\alpha>|K|$ simply states that we are considering the complete wreath product $H \overline{2} K$. However it will be useful to give a proof.

Let $S$ be a subgroup of $\bar{W}=H \bar{\imath} K$ such that $\overline{\bar{H}} \cap S=1$. Then

$$
\overline{\bar{H}} S=\overline{\bar{H}} T
$$

where $T=\overline{\bar{H}} S \cap K$, and each element of $S$ is uniquely of the form $h_{t} t$ with $t \in T$. We have, if $t_{1}, t_{2} \in T$,

$$
h_{t_{1}} t_{1} h_{t_{2}} t_{2}=h_{t_{1}} h_{t_{2}}^{t_{1}-1} t_{1} t_{2}
$$

whence

$$
h_{t_{1} t_{2}}=h_{t_{1}} h_{t_{2}}^{t_{1}-1}
$$

or, evaluating at $k \in K$ and rearranging,

$$
\begin{equation*}
h_{t_{1} t_{2}}(k)^{-1} h_{t_{1}}(k) h_{t_{2}}\left(k t_{1}\right)=1 \tag{1}
\end{equation*}
$$

Let $u \in \overline{\bar{H}}$. Then $\left(h_{t} t\right)^{u}=u^{-1} h_{t} u^{t^{-1}} t$. We wish to choose $u$ so that this element lies in $K$ for all $t \in T$; this is equivalent to the condition $u^{-1} h_{t} u^{t^{-1}}=1$ for all $t \in T$, or

$$
\begin{equation*}
u(k)^{-1} h_{t}(k) u(k t)=1 \tag{2}
\end{equation*}
$$

for all $k \in K, t \in T$.
Let $\left\{s_{\lambda}\right\}$ be a right transversal to $T$ in $K$. Thus $K=\bigcup_{\lambda} s_{\lambda} T$ and $s_{\lambda} T \cap s_{\mu} T=\emptyset$ if $\lambda \neq \mu$. Define $u \in \overline{\bar{H}}$ by

$$
u\left(s_{\lambda} t\right)=h_{t^{-1}}\left(s_{\lambda} t\right) \quad(t \in T)
$$

Then, if $t_{1}, t_{2} \in T$ and we substitute $k=s_{\lambda} t_{2}, t=t_{1}$ in (2), we obtain

$$
u\left(s_{\lambda} t_{2}\right)^{-1} h_{t_{1}}\left(s_{\lambda} t_{2}\right) u\left(s_{\lambda} t_{2} t_{1}\right)=h_{t_{2}-1}(k) h_{t_{1}}(k) h_{\left(t_{2} t_{1}\right)^{-1}}\left(k t_{1}\right),
$$

which is 1 as can be seen by replacing $t_{2}$ by $\left(t_{2} t_{1}\right)^{-1}$ in (1).
(ii) This follows by the argument of (i). For let $S$ be a subgroup of cardinal $<\beta$ of $W_{\alpha}$. Then we can view $W_{\alpha}$ in a natural way as a subgroup of $\bar{W}$, and so we have $S^{u} \leqq K$, where $u$ is the element of $\overline{\bar{H}}$ constructed in (i). It will clearly suffice to show that $u \in \bar{H}_{\alpha}$. Now $u$ clearly takes the value 1 at all points outside the union of the supports of the $h_{t}(t \in T)$. Since $h_{t} \in \bar{H}_{\alpha}$ each such support has cardinal $<\alpha$, and since $|T|<\beta$ it follows that the support of $u$ has cardinal $<\alpha$. Thus $u \in \bar{H}_{\alpha}$, as required.

The corollary is immediate since if $\alpha$ is regular then $\beta=\alpha$ in Lemma 3.2. Notice that the regularity of $\alpha$ is essential in Corollary 3.3. For let $\alpha$ be any irregular cardinal and write $\alpha=\sum_{\lambda \in \Lambda} \gamma_{\lambda}$, where $\Lambda$ is a set of cardinal $\beta<\alpha$ and $\gamma_{\lambda}<\alpha$ for all $\lambda \in \Lambda$. Let $K$ be any group of cardinal $\alpha$ which contains a free abelian subgroup $L$ of rank $\beta$. Then $|K: L|=\alpha$ and so the set of right cosets $k L$ of $L$ in $K$ may be partitioned as the union $\bigcup_{\lambda \in \Lambda} C_{\lambda}$ of pairwise disjoint sets $C_{\lambda}$ such that $C_{\lambda}$ consists of $\gamma_{\lambda}$ cosets. Let $W_{\alpha}=H z_{\alpha} K$, where $H$ is some non-trivial group. Further let $\left\{x_{\lambda}: \lambda \in \Lambda\right\}$ be a basis of $L$, let $1 \neq t \in H$, and let $y_{\lambda}=h_{\lambda} x_{\lambda}$, where $h_{\lambda}$ is the element of $\bar{H}_{\alpha}$ taking the value $t$ at each point which belongs to some coset in $C_{\lambda}$, and 1 elsewhere. Then the support of $h_{\lambda}$ has cardinal $\beta \gamma_{\lambda}=\max \left\{\beta, \gamma_{\lambda}\right\}<\alpha$ and so $h_{\lambda}$ does in fact belong to $\bar{H}_{\alpha}$.

Now the following is well known and easy to verify:
Lemma 3.4. Let $\bar{W}=H \bar{\imath} K$, where $H$ and $K$ are any groups, let $S \leqq K$ and let $f \in \overline{\bar{H}}$. Then $f$ centralizes $S$ if and only iff is constant on each right coset of $S$ in $K$.

Thus the elements $h_{\lambda}$ all centralize $L$ and so the $y_{\lambda}$ generate an abelian group $M$. Any non-trivial element $y \in M$ has the form $y=y_{\lambda_{1}}^{n_{1}} \cdots y_{\lambda_{k}}^{n_{k}}$ where $k>0$, the $\lambda_{i}$ are distinct elements of $\Lambda$, and the $n_{i}$ are non-zero integers. Since $y \equiv x_{\lambda_{1}}^{n_{1}} \cdots x_{\lambda_{k}}^{n_{k}} \bmod \bar{H}_{\alpha}$ no such element lies in $\bar{H}_{\alpha}$, and so $\bar{H}_{\alpha} \cap M=1$ and $M \in \boldsymbol{B}_{\alpha}$.

On the other hand let $h \in \bar{H}_{\alpha}$. Then supp $h$ has cardinal $\delta<\alpha$ and so we have $\delta=|\operatorname{supp} h|<\gamma_{\lambda}$ for some $\lambda \in \Lambda$. Then

$$
y_{\lambda}^{h}=\left(h_{\lambda} x_{\lambda}\right)^{h}=h_{\lambda}^{h}\left[h, x_{\lambda}^{-1}\right] x_{\lambda}
$$

Now the support of $\left[h, x_{\lambda}^{-1}\right]$ has cardinal at most $\delta$ while that of $h_{\lambda}^{h}$ has cardinal $\geqq \gamma_{\lambda}>\delta$, and so $\left[h, x_{\lambda}^{-1}\right]$ takes the value 1 at some point of the support of $h_{\lambda}^{h}$. At such a point the value of $h_{\lambda}^{h}\left[h_{\lambda}, x_{\lambda}^{-1}\right]$ is different from 1. Hence $y_{\lambda}^{h} \notin K$ and it follows that $M^{h} \nsubseteq K$. Therefore $M$ is not conjugate to a subgroup of $K$.

The following result provides a partial converse to Lemma 3.2 (i).
Lemma 3.5. Suppose that B$\leqq{ }_{W_{\alpha}} K$. Then $|S|<\alpha$ for every $\alpha$-bounded subgroup $S$ of $K$.

The proof requires a technical lemma which will find further application later.

Lemma 3.6. Let $\alpha$ be an infinite cardinal, let $S$ be an $\alpha$-bounded group of cardinal $\alpha$ containing a subset $U$ also of cardinal $\alpha$, and let $n>0$ be an integer. Then there exists a tower $\left\{S_{\sigma}: \sigma<\alpha\right\}$ of subgroups of $S$ such that $\bigcup_{\sigma<\alpha} S_{\sigma}=S,\left|S_{\sigma}\right|<\alpha$ if $\sigma<\alpha$, and $\left|\left(U \cap S_{\sigma+1}\right) S_{\sigma}: S_{\sigma}\right| \geqq n$ for all $\sigma<\alpha$.

Here we are thinking of $\alpha$ as an ordinal which is not equivalent to any of its predecessors. By the statement that $\left\{S_{\sigma}: \sigma<\alpha\right\}$ is a tower we mean that $S_{0}=1, S_{\sigma} \leqq S_{\sigma+1}$ for $\sigma+1<\alpha$, and $S_{\mu}=\bigcup_{\sigma<\mu} S_{\sigma}$ for limit ordinals $\mu<\alpha$. The notation $\left|\left(U \cap S_{\sigma+1}\right) S_{\sigma}: S_{\sigma}\right|$ denotes the number of right cosets $t S_{\sigma}$ of $S_{\sigma}$ contained in the set $\left(U \cap S_{\sigma+1}\right) S_{\sigma}$.

Proof of Lemma 3.6. In the case $\alpha=\kappa_{0}, S$ is a countably infinite locally finite group and we require simply a tower $1=S_{0}<S_{1}<\cdots$ of finite subgroups of $S$ such that $S=\bigcup_{i=0}^{\infty} S_{i}$ and

$$
\left|\left(U \cap S_{i+1}\right) S_{i}: S_{i}\right| \geqq n
$$

for all $i$. The construction of such a tower is completely straightforward.
In the case $\alpha>\boldsymbol{\aleph}_{0}$ the restriction of $\alpha$-boundedness is of course vacuous. In this case, let $\left\{s_{\tau}: \tau<\alpha\right\}$ and $\left\{u_{\tau}: \tau<\alpha\right\}$ be the elements of $S$ and $U$ respectively. It will clearly suffice to construct, for $\sigma<\alpha$, subgroups $S_{\sigma}$ of $S$ satisfying
(i) $\tau<\sigma \Rightarrow s_{\tau}, u_{\tau} \in S_{\sigma}$,
(ii) $\left|S_{\sigma}\right| \leqq \max \left(\kappa_{0},|\sigma|\right)$,
(iii) $\left|\left(U \cap S_{\sigma+1}\right) S_{\sigma}: S_{\sigma}\right| \geqq n$.

For (i) gives $S=\bigcup_{\sigma<\alpha} S_{\sigma}$ and (ii) gives $\left|S_{\sigma}\right|<\alpha$ if $\sigma<\alpha$, since $\alpha>\boldsymbol{N}_{0}$ and $\alpha$ is not equivalent to any of its predecessors.

Let $S_{0}=1$ and suppose that, for some $0<\rho<\alpha$, we have the subgroups $S_{\sigma}$ for $\sigma<\rho$. If $\rho$ is a limit ordinal we put $S_{\rho}=\bigcup_{\sigma<\rho} S_{\sigma}$. Then (i) holds, and since $\left|S_{\sigma}\right| \leqq \max \left(\kappa_{0},|\rho|\right)$ for $\sigma<\rho$ we have $\left|S_{\rho}\right| \leqq \max \left(\aleph_{0}|\rho|,|\rho|^{2}\right)=\max \left(\aleph_{0},|\rho|\right)$. If $\rho$ has the form $\sigma+1$ then $\left|S_{\sigma}\right|<\alpha$ by (ii) and so $\left|U S_{\sigma}: S_{\sigma}\right|=\alpha$. Therefore there exists a least ordinal $\lambda$ such that $\left|\left\{u_{\tau}: \tau<\lambda\right\} S_{\sigma}: S_{\sigma}\right| \geqq n$. Now $\lambda>\sigma$ by (i) and the fact that $n>0$, and so if we put $S_{\sigma+1}=\left\langle S_{\sigma}, s_{\tau}, u_{\tau}: \tau<\lambda\right\rangle$, then (i) holds with $\sigma$ replaced by $\sigma+1$. Further, $\lambda$ necessarily has the form $\mu+1$ and we have $\left\{u_{\tau}: \tau<\mu\right\} \leqq\left\{u_{\tau}: \tau<\mu\right\} S_{\sigma}$, which is the union of at most $n-1$ right cosets of $S_{\sigma}$ and so has cardinal at most $\max \left(\aleph_{0},|\sigma|\right)$. Therefore $|\mu| \leqq \max \left(\aleph_{0},|\sigma|\right)$ and so

$$
|\lambda|=|\mu+1|=|\mu| \leqq \max \left(\kappa_{0},|\sigma|\right)=\max \left(\aleph_{0},|\rho|\right)
$$

recalling that $\rho=\sigma+1$. It follows that $\left|S_{\rho}\right| \leqq \max \left(\aleph_{0},|\rho|\right)$, and so (ii) holds. Since (iii) holds by the choice of $\lambda$, the proof is complete.

Proof of Lemma 3.5. Suppose that $K$ contains an $\alpha$-bounded subgroup of cardinal exceeding $\alpha$. Then $K$ contains an $\alpha$-bounded subgroup $S$ of cardinal $\alpha$ precisely. Taking $U=S$ and $n=3$ in Lemma 3.5, we obtain a tower $\left\{S_{\gamma}: \gamma<\alpha\right\}$ of subgroups of $S$ satisfying

$$
\begin{equation*}
\left|S_{\gamma+1}: S_{\gamma}\right| \geqq 3 \text { if } \gamma<\alpha \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|S_{\gamma}\right|<\alpha \text { if } \gamma<\alpha \tag{4}
\end{equation*}
$$

For each $\gamma<\alpha$ choose a right coset $D_{\gamma} \neq S_{\gamma}$ of $S_{\gamma}$ in $S_{\gamma+1}$. Then for each $\beta<\alpha$ the set $\bigcup_{\gamma<\beta} D_{\gamma}$ is a subset of $S_{\beta}$ and so has cardinal $<\alpha$ by (4). Let $t \neq 1$ be a selected element of $H$ and let $y_{\beta}$ be the element of $\bar{H}_{\alpha}$ which takes the value $t$ at each point of $\bigcup_{\gamma<\beta} D_{\gamma}$ and 1 elsewhere. Since $D_{\beta_{1}} \cap D_{\beta_{2}}=\emptyset$ if $\beta_{1} \neq \beta_{2}$ it is clear that if $\beta<\gamma$ then $y_{\gamma} y_{\beta}^{-1}$ takes the value $t$ on $\bigcup_{\beta \leqq \sigma<\gamma} D_{\sigma}$ and 1 elsewhere. Thus $y_{\gamma} y_{\beta}^{-1}$ is constant on each right coset of $S_{\beta}$ and so by Lemma 3.4 we have

$$
\begin{equation*}
y_{\gamma} y_{\beta}^{-1} \in C_{\bar{H}_{\alpha}}\left(S_{\beta}\right) \text { if } \beta<\gamma<\alpha . \tag{5}
\end{equation*}
$$

Let $S_{\beta}^{*}=S_{\beta}^{y_{\beta}}(\beta<\alpha)$. Then if $\beta<\gamma<\alpha$ we have from (5) that $S_{\beta}^{*}=S_{\beta}^{y_{\nu}} \leqq S_{\gamma}^{*}$, and so $\bigcup_{\beta<\alpha} S_{\beta}^{*}$ is a subgroup $S^{*}$ of $W_{\alpha}$. Clearly $S^{*} \cap \bar{H}_{\alpha}=1$ so that $S^{*} \in \boldsymbol{B}$.

To complete the proof it remains to show that $S^{*} \nsubseteq K^{y}$ for all $y \in \bar{H}_{\alpha}$. Suppose then that $S^{*} \leqq K^{y}$. Then for $\gamma<\alpha$ we have

$$
S_{\gamma+1}^{y_{\gamma}^{\gamma+1}} \leqq K^{y}
$$

whence by Lemma 3.1 we have $y y_{\gamma+1}^{-1} \in C_{\bar{H}_{\alpha}}\left(S_{\gamma+1}\right)$. Hence we have $y=c_{\gamma+1} y_{\gamma+1}$, where $c_{\gamma+1}$ is constant on each right coset of $S_{\gamma+1}$ in $K$. In particular $c_{\gamma+1}$ takes the same value at each point of $S_{\gamma+1}$. Unless that value is $t^{-1}$ it follows that the support of $y$ contains $D_{\gamma}$. If it is $t^{-1}$ then supp $y$ contains $S_{\gamma+1}-\left(S_{\gamma} \cup D_{\gamma}\right)$. Therefore, by (3), we obtain in either case a coset $E_{\gamma} \neq S_{\gamma}$ of $S_{\gamma}$ in $S_{\gamma+1}$, which is contained in supp $y$. Therefore supp $y$ contains $\bigcup_{\gamma<\alpha} E_{\gamma}$. Since this set can evidently be mapped onto $S$ its cardinal must be $\alpha$, which contradicts the assumption that $y \in \bar{H}_{\alpha}$ and completes the proof.

Notice that if $\alpha=|K|$ and $K$ is $\alpha$-bounded then we can choose $S$ to be $K$ itself, thereby showing that the complements to $\bar{H}_{\alpha}$ in $W_{\alpha}$ are not conjugate in that case.

## 4. Proofs of Theorems A and B

The following elementary result will frequently be required.
Lemma 4.1. Let $c, d, y$ be functions from a group $K$ to another group $H$ and let $f=c d y$. Let $U$ be a proper subgroup of $K$ and $x \in K-U$. Suppose that $c$ is constant on each right coset of $\langle x\rangle$ in $K$ and $d$ is constant on each right coset of $U$ in $K$. Suppose further that $u$ and $v$ are elements of $U$ such that $y(u) \neq y(v)$ and $u x, v x$ lie in a single right coset $C$ of $U$ which satisfies $C \cap \operatorname{supp} y=\emptyset$. Then $f(t) \neq 1$ for some $t \in\{u, v, u x, v x\}$.

Proof. We have $c(u)=c(u x)=\lambda, c(v)=c(v x)=\mu$ say; also $d(u)=d(v)=\sigma, d(u x)=d(v x)=\rho$ since by assumption $u x$, $v x$ lie in a common right coset of $U$. Further $y(u)=\alpha, y(v)=\beta, y(u x)=$ $y(v x)=1$. Therefore $f$ takes the values $\lambda \sigma \alpha, \mu \sigma \beta, \lambda \rho, \mu \rho$ at $u, v, u x, v x$ respectively. The assumption that all these values are equal evidently gives $\lambda=\mu$ and hence $\alpha=\beta$, contrary to our hypotheses.

We shall deduce Theorem B and the first half of Theorem A from our next lemma, which generalizes both.

Lemma 4.2. Let $W_{\alpha}=H \imath_{\alpha} K$ and suppose that $\alpha \leqq|K|$. Let $U \leqq S$ be $\alpha$-bounded subgroups of cardinal $\alpha$ of $K$ and let $T$ be the set of all subgroups $T$ of $K$ containing $S$ and satisfying the condition
$\left(^{*}\right)$ if $S<L \leqq T$ and $L$ is $\alpha$-bounded, then $U^{x} \leqq S$ for some $x \in L-S$.
Then there is a baseless subgroup $S^{*}$ of $W_{\alpha}$ satisfying
(i) $\bar{H}_{\alpha} S=\bar{H}_{\alpha} S^{*}$.
(ii) For all $T \in T, S^{*}$ is maximal among the baseless $\alpha$-bounded subgroups of $W_{\alpha}$ contained in $\bar{H}_{\alpha} T$.

Now the hypotheses of Theorem B imply that $K \in T$; thus Theorem B is an immediate consequence of Lemma 4.2. To deduce the first half of Theorem A we take $S$ to be any $\alpha$-bounded $N$-subgroup of cardinal $\alpha$ of $K$ and $U=S$. If $S^{*}$ is as in Lemma 4.2 and $T^{*}$ is a baseless $\alpha$-bounded $N$-subgroup of $W_{\alpha}$ containing it, then $\bar{H}_{\alpha} T^{*}=\bar{H}_{\alpha} T$, where $T=\bar{H}_{\alpha} T^{*} \cap K$ is an $N$-subgroup of $K$. Clearly $T \in \boldsymbol{T}$, whence Lemma 4.2 gives $S^{*}=T^{*}$, as required.

Proof of Lemma 4.2. As in the proof of Lemma 3.5 we find it useful to think of $\alpha$ as an ordinal which is equivalent to none of its predecessors. Then by Lemma 3.6 with $n=3$, there exists a tower $\left\{S_{\sigma}: \sigma<\alpha\right\}$ of subgroups of $S$ such that
(i) $\bigcup_{\sigma<\alpha} S_{\sigma}=S$,
(ii) $\left|S_{\sigma}\right|<\alpha$ if $\sigma<\alpha$,
(iii) if $\sigma<\alpha$ then there exist elements $u_{\sigma}, u_{\sigma}^{\prime} \in U \cap S_{\sigma+1}$ such that the three cosets $S_{\sigma}, u_{\sigma} S_{\sigma}, u_{\sigma}^{\prime} S_{\sigma}$ are all distinct.

Now let $D_{\sigma}=u_{\sigma} S_{\sigma}$ for $\sigma<\alpha$ and let $1 \neq b \in H$. The sets $D_{\sigma}$ are pairwise disjoint, and there exists for each $\sigma<\alpha$ a uniquely defined element $y_{\sigma}$ in $\bar{H}_{\alpha}$ which takes the value $b$ at each point of $\bigcup_{\lambda<\sigma} D_{\lambda}$ and 1 elsewhere. Notice that $\left|\bigcup_{\lambda<\sigma} D_{\lambda}\right| \leqq\left|S_{\sigma}\right|<\alpha$ by (ii). Clearly if $\tau<\sigma$ then $y_{\sigma} y_{\tau}^{-1}$ is constant on each right coset of $S_{\tau}$ and so belongs to $C_{\bar{H}_{\alpha}}\left(S_{\tau}\right)$. Let $S_{\sigma}^{*}=S_{\sigma}^{y_{\sigma}}(\sigma<\alpha)$. Then $S_{\tau}^{*} \leqq S_{\sigma}^{*}$ if $\tau<\sigma$ and so $S^{*}=$ $\bigcup_{\sigma<\alpha} S_{\sigma}^{*}$ is a subgroup of $W_{\alpha}$ which clearly satisfies

$$
\begin{equation*}
\bar{H}_{\alpha} S^{*}=\bar{H}_{\alpha} S, \bar{H}_{\alpha} \cap S^{*}=1 \tag{1}
\end{equation*}
$$

Thus $S^{*} \in \boldsymbol{B}$.
Suppose now that $T \in \boldsymbol{T}$ and suppose that $S^{*} \leqq L^{*} \leqq \bar{H}_{\alpha} T$ for some baseless $\alpha$-bounded subgroup $L^{*}$. Then $\bar{H}_{\alpha} L^{*}=\bar{H}_{\alpha} L$ for some subgroup $L$ of $T$ containing $S$. We wish to show that $L^{*}=S^{*}$, or equivalently, that $L=S$. Suppose then that this is not the case. Then by condition (*) of the lemma and the fact that $L \cong L^{*}$, we have

$$
\begin{equation*}
U^{x} \leqq S \text { for some } x \in L-S \tag{2}
\end{equation*}
$$

For each $\sigma<\alpha$ let $T_{\sigma}=\left\langle S_{\sigma}, x\right\rangle$. Now for $u \in L$ let $u^{*}$ denote the unique element of $L^{*}$ congruent to $u$ modulo $\bar{H}_{\alpha}$. Then $u \rightarrow u^{*}$ is an isomorphism of $L$ onto $L^{*}$ which maps $S_{\sigma}$ onto $S_{\sigma}^{*}(\sigma<\alpha)$ and so we have

$$
\begin{equation*}
T_{\sigma}^{*}=\left\langle S_{\sigma}^{*}, x^{*}\right\rangle \leqq L^{*}(\sigma<\alpha) \tag{3}
\end{equation*}
$$

We now show that $T_{\sigma}^{*}$ is conjugate under $\bar{H}_{\alpha}$ to $T_{\sigma}$ for $\sigma<\alpha$. If $\alpha=\kappa_{0}$ then $S_{\sigma}$ is finite by (ii) and so $T_{\sigma}$, being $\kappa_{0}$-bounded, is finite. Hence $T_{\sigma}^{*}$ is finite and so $T_{\sigma}^{*}$ is conjugate to $T_{\sigma}$ under $\bar{H}_{\alpha}$ by Corollary 3.3 and the fact that $\boldsymbol{\kappa}_{0}$ is regular. Therefore we may assume that $\alpha>\boldsymbol{\kappa}_{0}$, in which case Corollary 3.3 is inadequate since $\alpha$ may be irregular.

Let $t \in T_{\sigma}$. Then $t^{*} \in T_{\sigma}^{*}$ is uniquely expressible in the form $h_{t} t$ with $h_{t} \in \bar{H}_{\alpha}$. Let $\lambda=\left|\operatorname{supp} y_{\sigma}\right|, \mu=\left|\operatorname{supp} h_{x}\right|$ and $\beta=\max \left(\lambda, \mu, \aleph_{0}\right)$. Then $\beta$ is infinite and $\beta<\alpha$. By (3) we have, if $t \in T$,

$$
h_{t} t=t^{*}=s_{1}^{y \sigma} x^{* \varepsilon_{1}} \cdots s_{n}^{y_{\sigma}} x^{* \varepsilon_{n}},
$$

where $s_{i} \in S_{\sigma}, \varepsilon_{i}= \pm 1$ and $n \geqq 0$. We show by induction on $n$ that $\left|\operatorname{supp} h_{t}\right| \leqq \beta$. To do this it suffices to show that if $\left|\operatorname{supp} h_{t}\right| \leqq \beta$ and $h_{t^{\prime}} t^{\prime}$ has either of the forms $h_{t} t s^{y_{\sigma}}\left(s \in S_{\sigma}\right)$ or $h_{t} t x^{* \varepsilon}(\varepsilon= \pm 1)$ then $\left|\operatorname{supp} h_{t^{\prime}}\right| \leqq \beta$. In the first case we have

$$
h_{t^{\prime}} t^{\prime}=h_{t} y_{\sigma}^{-t^{-1}} y_{\sigma}^{s^{-1} t^{-1}} t s
$$

Then

$$
h_{t^{\prime}}=h_{t} y_{\sigma}^{-t^{-1}} y_{\sigma}^{s^{-1} t_{t}-1} ;
$$

the support of this is contained in the union of three sets each of cardinal at most $\beta$, and so $\left|\operatorname{supp} h_{t^{\prime}}\right| \leqq \beta$ in this case. In the second case, $h_{t^{\prime}}$ is either

$$
h_{t} h_{x}^{t^{-1}} \text { or } h_{t} h_{x}^{-x t^{-1}}
$$

and similar considerations apply.
We now have that if $S(t)=\operatorname{supp} h_{t}$ then $|S(t)| \leqq \beta$ for each $t \in T_{\sigma}$. Let $X=\bigcup_{t \in \boldsymbol{T}_{\sigma}} S(t) \cup T_{\sigma}$. Then $|X| \leqq \beta\left|T_{\sigma}\right|+\left|T_{\sigma}\right|=\max \left(\beta,\left|T_{\sigma}\right|\right)<\alpha$. Hence, if $Y=\langle X\rangle$, then $|Y|<\alpha$. Therefore $\bar{H}_{\alpha}$ contains every function
from $K$ to $H$ with support contained in $Y$; the group generated by these functions and $Y$ is evidently isomorphic to $H \bar{\ell} Y$ and contains $T_{\sigma}^{*}$. Lemma 3.2(i) now shows that $T_{\sigma}^{*}$ is conjugate in this group to a subgroup of $Y$. Hence $T_{\sigma}^{*}$ is conjugate to $T_{\sigma}$ under $\bar{H}_{\alpha}$ and we have

$$
\begin{equation*}
T_{\sigma}^{*}=T_{\sigma}^{z_{\sigma}}\left(z_{\sigma} \in \bar{H}_{\alpha}, \sigma<\alpha\right) . \tag{4}
\end{equation*}
$$

Now $T_{\sigma}^{z_{\sigma}} \leqq T_{\tau}^{z_{\tau}}$ if $\sigma<\tau$ and so

$$
\begin{equation*}
z_{\tau} z_{\sigma}^{-1} \in C_{\bar{H}_{\alpha}}\left(T_{\sigma}\right)(\sigma<\tau), \tag{5}
\end{equation*}
$$

by Lemma 3.1. Also $S_{\tau}^{y_{\tau}} \leqq T_{\tau}^{z_{\tau}}$ and so the same lemma gives

$$
\begin{equation*}
z_{\tau} y_{\tau}^{-1} \in C_{\bar{H}_{\alpha}}\left(S_{\tau}\right)(\tau<\alpha) . \tag{6}
\end{equation*}
$$

Since $x \in T_{\sigma}$ for all $\sigma \geqq 1$ we have from (5) that $z_{\tau} z_{\sigma}^{-1} \in C_{\bar{H}_{\alpha}}(x)$ for $1 \leqq \sigma<\tau$, and consequently, using (6), we can write

$$
\begin{equation*}
z_{1}=c_{\tau} d_{\tau} y_{\tau}, \tag{7}
\end{equation*}
$$

for any $1 \leqq \tau<\alpha$, where $c_{\tau} \in C_{\bar{H}_{\alpha}}(x)$ and $d_{\tau} \in C_{\bar{H}_{\alpha}}\left(S_{\tau}\right)$. We shall deduce from this that, for each $\sigma<\alpha$, the support of $z_{1}$ contains at least one point from the set $B_{\sigma}=\left\{u_{\sigma}, u_{\sigma}^{\prime}, u_{\sigma} x, u_{\sigma}^{\prime} x\right\}$. Since $S \cap S x=\emptyset$ it is easy to see that these sets are pairwise disjoint, from which it follows that the support of $z_{1}$ has cardinal at least $\alpha$, contradicting the fact that $z_{1} \in \bar{H}_{\alpha}$.

Consider than an ordinal $\sigma<\alpha$. Now by assumption we have $U^{x} \leqq S$ and so we can write

$$
\begin{equation*}
u_{\sigma} x=x v_{\sigma}, u_{\sigma}^{\prime} x=x v_{\sigma}^{\prime} \tag{8}
\end{equation*}
$$

for suitable $v_{\sigma}, v_{\sigma}^{\prime} \in S$. Choose $\tau<\alpha$ such that $\left\langle S_{\sigma+1}, v_{\sigma}, v_{\sigma}^{\prime}\right\rangle \leqq S_{\tau}$ and express $z_{1}$ in the form (7). Then using Lemma 3.4, we have that $c_{\tau}$ is constant on each right coset of $\langle x\rangle$ in $K$ and $d_{\tau}$ is constant on each right coset of $S_{\tau}$. From the definition of $y_{\tau}$ we have that $y_{\tau}\left(u_{\sigma}\right)=b \neq 1=$ $y_{\tau}\left(u_{\sigma}^{\prime}\right)$. Also (8) gives that $u_{\sigma} x$ and $u_{\sigma}^{\prime} x$ lie in $x S_{\tau}$; since supp $y_{\tau} \leqq S_{\tau}$ this coset does not meet the support of $y_{t}$. Therefore Lemma 4.1 gives that $z_{1}(w) \neq 1$ for some $w \in B_{\sigma}=\left\{u_{\sigma}, u_{\sigma}^{\prime}, u_{\sigma} x, u_{\sigma}^{\prime} x\right\}$, concluding the proof of Lemma 4.2.
Conclusion of the proof of Theorem A. We now have to consider the baseless $\alpha$-bounded $N$-subgroups of $W_{\alpha}=H \imath_{\alpha} K$, where $\alpha \leqq|K|$ and $\alpha$ is regular.
Let $S^{*}$ be such a subgroup. Then as usual we have $\bar{H}_{\alpha} S^{*}=\bar{H}_{\alpha} S$, where $S=\bar{H}_{\alpha} S^{*} \cap K$. Let $\boldsymbol{U}$ be the set of all subgroups of cardinal $<\alpha$ of $S$. Then since $S$ is $\alpha$-bounded, it is the union of the members of $\boldsymbol{U}$, and any two members of $\boldsymbol{U}$ generate a third. By Corollary 3.3 there exists for each $U \in \boldsymbol{U}$ an element $y_{U} \in \bar{H}_{\alpha}$ such that $U^{y_{U}} \leqq S^{*}$. Choosing such a $y_{U}$ for each $U \in \boldsymbol{U}$, we have

$$
\begin{equation*}
S^{*}=\bigcup_{U \in \boldsymbol{U}} U^{y U} \tag{9}
\end{equation*}
$$

and from Lemma 3.1

$$
\begin{equation*}
y_{U} y_{V}^{-1} \in C_{\bar{H}_{\alpha}}(V) \text { if } V \leqq U \tag{10}
\end{equation*}
$$

Since the elements $y_{U}$ may be varied at will by premultiplying by elements of $C_{\bar{H}_{\alpha}}(U)$, that is by elements of $\bar{H}_{\alpha}$ constant on right cosets $k U$ of $U$ in $K$, we may further assume that

$$
\begin{equation*}
y_{U}(c)=1 \text { for all } c \in C \tag{11}
\end{equation*}
$$

if $C$ is a right coset of $U$ on which $y_{U}$ is constant.
Let $R$ be a right transversal to $S$ in $K$; thus $K=\bigcup_{r \in R} r S$ and $r S \cap r^{\prime} S=\emptyset$ if $r \neq r^{\prime}$.

We distinguish two cases.
Case 1. There is a subgroup $F \in \boldsymbol{U}$ such that, for every $F<L \in \boldsymbol{U}$, there exists an element $z_{L} \in \bar{H}_{\alpha}$ with $y_{L} z_{L}^{-1} \in C_{\bar{H}_{\alpha}}(L)$ and supp $z_{L} \leqq \bigcup_{r \in R} r F$.

In this case we may suppose that supp $y_{L} \leqq \bigcup_{r \in R} r F$ whenever $F<L$ $\in U$. We may also assume that $F<S$, since otherwise $S^{*}$ is conjugate to a subgroup of $K$ by (9) and so we may choose $E$ so that $F<E \in \boldsymbol{U}$. Let $E \leqq L \in \boldsymbol{U}$. Then by (10) we have $y_{L}=c y_{E}$, where $c$ is constant on each right coset of $E$ in $K$. Let $r \in R$. Then both $y_{L}$ and $y_{E}$ take the value 1 at each point of $r E-r F$; therefore $c$ takes the value 1 at each such point, and hence $c$ takes the value 1 at each point of $r E$. Therefore the functions $y_{L}$ and $y_{E}$ coincide on $r E$, and since each of them has support lying in $\bigcup_{r \in R} r F \leqq \bigcup_{r \in R} r E$, we obtain $y_{E}=y_{L}$ for all $E \leqq L \in \boldsymbol{U}$.

Now if $U \in \boldsymbol{U}$ and $L=\langle U, E\rangle$, then $\alpha$-boundedness gives $L \in \boldsymbol{U}$. Then using (10) we have

$$
U^{y_{U}}=U^{y_{L} y_{\bar{U}}^{1} y_{U}}=U^{y_{L}}=U^{y_{E}} \leqq K^{y_{E}} .
$$

Hence by (9) we have $S^{*} \leqq K^{y_{E}}$ in this case.
Case 2. No subgroup $F \in \boldsymbol{U}$ satisfies the hypothesis of Case 1.
In this case, thinking of $\alpha$ as an ordinal which is not equivalent to any of its predecessors, we construct a strictly ascending tower $\left\{T_{\sigma}: \sigma<\alpha\right\}$ of subgroups of $S$ satisfying
(i) $T_{\sigma} \in \boldsymbol{U}(\sigma<\alpha)$,
(ii) $\operatorname{supp} y_{\sigma} \leqq \bigcup_{r \in R} r T_{\sigma+1}(\sigma<\alpha)$,
where $y_{\sigma}=y_{T_{\sigma}}$, and
(iii) if $\sigma<\alpha, z \in \bar{H}_{\alpha}$ and $y_{\sigma+1} z^{-1} \in C_{\bar{H}_{\alpha}}\left(T_{\sigma+1}\right)$,
then supp $z \nsubseteq \bigcup_{r \in R} r T_{\sigma}$.
We begin by putting $T_{0}=1$. Let $0<\tau<\alpha$ and suppose we have the
subgroups $T_{\sigma}$ for $\sigma<\tau$. If $\tau$ is a limit ordinal we put $T_{\tau}=\bigcup_{\sigma<\tau} T_{\sigma}$. Then $\left|T_{\tau}\right|<\alpha$ since $|\tau|<\alpha$ and $\alpha$ is regular. If $\tau$ has the form $\sigma+1$ then, by $\alpha$-boundedness, we can choose a subgroup $\bar{T}_{\sigma} \in U$ such that $T_{\sigma} \leqq \bar{T}_{\sigma}$ and supp $y_{\sigma} \leqq \bigcup_{r \in R} r \bar{T}_{\sigma}$. By the hypotheses of Case $2, \bar{T}_{\sigma}$ will not serve as $F$ in the hypothesis of Case 1 , and so $\bar{T}_{\sigma}$ is properly contained in a subgroup $T_{\sigma+1} \in \boldsymbol{U}$ satisfying (iii). Also (ii) holds by construction, and so the tower can be obtained.

Let $T=\bigcup_{\sigma<\alpha} T_{\sigma}$. Then we have $|T|=\alpha$. In fact $|T| \geqq \alpha$ since the tower $\left\{T_{\sigma}\right\}$ is strictly ascending; on the other hand, it follows from (i) that $|T| \leqq \alpha^{2}=\alpha$.

We shall now show that $T=S$, thus showing that $|S|=\alpha$ and completing the proof of Theorem A. Suppose if possible that $T<S$. Then since $S$ satisfies the normalizer condition there is an element $x \in N_{S}(T)-T$. For each $\sigma<\alpha$ let $U_{\sigma}=\left\langle T_{\sigma}, x\right\rangle$ and $z_{\sigma}=y_{U_{\sigma}}$. Then from (10) we have

$$
\begin{equation*}
y_{\sigma} z_{\sigma}^{-1} \in C_{\bar{H}_{\alpha}}\left(T_{\sigma}\right)(\sigma<\alpha) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{\tau} z_{\sigma}^{-1} \in C_{\bar{H}_{\sigma}}\left(U_{\sigma}\right)(\sigma \leqq \tau<\alpha) . \tag{13}
\end{equation*}
$$

Hence a fortiori $z_{\tau} z_{1}^{-1} \in C_{\bar{H}_{\alpha}}(x)$ if $1 \leqq \tau<\alpha$, and so from (12), we can write

$$
\begin{equation*}
z_{1}=c_{\tau} d_{\tau} y_{\tau} \tag{14}
\end{equation*}
$$

where $c_{\tau} \in C_{\bar{H}_{\alpha}}(x), d_{\tau} \in C_{\bar{H}_{\alpha}}\left(T_{\tau}\right)$, for any $1 \leqq \tau<\alpha$.
Let $\sigma<\alpha$ be an ordinal of the form $\mu+m$, where $\mu$ is a limit ordinal or zero and $m$ is an odd positive integer. Ordinals of this form will be called 'odd', and the number of odd ordinals $<\alpha$ is clearly $\alpha$. We claim that there exist elements $u_{\sigma}, u_{\sigma}^{\prime} \in T_{\sigma+1}-T_{\sigma-1}$ and an element $r_{\sigma}$ belonging to the transversal $R$ such that

$$
\begin{gather*}
u_{\sigma}^{-1} u_{\sigma}^{\prime} \in T_{\sigma}  \tag{15}\\
y_{\sigma}\left(r_{\sigma} u_{\sigma}\right) \neq y_{\sigma}\left(r_{\sigma} u_{\sigma}^{\prime}\right) \tag{16}
\end{gather*}
$$

Indeed, in the contrary case, $y_{\sigma}$ takes a constant value on each right coset of $T_{\sigma}$ lying in $r T_{\sigma+1}$ with the possible exception of $r T_{\sigma}$ itself, and on $r T_{\sigma}, y_{\sigma}$ is constant outside $r T_{\sigma-1}$. This holds for all $r \in R$. Therefore by (ii) there is an element $e_{\sigma} \in \bar{H}_{\alpha}$ which is constant on right cosets of $T_{\sigma}$, and is such that $\operatorname{supp} e_{\sigma}^{-1} y_{\sigma} \leqq \bigcup_{r \in R} r T_{\sigma-1}$. However this contradicts (iii) above, and so the desired elements $u_{\sigma}, u_{\sigma}^{\prime}, r_{\sigma}$ indeed exist.

Now if $\tau \geqq \sigma$ then we have from (10) that $y_{\tau}=f_{\sigma} y_{\sigma}$, where $f_{\sigma}$ belongs to the centralizer in $\bar{H}_{\alpha}$ of $T_{\sigma}$ and so is constant on right cosets of $T_{\sigma}$; hence from (15) and (16) we obtain

$$
\begin{equation*}
y_{\tau}\left(r_{\sigma} u_{\sigma}\right) \neq y_{\tau}\left(r_{\sigma} u_{\sigma}^{\prime}\right) \text { if } \tau \geqq \sigma . \tag{17}
\end{equation*}
$$

For each odd ordinal $\sigma<\alpha$ let $B_{\sigma}=\left\{u_{\sigma} u_{\sigma}^{\prime}, u_{\sigma} x, u_{\sigma}^{\prime} x\right\}$ and let $B_{\sigma}^{*}=\bigcup_{r \in R} r B_{\sigma}$.

Since $x \notin T$ and $u_{\sigma}, u_{\sigma}^{\prime} \in T_{\sigma+1}-T_{\sigma-1}$, the sets $B_{\sigma}$ are pairwise disjoint; hence so are the sets $B_{\sigma}^{*}$. We shall show that the support of $z_{1}$ contains at least one point from each $B_{\sigma}^{*}$, thereby establishing that $\left|\operatorname{supp} z_{1}\right| \geqq \alpha$ and obtaining a contradiction.

Now $x$ normalizes $T$ and so we have

$$
\begin{equation*}
u_{\sigma} x=x v_{\sigma}, u_{\sigma}^{\prime} x=x v_{\sigma}^{\prime} \tag{18}
\end{equation*}
$$

with $v_{\sigma}, v_{\sigma}^{\prime} \in T$. We choose $\tau<\alpha$ such that $T_{\tau} \geqq\left\langle T_{\sigma+1}, v_{\sigma}, v_{\sigma}^{\prime}\right\rangle$ express $z_{1}$ in the form (14) and evaluate the result on the set $r_{\sigma} B_{\sigma}=\left\{r_{\sigma} u_{\sigma}\right.$, $\left.r_{\sigma} u_{\sigma}^{\prime}, r_{\sigma} u_{\sigma} x, r_{\sigma} u_{\sigma}^{\prime} x\right\}$. Now $c_{\tau}\left(r_{\sigma} u_{\sigma}\right)=c_{\tau}\left(r_{\sigma} u_{\sigma} x\right), c_{\tau}\left(r_{\sigma} u_{\sigma}^{\prime}\right)=c_{\tau}\left(r_{\sigma} u_{\sigma}^{\prime} x\right)$, and by (18), $d_{\tau}\left(r_{\sigma} u_{\sigma}\right)=d_{\tau}\left(r_{\sigma} u_{\sigma}^{\prime}\right)$ and $d_{\tau}\left(r_{\sigma} u_{\sigma} x\right)=d_{\tau}\left(r_{\sigma} u_{\sigma}^{\prime} x\right)$. From (17), $y_{\tau}\left(r_{\sigma} u_{\sigma}\right)$ $\neq y_{\tau}\left(r_{\sigma} u_{\sigma}^{\prime}\right)$ and from (ii), since $x \in N_{S}(T)-T$, we have $y_{\tau}\left(r_{\sigma} u_{\sigma} x\right)=$ $y_{\tau}\left(r_{\sigma} u_{\sigma}^{\prime} x\right)=1$. Putting these facts together as in Lemma 4.1 we easily find that the support of $z_{1}$ meets $r_{\sigma} B_{\sigma}$ non-trivially, as required to complete the proof.

## 5. Proof of Theorem $\mathbf{C}$

The arguments here are similar in spirit to those of Theorems A and B, but differ somewhat in the technical details. The following lemma plays the part previously occupied by Lemma 4.1.

Lemma 5.1. Let $G=\langle U, x\rangle$ be a finite nilpotent group generated by a $\pi$-subgroup $U<G$ and an element $x$. Suppose that $X$ is a proper normal subgroup of $G$ containing $x$. Let $A$ be an abelian group and let $c, d, y$ be functions from $G$ to $A$ satisfying the following conditions:
(i) $c$ is constant on each right coset of $\langle x\rangle$ in $G$,
(ii) $d$ is constant on each right coset of $U$ in $G$,
(iii) supp $y \leqq U$ but $y$ is not constant on the set $U-(U \cap X)$.
(iv) $y(U)$ is contained in a subgroup $B$ of $A$ which has no non-trivial $\pi$-elements.

Let $f=c d y$. Then $f(w) \neq 1$ for some $w \notin X$.
Proof. The proof is by induction on $|G|$. In making the inductive step there are two cases to consider, and the first of them also starts the induction.

CASE 1. $U \triangleleft G$. Let $u, v$ be points in $U-(U \cap X)$ such that $y(u) \neq y(v)$. Then $u, v, u x, v x$ are points not lying in $X$ and satisfying the hypotheses of Lemma 4.1. Therefore $f(w) \neq 1$, where $w$ is one of these points.

CASE 2. $U$ is not normal in $G$. Now $x \neq 1$ as $U<G$; hence $X \neq 1$ and so $X$ contains a non-trivial element $z$ of prime order $p$ belonging to the centre of $G$. Let $t \rightarrow \bar{t}$ be the natural homomorphism of $G$ onto $\bar{G}=G /\langle z\rangle$. Then $\bar{U}<\bar{G}$ since otherwise $G=U\langle z\rangle$ and $U \triangleleft G$; also $\bar{U}$ is a $\pi$-group. Evidently $\bar{X}$ is a proper normal subgroup of $\bar{G}$ containing $\bar{x}$.

Let $\varphi \in A^{G}$, the multiplicative group of all functions from $G$ to $A$ under pointwise multiplication, and let $\bar{\varphi}$ be the element of $A^{\bar{G}}$ defined by $\bar{\varphi}(\bar{t})=\prod_{u \in \bar{t}} \varphi(u)(t \in G)$. The map $\varphi \rightarrow \bar{\varphi}$ is a homomorphism of $A^{G}$ into $A^{\bar{G}}$ satisfying

$$
\begin{equation*}
\overline{\varphi t}=\bar{\varphi} \bar{t} \quad\left(\varphi \in A^{G}, t \in G\right) \tag{1}
\end{equation*}
$$

where $\varphi t$ is the element of $A^{G}$ defined by $\varphi t(u)=\varphi\left(u t^{-1}\right)(u \in G)$ and $\bar{G}$ acts on $A^{\bar{G}}$ in a similar way. If $L \leqq G$ then the centralizer of $L$ in $A^{G}$ consists precisely of the functions constant on the right cosets of $L$ in $G$; furthermore (1) shows that $\overline{C_{A^{G}}(L)} \leqq C_{A^{G}}(\bar{L})$.

We therefore have that $\bar{c}$ and $\bar{d}$ are constant on the right cosets of $\langle\bar{x}\rangle$ and $\bar{U}$ respectively in $\bar{G}$; this can in any case be verified directly without difficulty. Evidently $\bar{y}(\bar{U}) \leqq B$ and so in order to apply induction to $\bar{G}$ it remains to verify (ii) for $\bar{G}$. We now subdivide Case 2 further.

Case 2a. $z \notin U$. Clearly $\bar{y}(\bar{t})=1$ unless $\bar{t} \cap U \neq \emptyset$, that is unless $\bar{t} \leqq U\langle z\rangle$. Thus supp $\bar{y} \leqq \bar{U}$. Let $u, v$ be points in $U-(U \cap X)$ such that $y(u) \neq y(v)$. Then $\bar{u}, \bar{v} \notin \bar{X}$ since $z \in X$, and $\bar{y}(\bar{u})=y(u), \bar{y}(\bar{v})=y(v)$, since $u$ and $v$ are now the unique points of $U$ in $\bar{u}, \bar{v}$ respectively. Therefore $\bar{y}(\bar{u}) \neq \bar{y}(\bar{v})$. It now follows by induction, since $\bar{f}=\bar{c} \bar{d} \bar{y}$, that there exists an element $\bar{t} \notin \bar{X}$ such that $\bar{f}(\bar{t}) \neq 1$. Therefore $f(w) \neq 1$ for some $w \in \bar{t}$, and clearly $w \notin X$.

Case 2b. $z \in U \cap X$. Suppose first that there is a coset $\bar{u}$ of $\langle z\rangle$ in $U-(U \cap X)$ on which $y$ is not constant, and let $u, v$ be points of $\bar{u}$ such that $y(u) \neq y(v)$. Now $v=u z^{\lambda}$ for some integer $\lambda$ and so $v x=u z^{\lambda} x=$ $u x z^{\lambda} \in u x U$. Thus $u x$ and $v x$ lie in the right $\operatorname{coset} u x U$ of $U$, which does not meet supp $y \leqq U$. Therefore by Lemma 4.1 we have $f(w) \neq 1$, where $w$ is one of the points $u, v, u x, v x$; since none of these points lies in $X$ the result follows in this case.

Therefore we may suppose that $y$ is constant on each coset of $\langle z\rangle$ lying in $U-(U \cap X)$. Now as in case 2 a we find that supp $\bar{y} \leqq \bar{U}$. Furthermore let $u, v$ be points of $U-(U \cap X)$ such that $y(u)=\alpha \neq \beta=y(v)$. Then $\bar{y}(\bar{u})=\alpha^{p}, \bar{y}(\bar{v})=\beta^{p}$ and $\alpha^{p} \neq \beta^{p}$ since $p \in \pi$ and $B$ has no nontrivial $\pi$-elements. Evidently $\bar{u}, \bar{v} \notin \bar{X}$ and so induction yields an element $\bar{t} \notin \bar{X}$ such that $\bar{f}(\bar{t}) \neq 1$. Hence $f(w) \neq 1$ for some $w \in \bar{t}$, and certainly $w \notin X$. This establishes Lemma 5.1.

Proof of Theorem C. We have a countably infinite periodic locally nilpotent $\pi$-subgroup $S$ of $K$ and have to construct a maximal member $S^{*}$ of the set of baseless periodic locally nilpotent subgroups of $W=H$ 乙 $K$ satisfying $\bar{H} S=\bar{H} S^{*}$, under the assumption that $H$ is abelian and satisfies certain other conditions to be found in the statement of the theorem.

Case 1. The Sylow 2-subgroup of $S$ is finite and $H$ is not a $\pi$-group. Let $S_{1}$ be the Sylow 2-subgroup of $S$. Then by constructing an arbitrary tower of finite subgroups from $S_{1}$ to $S$ and refining it suitably we can write $S=\bigcup_{i=0}^{\infty} S_{i}$, where

$$
\begin{equation*}
1=S_{0}<S_{1}<\cdots \tag{2}
\end{equation*}
$$

are finite subgroups of $S$ such that $S_{i}$ is maximal and of index at least three in $S_{i+1}$ for $i \geqq 1$. For each $i \geqq 0$ let $D_{i} \neq S_{i}$ be a right coset of $S_{i}$ in $S_{i+1}$. Let $\langle t\rangle$ be a non-trivial cyclic subgroup of $H$ containing no non-trivial $\pi$-element and let $y_{i}$ be the element of $\bar{H}$ which takes the value $t$ at each point of $\bigcup_{j<i} D_{j}$ and 1 elsewhere. Then $y_{i+1} y_{i}^{-1} \in C_{\bar{H}}\left(S_{i}\right)$ and so if we define $S_{i}^{*}=S_{i}^{y_{i}}(i \geqq 0)$ then $S^{*}=\bigcup_{i=0}^{\infty} S_{i}^{*}$ is a subgroup of $W$ satisfying $\bar{H} S=\bar{H} S^{*}, \bar{H} \cap S^{*}=1$.

Notice that

$$
\begin{equation*}
\text { supp } y_{i} \leqq S_{i} \quad(i \geqq 0) \tag{3}
\end{equation*}
$$

and
(4) $\quad y_{i}$ is not constant outside any proper subgroup of $S_{i}(i \geqq 2)$.

Indeed if $u$ is either 1 or $t$, then since $\left|S_{i}: S_{i-1}\right| \geqq 3$ the set of points $s \in S_{i}$ at which $y_{i}(s) \neq u$ contains a right coset of $S_{i-1}$ other than $S_{i-1}$ itself and so generates a subgroup of $S_{i}$ properly containing $S_{i-1}$. Since $S_{i-1}$ is maximal in $S_{i}$ this subgroup must be $S_{i}$ itself, and so $y_{i}$ cannot take the value $u$ at all points of the complement of a proper subgroup of $S_{i}$.

Case 2. The Sylow 2-subgroup of $S$ is infinite but $H$ contains a subgroup $B$ of order at least 4 containing no non-trivial $\pi$-elements. In this case we proceed rather differently to obtain conditions (3) and (4). We construct a tower (2) of finite subgroups of $S$ such that, for $i \geqq 1$, either $\left|S_{i}: S_{i-1}\right|=4$ or $S_{i-1}$ is maximal and of index at least three in $S_{i}$. This is obviously possible. Let $1, t_{1}, t_{2}, t_{3}$ be distinct elements of $B$. If $\left|S_{i+1}: S_{i}\right|=4$ let $w_{i}$ be the element of $\bar{H}$ which takes the values $1, t_{1}, t_{2}, t_{3}$ on the respective right cosets of $S_{i}$ in $S_{i+1}$, and 1 elsewhere. Otherwise let $w_{i}$ be the element of $\bar{H}$ taking the value $t_{1}$ on some right $\operatorname{coset} D_{i} \neq S_{i}$ of $S_{i}$ in $S_{i+1}$ and 1 elsewhere. Then if $y_{i}=\prod_{j<i} w_{j}(i \geqq 1)$,
we have $y_{i+1} y_{i}^{-1} \in C_{\bar{H}}\left(S_{i}\right)$ and so, defining $S_{i}^{*}=S_{i}^{y_{i}}$ and $S^{*}=\bigcup_{i=0}^{\infty} S_{i}^{*}$, we obtain $\bar{H} S^{*}=\bar{H} S, \bar{H} \cap S^{*}=1$ as before. It is not difficult to see that (3) and(4) hold.

Suppose now that there exists a periodic locally nilpotent subgroup $T^{*}>S^{*}$ satisfying $\bar{H} \cap T^{*}=1$. We may suppose that $T^{*}$ has the form $\left\langle S^{*}, x^{*}\right\rangle$ where $x^{*} \notin S^{*}$. Let $x$ be the unique element of $K$ which is congruent to $x^{*}$ modulo $\bar{H}$ and let $T=\langle S, x\rangle, T_{i}=\left\langle S_{i}, x\right\rangle(i \geqq 2)$. Then $\bar{H} T^{*}=\bar{H} T$ and $\bar{H} T_{i}^{*}=\bar{H} T_{i}$; also $T=\bigcup_{i=0}^{\infty} T_{i}$ and $T$ is locally nilpotent. Since $T_{i}$ is finite we have from Corollary 3.3 that $T_{i}^{*}=T_{i}^{z_{i}}$ for some $z_{i} \in \bar{H}$. Arguing as in the proofs of Theorems A and B , we obtain $z_{i} y_{i}^{-1} \in C_{\bar{H}}\left(S_{i}\right)$ and $z_{i} z_{1}^{-1} \in C_{\bar{H}}(x)$ for $i \geqq 1$, whence we can write

$$
\begin{equation*}
z_{1}=c_{i} d_{i} y_{i} \tag{5}
\end{equation*}
$$

for any $i \geqq 1$, where $c_{i} \in C_{\bar{H}}(x)$ and $d_{i} \in C_{\bar{H}}\left(S_{i}\right)$.
Suppose now that we have $n$ points $u_{1}, \cdots, u_{n}$ of $T$ lying in the support of $z_{1}$. We shall show how to construct a further such point $u_{n+1}$, thereby showing that the support of $z_{1}$ is infinite. This contradiction will show that the assumption $T^{*}>S^{*}$ is false and establish the theorem. Let $W=\left\langle S_{1}, x, u_{1}, \cdots, u_{n}\right\rangle$, which is finite since $K$ is locally finite. Let $i$ be the first integer $\geqq 2$ such that $W<T_{i}$, and let $X$ be the normal closure of $W$ in $T_{i}$. Then $X<T_{i}$ as $T_{i}$ is nilpotent. Consequently since $T_{i}=$ $\left\langle S_{i}, x\right\rangle$ and $x \in X$ we have $X \cap S_{i}<S_{i}$. We now express $z_{1}$ in the form (5), and verify the hypotheses of Lemma 5.1 with $G=T_{i}, U=S_{i}$, $A=H$. These are all immediate except perhaps for conditions (iii) and (iv) of the lemma; these follow from (3) and (4) above and the construction of $y_{i}$. Lemma 5.1 therefore gives that $z_{1}(w) \neq 1$ for some $w \notin X$, as required to complete the argument.

## 6. Non-periodic baseless subgroups of $\boldsymbol{W}$

In this section we consider only the ordinary restricted wreath product $W=H \backslash K$, and show that under fairly general conditions the presence of sufficiently many elements of infinite order in a baseless subgroup of $W$ will ensure that it is $W$-contained in $K$.

The main result of this section, stated in the introduction, is Theorem D. It falls into two parts, the first of which is an immediate consequence of

Lemma 6.1 Let $L^{*}$ be a baseless subgroup of $W$ and suppose that the Hirsch-Plotkin radical of $L^{*}$ is neither periodic nor finite-by-cyclic. Then $L^{*} \leqq_{W} K$.

To obtain the first part of Theorem D , suppose that $U$ is a baseless radical subgroup of $W$ with non-periodic Hirsch-Plotkin radical $R$, and
$U \not \ddagger_{W} K$. Then by Lemma 6.1 we have that, if $T$ is the torsion subgroup of $R$, then $T$ is finite and $R / T$ is infinite cyclic. Let $C_{1}=C_{U}(T), C_{2}=$ $C_{U}(R / T)$. Then $U / C_{l}$ is finite $(i=1,2)$ and so $U / C_{1} \cap C_{2}$ is finite. But $C=C_{1} \cap C_{2} \leqq R$. For otherwise $C>C \cap R$ and so $C / C \cap R$ contains a non-trivial characteristic locally nilpotent subgroup $X / C \cap R$. Then $X \triangleleft U$ and we have $[X, C \cap R] \leqq C \cap T$ and $[X, C \cap T]=1$. From this it follows easily that $X$ is locally nilpotent and hence that $X \leqq R$, a contradiction. Therefore we have that $U / R$ is finite, and so $U$ is polycyclic and of Hirsch number one.

For the converse suppose that $L$ is any polycyclic group with Hirsch number one, let $F$ be the largest finite normal subgroup of $L$, and let $S / F$ be the Hirsch-Plotkin radical of $L / F$. Then $S / F$ contains no non-trivial finite normal subgroup and so must be infinite cyclic. Since $S / F$ contains its centralizer in $L / F$ it follows that $|L: S|$ is either 1 or 2 and $L$ is an extension of $F$ by a group which is either infinite cyclic or infinite dihedral. Therefore the proof of Theorem D is completed by our next lemma.

Lemma 6.2. Suppose that $L \leqq K$ is an extension of a finite group $F$ by a group which is either infinite cyclic or infinite dihedral. Then there is a baseless subgroup $L^{*}$ of $W$ such that $\bar{H} L=\bar{H} L^{*}$ but $L^{*} \$_{W} K$.

Proof. We deal first with the case when $L / F$ is infinite dihedral. Then $L / F$ is generated by an element $x F$ of infinite order and an element $t F$ such that $x^{t} \equiv x^{-1}$ modulo $F$.

Let $y=t x^{-1}$. Then $y \notin F$ but $y^{2} \in F$. Choose $1 \neq h \in H$ and let $u$ be the element of $\bar{H}$ taking the value $h$ on $F, h^{-1}$ on $y F=F y$, and 1 elsewhere. Then $u \in C_{\bar{H}}(F)$ by Lemma 3.4. Since right multiplication by $y$ interchanges the two cosets $F$ and $y F$ we have $u^{y}=u^{-1}$. Therefore $u^{t x^{-1}}=u^{-1}$ and so $(u x)^{t}=x^{-1} x u^{t} x^{t} \equiv x^{-1} x u^{t} x^{-1} \bmod F$. Hence, modulo $F$, we have $(u x)^{t} \equiv x^{-1} u^{t x^{-1}}=x^{-1} u^{-1}$. Therefore, if $x^{*}=u x$, then $x^{*}$ normalizes $F$ and $x^{* t} \equiv x^{*-1} \bmod F$.

Let $L^{*}=\left\langle F, x^{*}, t\right\rangle$. Then $\bar{H} L^{*}$ contains $x$ and it follows that $\bar{H} L^{*}=$ $\bar{H} L$. An arbitrary element of $L^{*}-F$ is congruent modulo $F$ to an element of the form $x^{* n} t^{\varepsilon}$, where $n$ is a non-zero integer and $\varepsilon=0$ or 1 . Such an element, being congruent modulo $\bar{H}$ to $x^{n} t^{\varepsilon}$, cannot lie in $\bar{H}$. Therefore $\bar{H} \cap L^{*} \leqq \bar{H} \cap F=1$ and $L^{*}$ is baseless.

Finally, if $L^{*} \leqq{ }_{W} K$ then we have $L^{*}=L^{w}$ for some $w \in \bar{H}$. It follows that $u x=x^{*}=x^{w}=\left[w, x^{-1}\right] x$, whence $u=\left[w, x^{-1}\right]$. But $F \cup F y=$ $\langle F, y\rangle$ and $\langle x\rangle \cap\langle F, y\rangle=1$ since $\langle F, y\rangle$ is finite. Therefore no right coset of $\langle x\rangle$ in $K$ contains more than one point of supp $u$. Since $u$ has the form [ $w, x^{-1}$ ] it follows that $u=1$, which is a contradiction.

The case when $L / F$ is infinite cyclic may be discussed similarly. Let $L / F=\langle x F\rangle$. Let $1 \neq h \in H$ and let $u$ be the element of $\bar{H}$ taking the
value $h$ on $F$ and 1 elsewhere. Finally, if $x^{*}=u x$, then $L^{*}=\left\langle F, x^{*}\right\rangle$ satisfies our requirements.

It therefore remains only to establish Lemma 6.1, and we do this in several stages. The first two steps give results which are probably well known.

Lemma 6.3. Let $A$ be a normal subgroup of a group $G$ complemented by each of two subgroups $B$ and $B^{*}$, and let $C=B \cap B^{*}$. Then $C_{A}\left(C \cap C^{b}\right) \neq 1$ for each $b \in B-C$.

Proof. Let $b \in B$ and suppose that $C_{A}\left(C \cap C^{b}\right)=1$. We have $b=b^{*} a$ with $b^{*} \in B^{*}, a \in A$. Let $c \in C \cap C^{b}$. Then $c^{b^{-1}} \in C$ and so $C$ contains $\left[c, b^{-1}\right]=\left[c, a^{-1} b^{*-1}\right]=\left[c, b^{*-1}\right]\left[c, a^{-1}\right]^{b^{*-1}}$. Of these factors, the first lies in $B^{*}$ while the second lies in $A$. Since their product lies in $C \leqq B^{*}$, we have $\left[c, a^{-1}\right]=1$. This holds for all $c \in C \cap C^{b}$, whence $a$ centralizes $C \cap C^{b}$ and so $a=1$. Therefore $b=b^{*} \in C$.

Corollary 6.4. Let $L, L^{*}$ be baseless subgroups of $W$ such that $L \leqq K$ and $\bar{H} L=\bar{H} L^{*}$, and let $M=L \cap L^{*}$. Then $M \cap M^{l}$ is finite for each $l \in L-M$. In particular $M$ contains the normalizer in $L$ of each of its infinite subgroups.

Proof. Since $C_{\bar{H}}(J)=1$ for every infinite subgroup $J$ of $K$, Lemma 6.3 gives immediately that $M \cap M^{l}$ is finite for $l \in L-M$. The rest follows.

Examples in which two distinct complements to $\bar{H}$ in $W$ have infinite intersection seem to be fairly uncommon and we know of none in which $K$ is locally finite. But if $K$ is freely generated by two elements $x$ and $y$ and $1 \neq h \in \bar{H}$, then $x$ and $h y$ evidently generate a subgroup which complements $\bar{H}$ and has infinite intersection with $K$.

Lemma 6.5. Let $L \leqq K$ and let $L^{*}$ be a baseless subgroup of $W$ such that $\bar{H} L=\bar{H} L^{*}$. Suppose that either
(i) L contains a central element $x$ of infinite order such that $L /\langle x\rangle$ is infinite, or
(ii) $L$ contains an infinite locally finite normal subgroup $M$ and an element $x$ of infinite order such that $M$ is the union of the finite subgroups of $M$ normalized by $x$.

Then $L$ and $L^{*}$ are conjugate under $\bar{H}$.
Proof. (i) For each $t \in L$ let $t^{*}=h_{t} t\left(h_{t} \in \bar{H}\right)$ be the unique element of $L^{*}$ which is congruent to $t$ modulo $\bar{H}$. Then $t \rightarrow t^{*}$ is an isomorphism. Hence $x^{*} t^{*}=t^{*} x^{*}$ for all $t \in L$, whence we obtain

$$
\begin{equation*}
h_{x} h_{t}^{x-1}=h_{t} h_{x}^{t^{-1}} \tag{1}
\end{equation*}
$$

for all $t \in L$. Let $\left\{k_{\lambda}\right\}$ be a set of right coset representatives of $L$ in $K$ and let $\left\{t_{\mu}\right\}$ be a set of coset representatives of $\langle x\rangle$ in $L$. Evaluating (1) at the point $k_{\lambda} x^{i}$ and using the fact that $x$ and $t$ commute, we obtain

$$
h_{x}\left(k_{\lambda} x^{i}\right) h_{t}\left(k_{\lambda} x^{i+1}\right)=h_{t}\left(k_{\lambda} x^{i}\right) h_{x}\left(k_{\lambda} t x^{i}\right)
$$

or

$$
\begin{equation*}
h_{x}\left(k_{\lambda} t x^{i}\right)=h_{t}\left(k_{\lambda} x^{i}\right)^{-1} h_{x}\left(k_{\lambda} x^{i}\right) h_{t}\left(k_{\lambda} x^{i+1}\right) \tag{2}
\end{equation*}
$$

Now $h_{t}\left(k_{\lambda} x^{i}\right)=h_{x}\left(k_{\lambda} x^{i}\right)=1$ when $i$ is sufficiently large or small, and so, for a fixed $\lambda$ and $t$, we may multiply the equations (2) in order of increasing $i$ to obtain

$$
\prod_{i=-\infty}^{\infty} h_{x}\left(k_{\lambda} t x^{i}\right)=\prod_{i=-\infty}^{\infty} h_{x}\left(k_{\lambda} x^{i}\right)
$$

It follows that the value of the product

$$
\prod_{i=-\infty}^{\infty} h_{x}\left(k_{\lambda} t_{\mu} x^{i}\right)
$$

is independent of $\mu$. Now since $|L:\langle x\rangle|=\infty$ there must be a right coset of $\langle x\rangle$ contained in $k_{\lambda} L$ on which $h_{x}$ takes the value 1 identically. We therefore must have

$$
\begin{equation*}
\prod_{i=-\infty}^{\infty} h_{x}\left(k_{\lambda} t_{\mu} x^{i}\right)=1 \tag{3}
\end{equation*}
$$

for all $\lambda$ and $\mu$.
We now define an element $w \in \bar{H}$ by

$$
\begin{equation*}
w\left(k_{\lambda} t_{\mu} x^{i}\right)=\left(\prod_{j=i}^{\infty} h_{x}\left(k_{\lambda} t_{\mu} x^{j}\right)\right)^{-1} \tag{4}
\end{equation*}
$$

the product being taken in order of increasing $j$. The equations (3), together with the fact that the support of $h_{x}$ only meets finitely many of the cosets $k_{\lambda} t_{\mu}\langle x\rangle$, ensure that the support of $w$ is finite. A straightforward calculation shows that $\left[w, x^{-1}\right]=h_{x}$. Hence

$$
x^{*}=h_{x} x=\left[w, x^{-1}\right] x=x^{w}
$$

and so $\langle x\rangle \leqq L \cap L^{* w^{-1}}$. Since $\langle x\rangle$ is infinite and central in $L$, Corollary 6.4 now gives $L=L^{* w^{-1}}$, as required.
(ii) Let $\boldsymbol{F}$ be the set of all finite subgroups of $M$ normalized by $x$. Then $M=\bigcup_{F \in \boldsymbol{F}} F$, and since $M$ is locally finite, any two members of $\boldsymbol{F}$ generate a third. Let $t \rightarrow t^{*}$ be the usual isomorphism of $L$ onto $L^{*}$. Then $M^{*}=\bigcup_{F \in F} F^{*}$, and by Corollary 3.3 there exists, for each $F \in F$, an element $h_{F} \in \bar{H}$ such that

$$
F^{* h_{F}}=F
$$

Let $x^{*}=h x(h \in \bar{H})$. Now $x^{*}$ normalizes $F^{*}(F \in \boldsymbol{F})$ and so $x^{* h_{F}}$ normalizes $F$. Hence $\left[F, x^{* h_{F}}\right] \leqq F$ and so, if $f \in F$, then $F$ contains

$$
\left[f,(h x)^{h_{F}}\right]=\left[f, h^{h_{F}}\left[h_{F}, x^{-1}\right] x\right]=[f, x]\left[f, h^{h_{F}}\left[h_{F}, x^{-1}\right]\right]^{x} .
$$

It follows that

$$
\left[f, h^{h_{F}}\left[h_{F}, x^{-1}\right]\right]=1
$$

and so

$$
\begin{equation*}
h^{h_{F}}\left[h_{F}, x^{-1}\right] \in C_{F}=C_{\bar{H}}(F) \tag{6}
\end{equation*}
$$

if $F \in \boldsymbol{F}$.
Let $T$ be a right transversal to $M\langle x\rangle=N$ in $K$, so that $K=\bigcup_{t \in T} t N$ and $t N \cap t^{\prime} N=\emptyset$ if $t \neq t^{\prime}$. We now distinguish two cases:

CASE 1. There exists a subgroup $F \in \boldsymbol{F}$ with the following property: given $F<E \in \mathcal{F}$, there exists an element $h_{E}^{\prime} \in \bar{H}$ such that $h_{E}^{\prime} h_{E}^{-1} \in C_{E}$ and

$$
\operatorname{supp} h_{E}^{\prime} \leqq X_{F}=\bigcup_{i=-\infty}^{\infty} \bigcup_{t \in T} t x^{i} F
$$

In this case we may suppose without loss of generality that supp $h_{E} \leqq X_{F}$ for all $F<E \in \boldsymbol{F}$. Choose such an $E$ and let $E \leqq D \in \boldsymbol{F}$. Then by a now familiar argument we can write $h_{D}=c h_{E}$, where $c$ is constant on each right coset of $E$ in $K$. Now no right coset of $E$ is contained in $X_{F}$ and so any such right coset contains a point at which both $h_{D}$ and $h_{E}$ take the value 1 . Hence $c$ takes the value 1 at such a point, and therefore at every point of the right coset in question. Therefore $c=1$ and $h_{D}=h_{E}$ for all $E \leqq D \in F$. Then

$$
M^{* h_{E}}=\bigcup_{D \geqq E} D^{* h_{E}}=\bigcup_{D \geqq E} D^{* h_{D}}=\bigcup_{D \geqq E} D=M
$$

Therefore $M \leqq L \cap L^{* h_{E}}$. Since $M \triangleleft L$, Corollary 6.4 now gives $L=L^{* h_{E}}$, as required.

Case 2. Case 1 does not hold. Under this assumption we shall obtain a contradiction, thereby showing that Case 2 does not in fact arise. To do this we assume that we have a finite subset $A$ of supp $h$ and show that a further point of supp $h$ can always be found, thereby contradicting the finiteness of supp $h$.

Now the elements $t x^{i}$ form a right transversal to $M$ in $K$ and so we have $A \leqq X_{F}$ for some $F \in \boldsymbol{F}$. By hypothesis there is a subgroup $E \in \boldsymbol{F}$ with $F<E$ and such that $h_{E}$ is not congruent modulo $C_{E}$ to any element with support in $X_{F}$. Therefore there exists a right coset $C$ of $E$ in $K$ such that $h_{E}$ is not constant on the set $C-\left(C \cap X_{F}\right)$. Now since $x$ normalizes $E$ but no non-trivial power of $x$ lies in $E$, the sets $C x^{i}(i=0, \pm 1, \cdots)$ are
distinct right cosets of $E$ in $K$. Only finitely many of them meet the support of $h_{E}$ and so, by considering a suitable $C x^{i}$ instead of $C$, we may suppose that $h_{E}$ is not constant on $C-\left(C \cap X_{F}\right)$, but is constant on $C x^{-1}-$ ( $C x^{-1} \cap X_{F}$ ). Since $X_{F}$ is invariant under right multiplication by $x$, it follows that there exist points $c_{1}, c_{2} \in C-\left(C \cap X_{F}\right)$ such that $h_{E}\left(c_{1}\right) \neq$ $h_{E}\left(c_{2}\right)$, but $h_{E}\left(c_{1} x^{-1}\right)=h_{E}\left(c_{2} x^{-1}\right)$. It follows that $\left[h_{E}, x^{-1}\right]$ takes distinct values at $c_{1} x^{-1}$ and $c_{2} x^{-1}$. From (6) we have

$$
h^{h_{E}}=c_{E}\left[h_{E}, x^{-1}\right]^{-1}
$$

where $c_{E}$ is constant on each right coset of $E$ and in particular on $C x^{-1}$. Therefore one of $c_{1} x^{-1}$ and $c_{2} x^{-1}$ lies in the support of $h^{h_{E}}$ and hence in the support of $h$. Both of these points lie outside $X_{F}$ and hence outside $A$, and so the argument is complete.

Let $\mathfrak{X}$ denote the class of all groups which have a central infinite cyclic subgroup with infinite factor group. We define two $\mathfrak{X}$-subgroups $X$ and $Y$ of a group $G$ to be connected if there is a finite chain $X=X_{1}, X_{2}, \cdots$, $X_{n}=Y$ of $\mathfrak{X}$-subgroups of $G$ such that $X_{i} \cap X_{\imath+1}$ is infinite for $1 \leqq i \leqq$ $n-1$. Connectedness is evidently an equivalence relation and so any $\mathfrak{X}$ subgroup of $G$ will have a connected component in the set of all $\mathfrak{X}$-subgroups of $G$. Now if $M \leqq K$ and $M^{*}$ are baseless subgroups of $W$ such that $\bar{H} M=\bar{H} M^{*}$ and if $X$ and $Y$ are $\mathfrak{X}$-subgroups of $M$ such that $X \leqq M \cap M^{*}$ and $X \cap Y$ is infinite, then Corollary 6.4 shows that $Y \leqq M \cap M^{*}$. For $Y$ contains a central element $y$ of infinite order. Since $y$ normalizes the infinite subgroup $X \cap Y$ of $M \cap M^{*}$, we obtain $y \in M \cap M^{*}$, and hence, since $\langle y\rangle$ is infinite and central in $Y$, we obtain $Y \leqq M \cap M^{*}$. It follows that $M \cap M^{*}$ contains the connected component of $X$ in $M$. A little more argument yields

Lemma 6.6. Let $L \leqq K$ and suppose that $L$ contains a non-trivial normal subgroup $M$ which is generated by a connected set of $\mathfrak{X}$-subgroups. Let $L^{*}$ be a baseless subgroup of $W$ such that $\bar{H} L^{*}=\bar{H} L$. Then $L^{* h}=L$ for some $h \in \bar{H}$.

Proof. Let $X$ be an $\mathfrak{X}$-subgroup belonging to the connected set generating $M$. Then, in the usual notation, we have $\bar{H} X=\bar{H} X^{*}$, and Lemma 6.5(i) gives that $X^{* h}=X$ for some $h \in \bar{H}$. Therefore $M \cap M^{* h} \geqq X$. The remarks above give $M=M^{* h} \leqq L^{* h}$, and finally, as $M \triangleleft L$, Corollary 6.4 gives $L=L^{* h}$.

The relevance of these concepts to the proof of Lemma 6.1 is that most non-periodic locally nilpotent groups can be generated by a connected set of $\mathfrak{X}$-subgroups.

Lemma 6.7. Let $G$ be a locally nilpotent group with torsion subgroup $T$.

Then $G$ is generated by a connected set of $\mathfrak{X}$-subgroups unless either $G$ is finite-by-cyclic or $T$ is infinite and $G / T$ is locally cyclic.

Proof. Suppose first that $G / T$ is not locally cyclic. Let $S$ be the set of all finitely generated subgroups $S$ of $G$ such that $S / S \cap T$ is not cyclic. Then clearly $G=\bigcup_{S \in S} S$. Now a finitely-generated nilpotent group with finite centre is necessarily finite and so, if $S \in S$, then $S$ contains a central element $x_{S}$ of infinite order. Since $S / S \cap T$ is not cyclic, $S /\left\langle x_{S}\right\rangle$ cannot be finite, and so $S \in \mathfrak{X}$. Since $\left\langle S_{1}, S_{2}\right\rangle \in S$ if $S_{1}, S_{2} \in S$, it follows that $S$ is a connected set of $\mathfrak{X}$-subgroups generating $G$.

Now suppose that $G / T$ is locally cyclic. We may suppose that $T$ is finite and $T<G$. Let $x$ be an element of infinite order in $G$ and $t \in T$. Then $x^{k}$ centralizes $T$ for some $k>0$ and so, if $y \in G$, we have $1=$ $\left[y, x^{k}\right]^{t}=\left[y, x^{k t}\right]$ by the usual commutator identities. Therefore $z=x^{k t}$ is in the centre of $G$. If $G /\langle z\rangle$ is finite then we find that $G / T$ is cyclic. Therefore $G \in \mathfrak{X}$ unless $G$ is finite-by-cyclic.

Proof of Lemma 6.1. We have $\bar{H} L=\bar{H} L^{*}$, where $L=\bar{H} L^{*} \cap K$. Let $R$ be the Hirsch-Plotkin radical of $L$, and let $T$ be the torsion subgroup of $R$. Then by hypothesis $T<R$ and $R$ is not finite-by-cyclic. Therefore, by Lemma 6.7, either $R$ is generated by a connected set of $\mathfrak{X}$-subgroups or $T$ is infinite and $R / T$ is locally cyclic. In the first case the result follows from Lemma 6.6. In the second case let $x$ be an element of infinite order in $R$. Then since $R$ is the union of its finitely-generated subgroups containing $x$, and each of these has finite intersection with $T$, we see that the hypotheses of Lemma 6.5 (ii) hold with $M=T$. Therefore the result follows in this case from Lemma 6.5 (ii).

Added in proof: Since submitting this paper, I have been informed that some of the results it contains have been obtained independently by Dr. D. Segal.

## REFERENCES

P. Hall
[1] Some constructions for locally finite groups. J. London Math. Soc. 34 (1959) 305-319.
H. Heineken
[2] Maximale p-unterguppen lokal endlicher Gruppen Archiv der Math., to appear.
O. H. Kegel
[3] Locally finite groups. (Mathematical Institute, Oxford).
L. G. Kovács, B. H. Neumann and H. de Vries
[4] Some Sylow subgroups. Proc. Roy. Soc. Ser. A. 260 (1961) 304-16.
P. M. Neumann
[5] On the structure of standard wreath products of groups. Math. Zeitschrift 84 (1964) 343-73.
B. I. Plotkin
[6] Radical groups. Mat. Sbornik (N.S.) 37 (79) (1955) 507-526; Amer. Math. Soc. Transl. (2) 17 (1961) 9-29.
B. A. F. Wehrfritz
[7] Sylow subgroups of locally finite groups with Min-p. J. London Math. Soc. (2) 1 (1969) 421-7.
(Oblatum 28-II-1972)
Mathematics Institute
University of Warwick Coventry, England

