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1. Introduction

Throughout this paper W will denote the complete standard wreath
product H  K of two non-trivial groups H and K. We have

where H is the base group, that is the set of all functions f : K - H made
into a group by pointwise multiplication, and acted on by K according
to the rule 

By the support supp f of an element f e H we mean as usual the set of
all k ~ K such that f(k) ~ 1. If a is any infinite cardinal then the set HQ
of all f ~ H such that Isuppfl  a is clearly a normal subgroup of W
The group

will be denoted by H 03B1 K and called the a-restricted wreath product of
H by K; Ha is its base group. When oc = N0 of course we obtain the
usual standard restricted wreath product H  K. We shall denote this by
Jfl, and its base group by H.
A subgroup X of Wa will be called baseless if Ha n X = 1. Evidently

every baseless subgroup of Wa is isomorphic to some subgroup of K.
The questions which concern us here are:

Q 1. Which baseless subgroups of Wa are conjugate in W(T. to subgroups
of K?

Q2. What are the isomorphism types of the maximal baseless subgroups
of W« ?

In Section 2 we shall show how some of the answers obtained to Q2
may be used to construct locally finite groups containing certain given
sets of locally finite p-groups as Sylow (that is, maximal) p-subgroups,
thereby justifying the title of the paper.
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The answers to the above questions are particularly simple when
a &#x3E; |K|, in which case we are dealing with the complete wreath product.
For every baseless subgroup of W is conjugate to a subgroup of K
(Lemma 3.2 (i), which is essentially [5] Theorem 10.1), and so every
maximal baseless subgroup of W is isomorphic to K itself. In general,
however, the situation is more complicated. Most of the methods of this
paper only allow us to deal with baseless subgroups of Wa with the
property that every subset of cardinal  a generates a subgroup of
cardinal  a, and so we call groups with this property a-bounded. Of
course this is no restriction unless a = m 0, in which case it amounts to
local finiteness. Our first main result is then as follows; here an N-group
is one which satisfies the normalizer condition, and a cardinal a is regular
if a is not the sum of fewer than a cardinals each  a.

THEOREM A. Suppose that oc ~ IKI and let S be any a-bounded N-
subgroup of K of cardinal a. Then there exists a maximal baseless a-
bounded N-subgroup S* of W(T. such that HaS* = HaS. In particular
S* ~ S.

Suppose further that a is regular, and let T be any baseless a-bounded
N-subgroup of W(T.. Then either ¡TI = a or T is conjugate in Wa to a
subgroup of K.

We shall see in Section 3 that the assumption that a is regular cannot
be omitted above. In the first part of the theorem, notice that we are

referring to the maximal members of the set of baseless a-bounded

N-subgroups of Wa; similar conventions apply in the sequel. In the case
when K itself is an a-bounded N-group and a is regular we obtain from
Theorem A a complete answer to Q2. For in that case every subgroup of
cardinal a of K is isomorphic to some maximal baseless subgroup of
Wa, and the only maximal baseless subgroups of Wa which do not arise
in this way, if any, are the conjugates of K. The latter possibility only
occurs if ¡KI = P &#x3E; a, and in that case it seems rather surprising that
the cardinal of a maximal baseless subgroup of Wa must be either a or fi
and intermediate cardinals do not occur.

The case a = No of Theorem A is of course of special interest and so
we state below some of the information obtained from Theorem A for

that case. Notice that No is regular.
COROLLARY Al. Suppose that K is a locally finite N-group. Then every

countably infinite subgroup of K is isomorphic to some maximal baseless
subgroup of W.

Let T be any baseless subgroup of W. Then either T is countably infinite
or T is conjugate in W to a subgroup of K. In particular, if K is uncountable,
then the complements to H in W are conjugate.
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We are not aware to what extent, if any, the normalizer condition may
be weakened in Corollary Al. Some information about Q l, and in
particular about the conjugacy of the complements, can however be
obtained without the hypothesis of local finiteness, and we return to this
question later.

In the case of general K, the only restriction which we have been able
to obtain on the maximal baseless subgroups of Wa is the elementary
fact that they have cardinal at least a, provided that a is regular and
a ~ |K| (Corollary 3.3). Theorem B shows that a wide range of a-bound-
ed subgroups of cardinal a of K may be isomorphic to maximal baseless
subgroups of Wa and it seems conceivable that all such subgroups of K
may occur in that way. However this is certainly false without the restric-
tion of a-boundedness ; for example Theorem D shows that if K is free
abelian of rank 3 then the maximal baseless subgroups of W = H  K
have rank 1 or 3.

THEOREM B. Suppose that a ~ IKI and let S be an a-bounded subgroup
of cardinal oc of K. Suppose further that S contains a subgroup U such that

(i) |U| = 03B1,
(ii) for each a-bounded subgroup L with S  L ~ K, there exists an

element x E L - S such that Ux ~ S.

Then there is a maximal baseless a-bounded subgroup S* of Wa such that
HaS = H03B1S*. Thus S ~ S*.

Evidently (ii) holds whenever U - K, and in fact it holds whenever U
is an ascendant subgroup of K in the sense that there exists an ordinal p
and subgroups {U03C3. : 6 ~ 03C1} such that Uo = U, U,, U03C3+ 1 if 03C3  p,

Ull = ~03C303BC U6 if 03BC ~ p is a limit ordinal, and Up = K. For suppose
S  L ~ K and let J be the least ordinal such that U03C3. n S  U03C3 n L.
Then J is neither a limit ordinal nor zero and we have U ~ U03C3-1 ~ S =
U03C3-1 n L a U03C3 ~ L. Thus Ua n L contains elements x e S, and any
such element satisfies Ux ~ S.
We therefore have

COROLLARY B1. Suppose that oc ~ K | and let S be any a-bounded
subgroup of cardinal a of K which contains an ascendant subgroup of
cardinal oc of K. Then there is a maximal baseless a-bounded subgroup S*
of Wa such that HaS = HaS*.

In the case when K is an N-group every subgroup of K is ascendant in
K and so Corollary Bl yields an alternative proof of Corollary Al. In
fact the obvious similarity between Theorem B and the first half of
Theorem A allows us to deduce them both from a simultaneous generali-
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zation (Lemma 4.2), the statement of which is unfortunately more
complicated than either.
We have not been able to extend the results of Theorem A to cover the

baseless locally nilpotent subgroups of Wa for general a, but the following
gives some information about the case oc = m 0.

THEOREM C. Let 03C0 be a set of primes and let S be a countably infinite
periodic locally nilpotent n-subgroup of K. Suppose that H is abelian and
either

(i) H contains a subgroup of order at least 4 which contains no non-
trivial 03C0-elements, or

(ii) the Sylow 2-subgroup of S is finite and H is not a n-group.
Then there is a maximal baseless periodic locally nilpotent subgroup S*

of W such that HS = HS*.

Evidently conditions (i) and (ii) both hold unless H is the direct
product of a n-group and a cyclic group of order at most 3. Notice that,
in contrast to Theorem A, no information is given here about the
uncountable baseless locally finite and locally nilpotent subgroups of W.
It does not seem clear whether they necessarily lie in conjugates of K.

In the last section (Section 6) we consider the baseless subgroups of
W = H  K which contain elements of infinite order. These turn out
to be surprisingly well behaved, provided they possess a suitable flavour
of generalized solubility.

THEOREM D. Let L* be a baseless subgroup of W = H  K and suppose
that L* is a radical group whose Hirsch-Plotkin radical is not periodic.
Then unless L* is a polycyclic group of Hirsch number one, L* is contained
in a conjugate of K.

Conversely, let L  K be polycyclic of Hirsch number one. Then there
is a baseless subgroup L* of W such that HL = HL* and L* is not contained
in a conjugate of K.

Here we use the term radical group in the sense of Plotkin [6]; a radical
group is one possessing an ascending series with locally nilpotent factors.
The Hirsch number of a polycyclic group is the number of infinite factors
in a cyclic series of the group.

COROLLARY Dl. Suppose that K is a radical group with non-periodic
Hirsch-Plotkin radical. Then the complements to H in W are conjugate if
and only if K is not a polycyclic group of Hirsch number one.

As a consequence of Corollary D l, Corollary 3.3 and the remarks after
Lemma 3.5 we obtain a criterion for the conjugacy of the complements
to the base group in the case when K is countable and locally nilpotent.
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COROLLARY D2. Suppose that K is countable and locally nilpotent.
Then the complements to Il in W are conjugate if and only if K is neither
infinite periodic nor finite-by-infinite cyclic.
Some information about the uncountable case can be obtained from

Theorem A and Lemma 6.5.

2. Groups with many Sylow subgroups

There are a number of examples in the literature to show that the
Sylow p-subgroups of a locally finite group G may fail to be isomorphic
in various rather spectacular ways, even when the group G has rather
restricted structure (for example [4], [7]). In this section we indicate how
a number of other such examples may be constructed on the basis of
Theorems B and C. Some rather similar examples have recently been
obtained by Heineken [2] in a different way. We make the obvious remark
that if a p-subgroup P of a group G happens to be a Sylow n-subgroup
of G for some set 03C0 of primes containing p, then P is a Sylow p-subgroup
of G.

THEOREM E. Let q be a given prime, let oc be a given infinite cardinal,
and let ô be the smallest cardinal satisfying the condition

Then there exists a periodic metabelian group G of cardinal b which
contains as a Sylow q’-subgroup a copy of every infinite abelian q’-group
of cardinal not exceeding oc.

Since, if y  oc, we have 03B103B3 ~ oc’ = 2(T., it follows that 03B4 ~ 2Cl. Notice,
however, that equality may occur. For example, define 03B10 = N0 and

oc i = 2"i -1 for 1 ~ i  co, the first infinite ordinal. Then if oc = 03A3i03C9 03B1i
we have

Hence ô = 2(T. in this case.

However in the case oc = No we evidently have 03B4 = No, and so we
find in particular that there exists a countable periodic metabelian group
which contains, as a Sylow p-subgroup, a copy of every countably infinite
abelian p-group for which p ~ q. This result is in a sense best possible
in view of the following:

PROPOSITION. Let G be a periodic metabelian group which contains, for
each prime p, a Sylow p-subgroup Sp of type Cpoo. Then G is locally cyclic
and S, is its unique Sylow p-subgroup.

PROOF. Let R be the Hirsch-Plotkin radical of G. Then Sp n R is the
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unique Sylow p-subgroup of R and so R is locally cyclic. Therefore R is
the union of finite characteristic subgroups and if C = CG(R) then G/C
is residually finite. Hence Sp ~ C for all primes p. Now clearly C is nil-
potent, whence C = R and so Sp ~ R. Therefore Sp is the unique Sylow
p-subgroup of R and Sp  G. It follows that Sp is the set of p-elements of
G, whence G = ~Sp; all p) = R, as claimed.
However the proof of Theorem E will show that a non-periodic metabe-

lian group may well contain, for every prime p, every abelian p-group of
cardinal at most a as a Sylow p-subgroup.

PROOF OF THEOREM E. Let C be the direct product of groups of type
Cpoo, one for each prime p ~ q, and let K be the direct product of a
copies of C. Now every infinite abelian group A can be embedded in a
divisible abelian group of cardinal lAI and it follows from this that K
contains a copy of every infinite abelian q’-group of cardinal not exceed-
ing a. Let H be a cyclic group of order q and for each infinite cardinal
03B2 ~ a let L. denote the base group of H  03B2 K. Finally let L = Dr03B2 ~ 03B1 L.
be the direct product of the groups L. (03B2 infinite) and let G = LK be the
natural semidirect product of L by K. Then G is periodic and metabelian.

Let S be any infinite subgroup of K. We shall show that G has a Sylow
q’-subgroup isomorphic to S. Now ISI = P for some 03B2 ~ a, and since

Mp = L03B2K ~ H  03B2 K, Theorem B shows that there is a subgroup T of
M03B2 which is isomorphic to S and has the property that any larger sub-
group of M03B2 meets Lo non-trivially. Therefore T is a Sylow q’-subgroup
of M03B2 . Let U be a q’-subgroup of G containing T, let L* - Dr03B3~03B2 Zy and
let U * = L*03B2 U. Then as G = L*03B2 M03B2 we have U* = L*03B2(U* n M03B2) and
U * n M03B2 complements L*03B2 in U*. Therefore U* n M. is a q’-subgroup
of M03B2 containing T, whence U * n Mp = T. Hence L*03B2U = L*03B2T and
U = (L*03B2 n U)T = T since L*03B2 is a q-group. Therefore T is a Sylow
q’-subgroup of G.

It remains to consider the cardinal of G. Let y  a. Now evidently the
number of y-element subsets of K is at most ay, and since K can be

partitioned into y subsets each of cardinal a it follows that the number of
such subsets is precisely ay. Therefore the number of maps of K into H
with support of cardinal y is 03B103B3203B3 = aY. Hence ILfi = 03A303B303B2 03B103B3 and so,
since L is generated by the sets Lo for all 03B2 ~ a, we have |L| ~
E,6:!g,x (03A303B3 03B2 a’’)  03B103B4 = ô, since 03B4 ~ a and in the double sum there oc-
cur at most a summands each of which is at most aô = b. Since |L03B1| ~
oc’ for all y  a it follows that in fact |L| = b, whence [G| = 03B303B4 = b.
By similar arguments we can establish the following result which is

somewhat more general than Theorem 3 of Wehrfritz [7], although the
ideas behind the proof are essentially the same.
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THEOREM F. Let q be a given prime and for each prime p ~ q let

np ~ 0 be an integer. Then there exists a countable periodic metabelian
group satisfying Min-p for all p ~ q and containing, for any p ~ q, a
Sylow p-subgroup isomorphic to any given countably infinite abelian

p-group of rank not exceeding np .

PROOF. We may assume without loss of generality that np &#x3E; 0 for some
p ~ q. Let K be the direct product of a collection of groups consisting
of np copies of Cp~ for each p ~ q, let H be cyclic of order q, and let
W = H  K. Then it is immediate from any of Theorems A-C that W

has the properties required by Theorem E.

THEOREM G. Let {P03BB : 03BB E 039B} be a given set of infinite locally finite
p-groups. Then there exists a locally finite and locally soluble group G
containing a copy of each P¡ as a Sylow p-subgroup.

It will be seen from the proof that G may often be chosen to inherit
special properties from the P03BB ; for example if the PÂ are all soluble and
of bounded derived length then G may be chosen soluble, and so on.
The case lAI = 2 of the Theorem G has been known for some time and
is due to Heineken [3]. His construction is rather different from ours in
that it starts from the free product of the two groups in question. It has
since been substantially generalized by Heineken [2].

PROOF oF THEOREM G. Let K be the direct product of the PA and
suppose that IKI = a. Let H be a cyclic group of order q ~ p and, for
each infinite 03B2 ~ oc, let Lo be the base group of H  03B2 K. Let L = Dr03B2~03B1 L,
and let G be the semidirect product LK, which is clearly both locally
finite and locally soluble.
Let E A. Then |P03BB| = 03B2 for some infinite 03B2 ~ a. Now Mp = L03B2K ~

H  03B2 K and Theorem B shows, since PÂ  K, that M03B2 has a Sylow
p-subgroup T éé P03BB. It then follows as in the proof of Theorem E that
T is a Sylow p-subgroup of G.
Theorem G allows us, for example, to obtain a locally soluble group

containing every countably infinite locally finite p-group as a Sylow
p-subgroup; however the group so obtained has cardinal 2N0. We can
improve on this by using Theorem C, but since it does not seem to be
known whether there exists a countable locally finite and locally soluble
group in which every countable locally finite p-group can be embedded,
we have to sacrifice local solubility.

THEOREM H. There exists a countable locally finite group which contains,
for each prime p, a copy of every countably infinite locally finite p-group
as a Sylow p-subgroup.
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PROOF. It was shown by P. Hall [1] that there exists a countable
locally finite group U which contains every countable locally finite group
as a subgroup. Let p1 , p2 , ’ ’ ’ be the primes in natural order, let H2 be a
cyclic group of order 9 and let Hi be a cyclic group of order pi for i &#x3E; 2.

We now define G1 - U and inductively Gi+1 = Hi+1  Gi for i ~ 1.

Let G = ~~i=1 Gi, Gi being embedded in Gi+1 in the obvious way.
Then for i &#x3E; 0 we have G = Ni+1 Gi+1, Ni+1 ~ Gi+1 = 1, where

Ni+ 1 is the product of the base groups of Gi+ 2 , Gi+3, ···. Let P be any
countably infinite locally finite p;-group. Then P is isomorphic to a
subgroup of Gi and Theorem C shows that there is a subgroup p* ~ P
of Gi+1 which is such that any larger locally nilpotent subgroup of
Gi+1 meets the base group of Gi+1 non-trivially. Hence P* is a Sylow
pi-subgroup of Gi+1. Since Ni+1 is a p’i-group it follows easily that
P* is a Sylow pi-subgroup of G, as claimed.

3. Preliminary results

In the notation already established, let X be a set of baseless subgroups
of W(T.. We shall say that X is W(T.-contained in K, and write X :9 Wa K, if
every member of X is conjugate in Wa to a subgroup of K. Let B denote
the set of all baseless a-bounded subgroups of Wa and let Bp be the set
of all members of B of cardinal  03B2, where 03B2 is some infinite cardinal.
We shall be interested in investigating the Bp with respect to the property
of being W03B1-contained in K, and the following elementary remark will
often be used without mention.

LEMMA 3.1. Let G = AB, A  G, A n B = 1 be the semidirect product
of two groups A and B.

(i) Suppose C* ~ G satisfies C * n A = 1, and let C = A C * ~ B.
Then C* is conjugate in G to a subgroup of B if and only if C*a = C for
some a E A.

(ii) Let X ~ B and a, a’ E A. Then Xa ~ Ba’ if and only if a’a-1 E CA(X).

PROOF. (i) Suppose C*g ~ B for some g E G. Then writing g = ab
(a ~ A, b E B), we obviously have C*a ~ B n AC* = C. Since also

C ~ AC*a, we obtain C = (A n C) C*a = C *a, as required. The

converse is clear.

(ii) Suppose that Xa ~ Ba’, and let c = a’a-1. Then X ~ B’ and so,
for x E X, we have x = bC = [c, b-1]b for some b E B. Since the product
AB is semidirect it follows that x = b and [c, b -1 ] = 1; therefore

[c, x - 1 1 = 1 for all x e X and we have c E CA(X). The converse is again
clear.
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LEMMA 3.2. (i) If oc &#x3E; 1 KI then B ~w03B1 K.
(ii) Suppose that a ~ IKI and let fi be the least cardinal such that oc

is the sum of fi cardinals each  a. Then B. ~ w03B1 K.

COROLLARY 3.3. If a is regular then Ba ~ W03B1 K.

PROOF OF LEMMA 3.2. (i) As previously explained, this is essentially
well known (cf. [5] Theorem 10.1) since the condition a &#x3E; |K| simply
states that we are considering the complete wreath product Hl K.
However it will be useful to give a proof. -

Let S be a subgroup of W = H  K such that H n S = 1. Then

where T = HS n K, and each element of S is uniquely of the form

ht t with t E T. We have, if t1, t2 E T,

whence

or, evaluating at k ~ K and rearranging,

Let u E H. Then (htt)u = u-1 ht ut 1 t. We wish to choose u so that
this element lies in K for all t E T ; this is equivalent to the condition
u-1htut-1 

1 
= 1 for all t E T, or

for all kEK, tET.
Let {s03BB} be a right transversal to T in K. Thus K = UÂ sÂ T and

s03BBT ~ sT =  if À ~ /1. Define u ~ H by

Then, if tl , t2 E T and we substitute k = SÂt2, t = t1 in (2), we obtain

which is 1 as can be seen by replacing t2 by (t2t1)-1 in (1).
(ii) This follows by the argument of (i). For let S be a subgroup of

cardinal  03B2 of W(T.. Then we can view Wa in a natural way as a subgroup
of W, and so we have Su ~ K, where u is the element of H constructed
in (i). It will clearly suffice to show that u E H03B1 . Now u clearly takes the
value 1 at all points outside the union of the supports of the ht (t e T).
Since ht E Ha each such support has cardinal  a, and since |T|  03B2 it
follows that the support of u has cardinal  a. Thus u E Ha, as required.
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The corollary is immediate since if a is regular then 03B2 = a in Lemma
3.2. Notice that the regularity of a is essential in Corollary 3.3. For let a
be any irregular cardinal and write a = 03A303BB~039B03B3039B, where is a set of
cardinal 13  a and 03B303BB  a for all À Ell. Let K be any group of cardinal

a which contains a free abelian subgroup L of rank 03B2. Then |K: LI = a
and so the set of right cosets kL of L in K may be partitioned as the
union UÀEA CÀ of pairwise disjoint sets CÀ such that CÀ consists of 03B303BB
cosets. Let Wa = H  03B1 K, where H is some non-trivial group. Further
let {~03BB : 03BB E 039B} be a basis of L, let 1 =1= te H, and let y03BB = hÀxÀ’ where
h. is the element of Ha taking the value t at each point which belongs to
some coset in Cz, and 1 elsewhere. Then the support of h03BB has cardinal
f3YÀ = max {03B2 03B303BB}  a and so hÀ does in fact belong to Ha .
Now the following is well known and easy to verify:

LEMMA 3.4. Let W = H  K, where H and K are any groups, let S ~ K

and let f ~ H. Then f centralizes S if and only if f is constant on each right
coset of S in K.

Thus the elements h À all centralize L and so the y03BB generate an abelian
group M. Any non-trivial element y E M has the form y = yn103BB~ ··· ynk03BBk
where k &#x3E; 0, the 03BBi are distinct elements of A, and the ni are non-zero
integers. Since y ~ xn103BB1 ··· xnk03BBk mod H03B1 no such element lies in Ha, and
soH H03B1 ~ M = 1 andMEBa.
On the other hand let h E H03B1 . Then supp h has cardinal ô  a and so

we have ô = |supp h|  03B303BB for some 03BB E A. Then

Now the support of [h, x-103BB] has cardinal at most ô while that of hh03BB has
cardinal ~ 03B303BB &#x3E; b, and so [h, x-103BB] takes the value 1 at some point of
the support of h1. At such a point the value of hh03BB[h03BB, x-103BB] is different
from 1. Hence yh03BB ~ K and it follows that Mh «5 K. Therefore M is not
conjugate to a subgroup of K.
The following result provides a partial converse to Lemma 3.2 (i).
LEMMA 3.5. Suppose that B ~ Wa K. Then 1 SI  a for every a-bounded

subgroup S of K.

The proof requires a technical lemma which will find further application
later.

LEMMA 3.6. Let oc be an infinite cardinal, let S be an a-bounded group of
cardinal a containing a subset U also of cardinal a, and let n &#x3E; 0 be an

integer. Then there exists a tower {S03C3 : 03C3  ce l of subgroups of S such that
~03C303B1 Sa = S, 1 SO’I  oc if u  a, and 1 (U n S03C3+ 1)S03C3 : S03C3| ~ n for all
03C3  a.
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Here we are thinking of a as an ordinal which is not equivalent to any
of its predecessors. By the statement that {S03C3 : 6  al is a tower we

mean that So = 1, S03C3 ~ S03C3+1 for J+ 1  a, and S. = ~03C303BC Sa for
limit ordinals 03BC  a. The notation |(U ~ S03C3+1)S03C3 : S03C3| denotes the

number of right cosets tSO’ of S03C3 contained in the set ( U n S03C3+1)S03C3.

PROOF oF LEMMA 3.6. In the case a = it 0, S is a countably infinite
locally finite group and we require simply a tower 1 = So  S1  ···
of finite subgroups of S such that S = ~~i=0 Si and

for all i. The construction of such a tower is completely straightforward.
In the case a &#x3E; No the restriction of a-boundedness is of course

vacuous. In this case, let {s03C4 : r  03B1} and {u03C4 : r  03B1} be the elements
of S and U respectively. It will clearly suffices to construct, for J  a,

subgroups S03C3 of S satisfying

For (i) gives S = U03C303B1 S03C3 and (ii) gives |S03C3|  a if 03C3  a, since a &#x3E; No
and a is not equivalent to any of its predecessors.

Let So = 1 and suppose that, for some 0  p  a, we have the

subgroups S. for 03C3  03C1. If 03C1 is a limit ordinal we put S, = ~03C303C1 Sa.
Then (i) holds, and since |S03C3|~ max(No, |03C1|) for 03C3  p we have

|S03C1| ~ max(Ko!pL |03C1|2) = max(No, |03C1|). If p has the form a+ 1 then

|S03C3|  a by (ii) and so 1 USa: S03C3| = a. Therefore there exists a least
ordinal 03BB such that |{u03C4 : r  03BB}S03C3 : S03C3| ~ n. Now 03BB &#x3E; J by (i) and the
fact that n &#x3E; 0, and so if we put S03C3+1 = ~S03C3, s03C4, u, : T  À), then (i)
holds with replaced by 03C3 + 1. Further, necessarily has the form 03BC + 1
and we have {u03C4 : r  03BC} ~ {u03C4 : 03C4  03BC} S03C3, which is the union of at most
n -1 right cosets of Sa and so has cardinal at most max(No,1 03C3|). There-
fore |03BC| ~ max(mo, lui) and so

recalling that p = a+ 1. It follows that |S03C1| ~ max(No, Ipl), and so (ii)
holds. Since (iii) holds by the choice of À, the proof is complete.

PROOF oF LEMMA 3.5. Suppose that K contains an a-bounded subgroup
of cardinal exceeding a. Then K contains an a-bounded subgroup S
of cardinal a precisely. Taking U = S and n = 3 in Lemma 3.5, we obtain
a tower {S03B3 : y  OC I of subgroups of S satisfying
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and

For each y  a choose a right coset D, :0 S, of S, in S03B3+1. Then for
each fi  a the set ~03B303B2 Dy is a subset of S03B2 and so has cardinal  a

by (4). Let t ~ 1 be a selected element of H and let y03B2 be the element of
Ha which takes the value t at each point of ~03B303B2 Dy and 1 elsewhere.

Since D,i n DO, = 0 if Pl =-1 132 it is clear that if fi  y then y03B3y-103B2 takes
the value t on ~03B2~03C303B3D03C3 and 1 elsewhere. Thus y03B3y-103B2 is constant on

each right coset of S. and so by Lemma 3.4 we have

Let S*03B2 = Sy03B203B2 (03B2  a). Then if fi  y  03B1 we have from (5) that

Sp* = Sy03B303B2 ~ S*03B3, and so U03B203B1S*03B2 is a subgroup S* of W(T.. Clearly
S* n Ha = 1 so that S* E B.

To complete the proof it remains to show that S*  K’’ for all

y c- H,,,. Suppose then that S* ~ KY. Then for y  a we have

whence by Lemma 3.1 we have y y-103B3+1 ~ CH03B1 (S03B3+1). Hence we have
y = c03B3+iy03B3+1, where c03B3+1 is constant on each right coset of S03B3+1 in K.
In particular c03B3+1 takes the same value at each point of Sy+ 1. Unless
that value is t -1 it follows that the support of y contains Dy. If it is t-l
then supp y contains Sy+ 1 - (Sy u Dy). Therefore, by (3), we obtain in
either case a coset E03B3 ~ S. of Sy in S03B3+1, which is contained in supp y.
Therefore supp y contains ~03B303B1 E03B3. Since this set can evidently be
mapped onto S its cardinal must be a, which contradicts the assumption
that y E Ha and completes the proof.

Notice that if a = |K| and K is a-bounded then we can choose S to be
K itself, thereby showing that the complements to Ha in Wa are not
conjugate in that case.

4. Proofs of Theorems A and B

The following elementary result will frequently be required.

LEMMA 4.1. Let c, d, y be functions from a group K to another group H
and let f = cdy. Let U be a proper subgroup of K and x E K- U. Suppose
that c is constant on each right coset of (x) in K and d is constant on each
right coset of U in K. Suppose further that u and v are elements of U such
that y(u) ~ y(v) and ux, vx lie in a single right coset C of U which satisfies
C n supp y = 0. Then f(t) ~ 1 for some t E {u, v, ux, vx}.
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PROOF. We have c(u) = c(ux) = 03BB, c(v) = c(vx) = J1 say; also

d(u) = d(v) = J, d(ux) = d(vx) = p since by assumption ux, vx lie

in a common right coset of U. Further y(u) = a, y(v) = fl, y(ux) =
y(vx) = 1. Therefore f takes the values 03BB03C303B1, 03BC03C303B2, Àp, 03BC03C1 at u, v, ux, vx

respectively. The assumption that all these values are equal evidently gives
03BB = J1 and hence a = fi, contrary to our hypotheses.
We shall deduce Theorem B and the first half of Theorem A from our

next lemma, which generalizes both.

LEMMA 4.2. Let W,, = H 03B1 K and suppose that a ~ 1 KI. Let U ~ S
be a-bounded subgroups of cardinal a of K and let T be the set of all sub-
groups T of K containing S and satisfying the condition

(*) if S  L ~ T and L is a-bounded, then Ux ~ S for some x E L - S.

Then there is a baseless subgroup S* of Wa satisfying

(i) H03B1 S = H03B1S*.
(ii) For all T E T, S* is maximal among the baseless a-bounded sub-

groups of Wa contained in HaT.

Now the hypotheses of Theorem B imply that K E T; thus Theorem B
is an immediate consequence of Lemma 4.2. To deduce the first half of

Theorem A we take S to be any a-bounded N-subgroup of cardinal a
of K and U = S. If S* is as in Lemma 4.2 and T* is a baseless a-bounded

N-subgroup of Wa containing it, then H03B1T* = HaT, where T = H03B1T* n K
is an N-subgroup of K. Clearly T E T, whence Lemma 4.2 gives S* = T*,
as required.

PROOF oF LEMMA 4.2. As in the proof of Lemma 3.5 we find it useful
to think of a as an ordinal which is equivalent to none of its predecessors.
Then by Lemma 3.6 with n = 3, there exists a tower {S03C3: 6  03B1} of
subgroups of S such that

(iii) if a  a then there exist elements ua , u’03C3 E U n S03C3+1 such that
the three cosets S03C3, uO’S 0" u’03C3S03C3, are all distinct.

Now let Da = u03C3S03C3 for 03C3  a and let 1 :0 b E H. The sets DO’ are
pairwise disjoint, and there exists for each a  a a uniquely defined
element y03C3 in Ha which takes the value b at each point of ~03BB03C3 D03BB and
1 elsewhere. Notice that |~03BB03C3D03BB| ~ 1 SO’I  a by (ii). Clearly if 03C4  03C3
then y03C3y-103C4 is constant on each right coset of St and so belongs to

CH03B1(S03C4). Let S: = Sy03C303C3 (03C3  a). Then S*03C4 ~ SQ if 03C4  03C3 and so S* =

U03C303B1S*03C3 is a subgroup of Wa which clearly satisfies
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Thus S* ~ B.

Suppose now that T E T and suppose that S* ~ L* ~ N03B1T for some
baseless a-bounded subgroup L*. Then H,,,L* = Il (ZL for some subgroup
L of T containing S. We wish to show that L* = S*, or equivalently,
that L = S. Suppose then that this is not the case. Then by condition (*)
of the lemma and the fact that L -- L*, we have

For each J  a let T03B1 = S03C3, x&#x3E;. Now for u E L let u* denote the

unique element of L* congruent to u modulo H03B1 . Then u - u* is an

isomorphism of L onto L* which maps S03C3 onto S*03C3 (6  a) and so we
have

We now show that T*03C3 is conjugate under Ha to Ta for J  a. If

a = No then S03C3 is finite by (ii) and so Ta, being N0-bounded, is finite.
Hence Tl is finite and so T*03C3 is conjugate to T. under Ha by Corollary 3.3
and the fact that N0 is regular. Therefore we may assume that a &#x3E; x 0,
in which case Corollary 3.3 is inadequate since a may be irregular.

Let t ~ T03C3. Then t* ~ T*03C3 is uniquely expressible in the form hrt with
ht E Ha . Let Â = |supp y03C3|, 03BC = 1 supp hx| and 13 = max (Â, /1, No). Then
13 is infinite and 13  a. By (3) we have, if t E T,

where si ~ S03C3, 03B5i = ± 1 and n ~ 0. We show by induction on n that
|supp ht|  fi. To do this it suffices to show that if supp ht| ~ 03B2 and
ht.t’ has either of the forms ht tsYcr (s E Sa) or ht t x*’ (B = + 1 ) then
|supp ht’| ~ fi. In the first case we have

Then

the support of this is contained in the union of three sets each of cardinal
at most 13, and so supp ht’| ~ 03B2 in this case. In the second case, ht. is
either

and similar considerations apply.
We now have that if S(t) = supp ht then |S(t)| ~ 03B2 for each t E Ta.

Let X = ~t~T03C3S(t) ~ Ta. Then |X| ~ fi |T03C3|+|T03C3| = max(03B2, |T03C3|)  a.
Hence, if Y = X&#x3E;, then 1 Yi  a. Therefore Ha contains every function
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from K to H with support contained in Y; the group generated by these
functions and Y is evidently isomorphic to H T Y and contains T*03C3.
Lemma 3.2(i) now shows that T*03C3 is conjugate in this group to a sub-
group of Y. Hence T§fi is conjugate to T,, under Ha and we have

Now Tz03C303C3 ~ Tz03C403C4 if u  r and so

by Lemma 3.1. Also Sy03C403C4 ~ Tz03C403C4 and so the same lemma gives

Since x E T,, for all Q ~ 1 we have from (5) that z03C4z-103C3 E CH03B1(x) for
1 ~ 03C3  ï, and consequently, using (6), we can write

for any 1 ~ 03C4  rx, where c1: E CHa(x) and d1: E CHa (S1:). We shall deduce
from this that, for each J  a, the support of z1 contains at least one

point from the set Ba = {u03C3, u’03C3, u6x, u’xl. Since S n Sx = 0 it is easy
to see that these sets are pairwise disjoint, from which it follows that the
support of z 1 has cardinal at least a, contradicting the fact that z1 E H03B1.

Consider than an ordinal J  a. Now by assumption we have Ux ~ S
and so we can write

for suitable v03C3, v’03C3 E S. Choose 03C4  a such that S03C3+1, Va, v’03C3&#x3E; ~ S03C4 and
express Zl in the form (7). Then using Lemma 3.4, we have that ct is
constant on each right coset of x&#x3E; in K and d03C4 is constant on each right
coset of Sr:. From the definition of y03C4 we have that Yr:(uO’) = b ~ 1 =

y03C4(u’03C3). Also (8) gives that uO’x and u’x lie in xS03C4; since supp y03C4 ~ S03C4 this
coset does not meet the support of y03C4. Therefore Lemma 4.1 gives that
z1(w) ~ 1 for some w ~ B03C3 = {u03C3, u’03C3, u03C3x, u’03C3x}, concluding the proof
of Lemma 4.2.

CONCLUSION OF THE PROOF OF THEOREM A. We now have to consider
the baseless a-bounded N-subgroups of Wa = H 03B1 K, where a ~ IKI
and a is regular.

Let S * be such a subgroup. Then as usual we have H03B1S* = H03B1S, where
S = Ha S * n K. Let U be the set of all subgroups of cardinal  a of S.

Then since S is a-bounded, it is the union of the members of U, and any
two members of U generate a third. By Corollary 3.3 there exists for each
U e U an element yu E Ha such that UyU ~ S*. Choosing such a yu for
each U E U, we have
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and from Lemma 3.1

Since the elements yu may be varied at will by premultiplying by elements
of CH03B1(U), that is by elements of Ha constant on right cosets kU of U in
K, we may further assume that

if C is a right coset of U on which yu is constant.
Let R be a right transversal to S in K; thus K = ~r~R rS and

rS ~ r’S = Ø if r ~ r’.
We distinguish two cases.

CASE 1. There is a subgroup F E U such that, for every F  L E U,
there exists an element zL E Ha with YLzi 1 E Cii. (L) and supp zL ~ UreRrF.

In this case we may suppose that supp yL ~ ~r~R rF whenever F  L
E U. We may also assume that F  S, since otherwise S* is conjugate to
a subgroup of K by (9) and so we may choose E so that F  E E U.

Let E ~ L E U. Then by (10) we have yL = cyE , where c is constant on
each right coset of E in K. Let r E R. Then both yL and yE take the value
1 at each point of rE- rF; therefore c takes the value 1 at each such point,
and hence c takes the value 1 at each point of rE. Therefore the functions
yL and yE coincide on rE, and since each of them has support lying
in UreR rF  UrER rE, we obtain yE = yL for all E ~ L E U.
Now if U E U and L = (U, E&#x3E;, then a-boundedness gives L E U. Then

using (10) we have

Hence by (9) we have S* ~ KYE in this case.

CASE 2. No subgroup F E U satisfies the hypothesis of Case 1.

In this case, thinking of a as an ordinal which is not equivalent to any
of its predecessors, we construct a strictly ascending tower {T03C3 : Q  03B1}
of subgroups of S satisfying

We begin by putting To = 1. Let 0  03C4  a and suppose we have the
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subgroups Ta for J  i. If r is a limit ordinal we put Ti = ~03C303C4T03C3.
Then 1 T’CI  a since jr  a and a is regular. Ifr has the form u + 1 then, by
a-boundedness, we can choose a subgroup T. E U such that T03C3 ~ Ta and
supp y03C3 ~ ~r~RrT03C3. By the hypotheses of Case 2, Ta will not serve as F
in the hypothesis of Case 1, and so Ta is properly contained in a subgroup
TO’+ 1 E U satisfying (iii). Also (ii) holds by construction, and so the tower
can be obtained.

Let T = ~03C303B1T03C3. Then we have 1 Tl = a. In fact |T| ~ a since the
tower {T03C3} is strictly ascending; on the other hand, it follows from (i)
that |T| ~ OE2 = a.
We shall now show that T = S, thus showing that 1 SI = a and com-

pleting the proof of Theorem A. Suppose if possible that T  S. Then

since S satisfies the normalizer condition there is an element x ~ NS(T)- T.

For each J  a let U03C3 = T03C3, x&#x3E; and z03C3 = yU03C3. Then from (10) we have

and

Hence a fortiori z03C4z-11 ~ CH03B1(x) if 1 ~ r  oc, and so from (12), we can
write

where c, E CH03B1(x), d03C4 E CH03B1(T03C4), for any 1 ~ r  a.

Let J  a be an ordinal of the form 03BC + m, where J1 is a limit ordinal
or zero and m is an odd positive integer. Ordinals of this form will be
called ’odd’, and the number of odd ordinals  a is clearly a. We claim
that there exist elements u03C3, u’03C3 ~ T03C3+1 - T03C3-1 and an element r03C3 belong-
ing to the transversal R such that

Indeed, in the contrary case, y03C3 takes a constant value on each right
coset of T,, lying in rT03C3+1 with the possible exception of rT03C3 itself, and on
rT6, y03C3 is constant outside rT03C3-1. This holds for all r E R. Therefore by
(ii) there is an element e03C3 ~ H03B1 which is constant on right cosets of Ta,
and is such that supp e-103C3 y03C3 ~ UrER rT03C3-1. However this contradicts
(iii) above, and so the desired elements ua, u’03C3, r03C3 indeed exist.
Now if 03C4 ~ 03C3 then we have from (10) that y03C4 = f03C3 y03C3 , where fa belongs

to the centralizer in Il (T. of T. and so is constant on right cosets of T03C3 ;
hence from (15) and (16) we obtain
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For each odd ordinal Q  a let B03C3 = {u03C3 u’03C3,, Ua X, u§x) and let

B*03C3 = ~r ~ R rB03C3 .
Since x e T and ua, u’03C3- ~ T03C3+1 - T03C3-1, the sets Ba are pairwise disjoint;

hence so are the sets B.*. We shall show that the support of zl contains at
least one point from each B: , thereby establishing that supp z1| ~ a and
obtaining a contradiction.
Now x normalizes T and so we have

with Va, v’03C3 E T. We choose r  ri such that T03C4 ~ ~T03C3+ 1 , Va, v’03C3~ express
z, in the form (14) and evaluate the result on the set r03C3B03C3 = {r03C3u03C3,
r03C3u’03C3, rO’uO’x, r03C3u’03C3x}. Now c03C4(r03C3u03C3) = c03C4(r03C3u03C3x), c03C4(r03C3u’03C3) = c03C4(r03C3u’03C3x), and by
(18), d03C4(r03C3u03C3) = dT:(rO’u:) and dT:(rO’uO’x) = dT:(rO’u:x). From (17), y03C4(r03C3u03C3)
:0 y03C4(r03C3u’03C3) and from (ii), since x ~ NS(T) - T, we have y03C4(r03C3u03C3x) =

y03C4(r03C3u’03C3x) = 1. Putting these facts together as in Lemma 4.1 we easily
find that the support of z, meets r O’BO’ non-trivially, as required to com-
plete the proof.

5. Proof of Theorem C

The arguments here are similar in spirit to those of Theorems A and B,
but differ somewhat in the technical details. The following lemma plays
the part previously occupied by Lemma 4.1.

LEMMA 5.1. Let G = (U, x) be a finite nilpotent group generated by a
n-subgroup U  G and an element x. Suppose that X is a proper normal
subgroup of G containing x. Let A be an abelian group and let c, d, y be
functions from G to A satisfying the following conditions:

(i) c is constant on each right coset of (x) in G,
(ii) d is constant on each right coset of U in G,
(iii) supp y ~ U but y is not constant on the set U- (U n X).
(iv) yeU) is contained in a subgroup B of A which has no non-trivial

n-elements.

Let f = cdy. Then f (w) ~ 1 for some w ~ X.

PROOF. The proof is by induction on IGI. In making the inductive step
there are two cases to consider, and the first of them also starts the
induction.

CASE 1. U  G. Let u, v be points in U- (U n X) such that y(u) :0 y(v).
Then u, v, ux, vx are points not lying in X and satisfying the hypotheses
of Lemma 4.1. Therefore f(w) ~ 1, where w is one of these points.
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CASE 2. U is not normal in G. Now x ~ 1 as U  G; hence X ~ 1 and

so X contains a non-trivial element z of prime order p belonging to the
centre of G. Let t - 1 be the natural homomorphism of G onto G = G/~z~.
Then U  G since otherwise G = U (z) and U  G; also U is a n-group.
Evidently X is a proper normal subgroup of G containing x.

Let ~ E AG, the multiplicative group of all functions from G to A
under pointwise multiplication, and let ip be the element of AG defined by
~(t) = 03A0u~t ~(u) (t E G). The map 9 ~ is a homomorphism of A’
into AG satisfying

where cpt is the element of AG defined by gt (u) = ~(ut-1) (u E G) and G
acts on AG in a similar way. If L ~ G then the centralizer of L in AG
consists precisely of the functions constant on the right cosets of L in G;
furthermore (1) shows that CAG(L) ~ CAG(L).
We therefore have that c and d are constant on the right cosets of ~x~

and Îl respectively in G; this can in any case be verified directly without
difficulty. Evidently y(U) ~ B and so in order to apply induction to G
it remains to verify (ii) for G. We now subdivide Case 2 further.

CASE 2a. z e U. Clearly y(t) = 1 unless i n U ~ 0, that is unless

i  U~z~. Thus supp y ~ ÎI. Let u, v be points in U- (U n X) such that
y(u) ~ y(v). Then u, v ~ X since z E X, and y(u) = y(u), y(v) = y(v),
since u and v are now the unique points of U in û, v respectively. Therefore
y(u) ~ y(v). It now follows by induction, since f = ê à , that there
exists an element X such that f(t) ~ 1. Therefore f(w) ~ 1 for some

w E l, and clearly w ~ X.

CASE 2b. z E U n X. Suppose first that there is a coset ù of ~z~ in
U- ( U n X) on which y is not constant, and let u, v be points of û such
that y(u) ~ y(v). Now v = uz’ for some integer Â and so vx = uz03BBx =
uxz03BB E uxU. Thus ux and vx lie in the right coset ux U of U, which does
not meet supp y ~ U. Therefore by Lemma 4.1 we have f(w) ~ 1, where
w is one of the points u, v, ux, vx; since none of these points lies in X the
result follows in this case.

Therefore we may suppose that y is constant on each coset of z&#x3E; lying
in U- ( U n X). Now as in case 2a we find that supp y ::g ÎI. Further-
more let u, v be points of U- (U n X) such that y(u) = rx =F f3 = y(v).
Then y(u) = ap, y(15) = 03B2P and 03B1p ~ 03B2p since p ~ 03C0 and B has no non-
trivial x-elements. Evidently û, v ~ X and so induction yields an element
t ~ X such that f(t) ~ 1. Hence f(w) ~ 1 for some w E l, and certainly
w ~ X. This establishes Lemma 5.1.
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PROOF OF THEOREM C. We have a countably infinite periodic locally
nilpotent x-subgroup S of K and have to construct a maximal member S *
of the set of baseless periodic locally nilpotent subgroups of W = H  K
satisfying HS = HS*, under the assumption that H is abelian and

satisfies certain other conditions to be found in the statement of the

theorem.

CASE 1. The Sylow 2-subgroup of S is finite and H is not a n-group.
Let Si be the Sylow 2-subgroup of S. Then by constructing an arbitrary
tower of finite subgroups from S1 to S and refining it suitably we can
write S = ~~i=0 Si, where

are finite subgroups of S such that Si is maximal and of index at least
three in Si+1 for i ~ 1. For each i ~ 0 let Di ~ Si be a right coset of
Si in Si+1. Let t&#x3E; be a non-trivial cyclic subgroup of H containing no
non-trivial rc-element and let yi be the element of H which takes the value
t at each point of ~j i Dj and 1 elsewhere. Then yi+ 1 yi 1 E CH(Si) and
so if we define st = Sri (i ~ 0) then S * = ~~i=0 Si* is a subgroup of W
satisfying HS = HS *, H n S * = 1.

Notice that

and

(4) Yi is not constant outside any proper subgroup of Si (i ~ 2).

Indeed if u is either 1 or t, then since 1 Si : Si-1| ~ 3 the set of points
SE Si at which yi(s) ~ u contains a right coset of Si-1 other than Si-1
itself and so generates a subgroup of Si properly containing Si-1.
Since Si- 1 is maximal in Si this subgroup must be Si itself, and so yi
cannot take the value u at all points of the complement of a proper
subgroup of Si.

CASE 2. The Sylow 2-subgroup of S is infinite but H contains a subgroup
B of order at least 4 containing no non-trivial 03C0-elements. In this case we
proceed rather differently to obtain conditions (3) and (4). We construct
a tower (2) of finite subgroups of S such that, for i &#x3E;~ 1, either

1 Si : Si-1| = 4 or Si - 1 is maximal and of index at least three in Si. This
is obviously possible. Let l, tl , t2, t3 be distinct elements of B. If

|Si+1 : Si = 4 let wi be the element of H which takes the values

1, t1 , t2 , t3 on the respective right cosets of Si in Si+1, and 1 elsewhere.
Otherwise let w1 be the element of H taking the value t 1 on some right
coset Di ~ Si of Si in Si+ 1 and 1 elsewhere. Then if Yi = 03A0j i wj (i ~ 1),
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we have yi+~y-1i E CH(Si) and so, defining S*i = sri and S * = ~~i=0 st,
we obtain HS* = RS, H n S * = 1 as before. It is not t difficult to see

that (3) and(4) hold.
Suppose now that there exists a periodic locally nilpotent subgroup

T* &#x3E; S * satisfying H n T * = 1. We may suppose that T * has the form

~S *, x*~ where x* ~ S*. Let x be the unique element of K which is
congruent to x* modulo H and let T = (S, x~, Ti = ~Si, x) (i ~ 2).
Then HT* = HT and HTi* = HTi ; also T = ~~i=0 Ti and T is locally
nilpotent. Since Ti is finite we have from Corollary 3.3 that Ti* = Ti for
some zi E H. Arguing as in the proofs of Theorems A and B, we obtain
ziy-1i E CH(Si) and ziz-11 ~ Ciî(x) for i ~ 1, whence we can write

for any i ~ 1, where ci E CH(x) and di E CH(Si).
Suppose now that we have n points ul, - ’ ’, Un of T lying in the support

of z1. We shall show how to construct a further such point un+1, thereby
showing that the support of z1 is infinite. This contradiction will show

that the assumption T* &#x3E; S * is false and establish the theorem. Let

W = (SI’ x, u1, ··· , un~, which is finite since K is locally finite. Let i
be the first integer 2 such that W  Ti , and let X be the normal closure
of W in Ti. Then X  Ti as Ti is nilpotent. Consequently since Ti =

~Si , x) and x E X we have X n Si  Si. We now express z, in the form

(5), and verify the hypotheses of Lemma 5.1 with G = Ti, U = Si,
A = H. These are all immediate except perhaps for conditions (iii) and
(iv) of the lemma; these follow from (3) and (4) above and the construc-
tion of yi . Lemma 5.1 therefore gives that z1(w) ~ 1 for some w ~ X, as
required to complete the argument.

6. Non-periodic baseless subgroups of W

In this section we consider only the ordinary restricted wreath product
W = H  K, and show that under fairly general conditions the presence
of sufficiently many elements of infinite order in a baseless subgroup of
W will ensure that it is W-contained in K.

The main result of this section, stated in the introduction, is Theorem
D. It falls into two parts, the first of which is an immediate consequence of

LEMMA 6.1 Let L* be a baseless subgroup of W and suppose that the
Hirsch-Plotkin radical of L* is neither periodic nor finite-by-cyclic. Then
L* ~ W K.

To obtain the first part of Theorem D, suppose that U is a baseless
radical subgroup of W with non-periodic Hirsch-Plotkin radical R, and
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U $ w K. Then by Lemma 6.1 we have that, if T is the torsion subgroup
of R, then T is finite and R/T is infinite cyclic. Let Ci = Cu(T), C2 =
Cu(RjT). Then UjC£ is finite (i = 1, 2) and so UjC1 n C2 is finite. But
C = CI n C2 ~ R. For otherwise C &#x3E; C n R and so C/C n R contains
a non-trivial characteristic locally nilpotent subgroup XIC n R. Then
X a U and we have [X, C ~ R] ~ C n T and [X, C ~ T] = 1. From

this it follows easily that X is locally nilpotent and hence that X ~ R,
a contradiction. Therefore we have that U/R is finite, and so U is polycy-
clic and of Hirsch number one.

For the converse suppose that L is any polycyclic group with Hirsch
number one, let F be the largest finite normal subgroup of L, and let
S/F be the Hirsch-Plotkin radical of L/F. Then S/F contains no non-trivial
finite normal subgroup and so must be infinite cyclic. Since SIF contains
its centralizer in L/F it follows that IL : S| is either 1 or 2 and L is an

extension of F by a group which is either infinite cyclic or infinite dihedral.
Therefore the proof of Theorem D is completed by our next lemma.

LEMMA 6.2. Suppose that L ~ K is an extension of a finite group F by
a group which is either infinite cyclic or infinite dihedral. Then there is a
baseless subgroup L* of W such that HL = HL* but L* W, K.

PROOF. We deal first with the case when LIF is infinite dihedral. Then
L/F is generated by an element xF of infinite order and an element tF
such that xt ~ x-1 modulo F.

Let y = tx-1. Then y e F but y2 E F. Choose 1 ~ h E H and let u be
the element of H taking the value h on F, h -Ion yF = Fy, and 1 else-

where. Then u E CH(F) by Lemma 3.4. Since right multiplication by y
interchanges the two cosets F and yF we have u’’ = u-’. Therefore
Utx-1 = u-i and so (ux)t = x-lxutx’ ~ x-1xutx-1 mod F. Hence,
modulo F, we have (ux)t ~ x-1 utx = X-1U-l. Therefore, if x* = ux,
then x* normalizes F and x*t - x*-1 mod F.

Let L* = (F, x*, t~. Then HL* contains x and it follows that HL* =
HL. An arbitrary element of L* - F is congruent modulo F to an element
of the form X*n tE, where n is a non-zero integer and 03B5 = 0 or 1. Such an
element, being congruent modulo Il to xn tE, cannot lie in H. Therefore
H ~ L* ~ H ~ F = 1 and L* is baseless.

Finally, if L*  w K then we have L* = Lw for some w E H. It follows
that ux = x* = xw = [w, x-1]x, whence u = [w, x-1]. But F ~ Fy =
~F, y~ and ~x~ n ~F, y) = 1 since ~F, y) is finite. Therefore no right
coset of (x) in K contains more than one point of supp u. Since u has
the form [w, x-1] it follows that u = 1, which is a contradiction.
The case when L/F is infinite cyclic may be discussed similarly. Let

L/F = (xF). Let 1 :0 h E H and let u be the element of H taking the
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value h on F and 1 elsewhere. Finally, if x* = ux, then L* = (P, x*)
satisfies our requirements.

It therefore remains only to establish Lemma 6.1, and we do this in
several stages. The first two steps give results which are probably well
known.

LEMMA 6.3. Let A be a normal subgroup of a group G complemented by
each of two subgroups B and B*, and let C = B n B*. Then CA(C n Cb) =F 1
for each b E B - C.

PROOF. Let b E B and suppose that CA(C n Cb) = 1. We have b = b*a
with b* E B*, a E A. Let c E C n Cb. Then cb ~ C and so C contains
[c, b-1] = [c, a-1b*-1] = [c, b*-1] [c, a-1]b*-1. Of these factors, the
first lies in B* while the second lies in A. Since their product lies in
C ~ B*, we have [c, a-1] = 1. This holds for all c E C n Cb, whence
a centralizes C n Cb and so a = 1. Therefore b = b* E C.

COROLLARY 6.4. Let L, L* be baseless subgroups of W such that L ~ K
and HL = HL*, and let M = L n L*. Then M n Ml is finite for each
1 E L - M. In particular M contains the normalizer in L of each of its
infinite subgroups.

PROOF. Since CH(J) = 1 for every infinite subgroup J of K, Lemma
6.3 gives immediately that M n Ml is finite for 1 E L - M. The rest

follows.

Examples in which two distinct complements to H in W have infinite
intersection seem to be fairly uncommon and we know of none in which
K is locally finite. But if K is freely generated by two elements x and y
and 1 ~ h E Il, then x and hy evidently generate a subgroup which
complements H and has infinite intersection with K.

LEMMA 6.5. Let L ~ K and let L* be a baseless subgroup of W such that
HL = HL*. Suppose that either

(i) L contains a central element x of infinite order such that L/~x~ is

infinite, or
(ii) L contains an infinite locally finite normal subgroup M and an

element x of infinite order such that M is the union of the finite subgroups
of M normalized by x.

Then L and L* are conjugate under H.

PROOF. (i) For each t E L let t* = ht t (ht E H) be the unique element of
L* which is congruent to t modulo H. Then t ~ t* is an isomorphism.
Hence x*t* = t*x* for all t E L, whence we obtain
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for all t eL. Let {k03BB} be a set of right coset representatives of L in K and
let {t03BC} be a set of coset representatives of ~x~ in L. Evaluating (1) at
the point k03BBxi and using the fact that x and t commute, we obtain

or

Now ht(k03BBxi) = hx(k03BBxi) = 1 when i is sufficiently large or small, and so,
for a fixed À and t, we may multiply the equations (2) in order of increasing
i to obtain

It follows that the value of the product

is independent of y. Now since |L : ~x~| = oo there must be a right
coset of x&#x3E; contained in kÂL on which hx takes the value 1 identically.
We therefore must have

for all 03BB and y.
We now define an element w ~ H by

the product being taken in order of increasing j. The equations (3),
together with the fact that the support of hx only meets finitely many of
the cosets k03BBt03BCx&#x3E;, ensure that the support of w is finite. A straightfor-
ward calculation shows that [w, x-1] = hx . Hence

and so x&#x3E; ~ L n L*w-1. Since (x) is infinite and central in L, Corollary
6.4 now gives L = L*w-1,. as required.

(ii) Let F be the set of all finite subgroups of M normalized by x.
Then M = ~F~F F, and since M is locally finite, any two members of
F generate a third. Let t - t* be the usual isomorphism of L onto L*.
Then M* = UFeF F*, and by Corollary 3.3 there exists, for each
F ~ F, an element hF E H such that
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Let x* = hx (h E H). Now x* normalizes F* (F E F) and so X*’F normal-
izes F. Hence [F, x*hF] ~ F and so, if f ~ F, then F contains

It follows that

and so

if F E F.

Let T be a right transversal to M (x) = N in K, so that K = Ute T tN
and tN n t’ N = 0 if t ~ t’. We now distinguish two cases:

CASE 1. There exists a subgroup F E F with the following property:
given F  E E F, there exists an element hÉ E H such that hÉ hi 1 E CE
and

In this case we may suppose without loss of generality that supp hE ~ XF
for all F  E E F. Choose such an E and let E ~ D E F. Then by a now
familiar argument we can write hD = chE, where c is constant on each
right coset of E in K. Now no right coset of E is contained in XF and so
any such right coset contains a point at which both hD and hE take the
value 1. Hence c takes the value 1 at such a point, and therefore at
every point of the right coset in question. Therefore c = 1 and hD = hE
for all E ~ D E F. Then

Therefore M ~ L n L*hE. Since M  L, Corollary 6.4 now gives
L = L*hE, as required.

CASE 2. Case 1 does not hold. Under this assumption we shall obtain
a contradiction, thereby showing that Case 2 does not in fact arise. To do
this we assume that we have a finite subset A of supp h and show that a

further point of supp h can always be found, thereby contradicting the
finiteness of supp h.

Now the elements txi form a right transversal to M in K and so we have
A ~ XF for some F ~ F. By hypothesis there is a subgroup E E F with
F  E and such that hE is not congruent modulo CE to any element with
support in XF. Therefore there exists a right coset C of E in K such that
hE is not constant on the set C - (C n XF). Now since x normalizes E
but no non-trivial power of x lies in E, the sets Cx’ (i = 0, ± 1, ... ) are
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distinct right cosets of E in K. Only finitely many of them meet the support
of hE and so, by considering a suitable Cxi instead of C, we may suppose
that hE is not constant on C- (C n XF), but is constant on Cx-1 -

(Cx-1 n XF). Since XF is invariant under right multiplication by x, it

follows that there exist points c1, C2 E C- (C n XF) such that hE(c1) ~
hE(C2), but hE(c1x-1) = hE(C2X-l). It follows that [hE, X-11 takes
distinct values at c1x-1 and C2X-l. From (6) we have

where cE is constant on each right coset of E and in particular on Cx-’.
Therefore one of clx-’ and C2X-’ lies in the support of hhE and hence
in the support of h. Both of these points lie outside XF and hence outside
A, and so the argument is complete.

Let X denote the class of all groups which have a central infinite cyclic
subgroup with infinite factor group. We define two X-subgroups X and
Y of a group G to be connected if there is a finite chain X = Xl , X2 , ···,
Xn = Y of X-subgroups of G such that Xi n Xl+1 is infinite for 1 ~ i ~
n - 1. Connectedness is evidently an equivalence relation and so any X-
subgroup of G will have a connected component in the set of all 3i-sub-
groups of G. Now if M ~ K and M* are baseless subgroups of W such
that HM = HM* and if X and Y are 3i-subgroups of M such that
X ~ M n M* and X n Y is infinite, then Corollary 6.4 shows that

Y ~ M n M*. For Y contains a central element y of infinite order.
Since y normalizes the infinite subgroup X n Y of M n M*, we obtain
y E M n M*, and hence, since (y) is infinite and central in Y, we obtain
Y ~ M n M*. It follows that M n M* contains the connected compo-
nent of X in M. A little more argument yields

LEMMA 6.6. Let L ~ K and suppose that L contains a non-trivial normal

subgroup M which is generated by a connected set of X-subgroups. Let
L* be a baseless subgroup of W sllch that FIL* = HL. Then L*h = L for
some h E H.

PROOF. Let X be an X-subgroup belonging to the connected set gener-
ating M. Then, in the usual notation, we have HX = HX*, and Lemma
6.5(i) gives that X*h = X for some h E Il. Therefore M n M*h ~ X.
The remarks above give M = M*h ~ L*h, and finally, as M a L,
Corollary 6.4 gives L = L*h.
The relevance of these concepts to the proof of Lemma 6.1 is that most

non-periodic locally nilpotent groups can be generated by a connected
set of X-subgroups.

LEMMA 6.7. Let G be a locally nilpotent group with torsion subgroup T.
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Then G is generated by a connected set of X-subgroups unless either G is
finite-by-cyclic or T is infinite and G/T is locally cyclic.

PROOF. Suppose first that G/T is not locally cyclic. Let S be the set of all
finitely generated subgroups S of G such that S/S n T is not cyclic. Then
clearly G = Uscs S. Now a finitely-generated nilpotent group with
finite centre is necessarily finite and so, if S E S, then S contains a central
element xs of infinite order. Since S/S n T is not cyclic, S/~xs~ cannot
be finite, and so S E X. Since ~S1, S2~ E S if S1, S2 ~ S, it follows that S
is a connected set of X-subgroups generating G.
Now suppose that G/T is locally cyclic. We may suppose that T is

finite and T  G. Let x be an element of infinite order in G and t E T.

Then xk centralizes T for some k &#x3E; 0 and so, if y E G, we have 1 =

[y, xky = [y, xkt] by the usual commutator identities. Therefore z = xkt
is in the centre of G. If G/~z~ is finite then we find that G/T is cyclic.
Therefore G c- X unless G is finite-by-cyclic.

PROOF OF LEMMA 6.1. We have HL = RL*, where L = HL* n K.
Let R be the Hirsch-Plotkin radical of L, and let T be the torsion sub-

group of R. Then by hypothesis T  R and R is not finite-by-cyclic.
Therefore, by Lemma 6.7, either R is generated by a connected set of
X-subgroups or T is infinite and R/T is locally cyclic. In the first case the
result follows from Lemma 6.6. In the second case let x be an element of

infinite order in R. Then since R is the union of its finitely-generated
subgroups containing x, and each of these has finite intersection with T,
we see that the hypotheses of Lemma 6.5 (ii) hold with M = T. Therefore
the result follows in this case from Lemma 6.5 (ii).
Added in Proqf.- Since submitting this paper, 1 have been informed that

some of the results it contains have been obtained independently by
Dr. D. Segal.

REFERENCES

P. HALL

[1] Some constructions for locally finite groups. J. London Math. Soc. 34 (1959)
305-319.

H. HEINEKEN

[2] Maximale p-unterguppen lokal endlicher Gruppen Archiv der Math., to appear.
O. H. KEGEL

[3] Locally finite groups. (Mathematical Institute, Oxford).
L. G. KOVÁCS, B. H. NEUMANN and H. DE VRIES
[4] Some Sylow subgroups. Proc. Roy. Soc. Ser. A. 260 (1961) 304-16.

P. M. NEUMANN

[5] On the structure of standard wreath products of groups. Math. Zeitschrift 84
(1964) 343-73.



30

B. I. PLOTKIN

[6] Radical groups. Mat. Sbornik (N.S.) 37 (79) (1955) 507-526; Amer. Math. Soc.
Transl. (2) 17 (1961) 9-29.

B. A. F. WEHRFRITZ

[7] Sylow subgroups of locally finite groups with Min-p. J. London Math. Soc. (2) 1

(1969) 421-7.

(Oblatum 28-11-1972) Mathematics Institute

University of Warwick
Coventry, England


