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Introduction

The main object of this paper is to prove that the join of finitely many
soluble subideals of a Lie algebra is soluble, answering question 5 of
Stewart [4] p. 79; it is known that this join need not be a subideal. The
Lie algebras considered are of finite or infinite dimension over fields of
arbitrary characteristic.
A similar theorem for groups was first proved by Stonehewer [6] and

in a different way by Roseblade [3]. The treatment here resembles Rose-
blade’s and is based on it. It is possible to use Stonehewer’s techniques,
as is proved in Amayo [1 ]; these give in some ways less information
than those of Roseblade, but in compensation provide far better bounds
on the derived length of the join. However the treatment here enables
us to prove certain coalescence results which we reserve for another

paper.
Notation and terminology for Lie algebras will be the same as in

Stewart [5] p. 291-292. The symbols A, B, H, J, K, L, X, Y, ... will
denote Lie algebras over some ground field f. Symbols 03BBi(m, n, p, ... )
for 1 ~ i will denote non-negative integers depending solely on the
arguments explicitly shown in the brackets. If A and B are subalgebras
of a Lie algebra L then the sum A + B is their vector space sum, which
may or may not be a subalgebra of L.

In section 1 we derive some preliminary results and introduce the useful
circle product whose properties are crucial to the proofs of the two major
results, theorems 2.1 and 3.2. The circle product was suggested in con-
versation with Dr. J. E. Roseblade.

Section 2 deals with a special case of the main theorem. However
since joins of soluble ideals are not in general subideals themselves we
cannot use a direct induction argument to derive the main result. Also
in this section we derive a few useful properties about the join of a
pair of subideals.

Finally in section 3 the main theorem is proved (theorem 3.3) and a
useful corollary is also mentioned.
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1. Preliminary results

PROPOSITION 1.1. Suppose that J = H1, H 2, ..., Hn&#x3E; and Hi  J for
i = 1, 2, ..., n. If ri , r2,···, rn are non-negative integers and r is their
sum then

PROOF. Induct on r. For r = 0 the result is trivial. Suppose 1 ::9 r and

assume the result holds for r - 1. As 1 ~ r, 1 ~ ri for some i. Define

K = 1 iHJrj). By the inductive hypothesis

Since

and therefore

This proves the inductive step and with it the required result.

PROPOSITION 1.2. If L = H+k, HL and KmL then L(mn)~ H(n) + K
for any non-negative integer n.

PROOF. Trivial for n = 0. Suppose 1 ~ n and assume inductively that

An easy second induction on r yields

Since Km L, [L, mK]~K and so for r = m,

and the result is proved.

DEFINITION. Let H and K be subalgebras of a Lie algebra L and
.J = H, K&#x3E;. The circle product H o K of H and K is defined by

Define inductively

for all positive integers m.
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PROPOSITION 1.3. (a) H o K = K o H and A ~ B implies A o C ~ B o C.

(b) If J = H, K&#x3E; then HJ&#x3E; = H+ H o K = H+H 0 J and

where Hn is the n-th ideal closure of H in J.

(c) If H ~ L and Hn denotes the n-th ideal closure of H in L then

(d) Suppose Hl , H2, ..., Hm are subalgebras of L and

If X  L then

and

PROOF. (a) First part follows from [H, K] = [K, H] and the second
part from [A, C] ~ [B, C] ~ B o C.

(b) By definition H o K  J. Thus H+ H o K is idealised by K and
contains H and so is an ideal of J and therefore contains HJ&#x3E;. But
clearly (HJ) contains H+ H o K and the first equality follows. From (a),
H + H K ~ H+ Ho J ~ (HJ) and the second part follows. For the
third part use induction on n. It is trivial for n = 1, since H1 = HJ&#x3E;.
Suppose 1 ~ n and Hn = H + K o nH. By definition

from the first part. But by definition (K o nH) o H = K on+1H and the
inductive step is proved.

(c) Follows trivially on putting = L in (b).
(d) Since X a L then X o J ~ X. By definition X idealises X o Hi and

from (a), X o Hi ~ X o .T and so X o Hi « X o J for each i.

Let

Then for any i, j

Thus is idealised by all Hj and so by J. By its definition K is idealised
by X. Now [X, J] is generated by terms of the form

where r1 , r2 , ’ ’ ’ , rn are non-negative integers at least one of which is
non-zero and {j1, j2,···,jn} c {1, 2,···, ml. As X a L,
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where rk is the last non-zero integer in the sequence r1, ···, rn. Therefore

and so

and (d) is proved.

PROPOSITION 1.4. Suppose J = (A, B&#x3E; ~ L, H ~ Land H  (H, A).
If J = A + B then

PROOF. Clearly it sufhces to show that the vector space HB is idealised
by A. Now HB is spanned by elements of the form

where h E H, b1,···, br E B and r is a non-negative integer.
If r = 0 then xr = h E H and [xr, a] E H ~ HB for all a E A, since A

idealises H. We note that any Xr+ 1 is of the form

for some xr and some br+ 1 E B. Let a E A. Then as J = A + B there
exists al E A and b~B with [br+1, a] = al + b. Thus by the Jacobi
identity

Hence if [xr , a] ~ HB for all a E A and all xr (fixed r) then the same is
true for all Xr+ 1. This proves the required result.

COROLLARY 1.4.1. If J = A, B&#x3E; ~ L and H ~ L then J = A + B
implies that

PROOF. By 1.4 and since A idealises (HA) and B idealises (HB).

Note on notation.

The derived series of a Lie algebra L is defined inductively by L(’) = L,
L(n+1) - [L(n) , L(n)] for all n ~ 0. L(n) is the n-th derived term and L is
said to be soluble if L(n) = 0 for some n.

2. Joins of pairs of subideals

THEOREM 2.1. Suppose that J = (Hl’ H2&#x3E;. If H, a hi J and H2 h2 J
then there exists 03BB1 = 03BB2(h) such that
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whenever h1 + h2 ~ h.

PROOF. Define 03BB1(h) = 0 if h = 0 or 1 and 03BB1(h) = 4h-2{(h-2)!}
for 2 ~ h. The theorem is obvious for h ~ 2 and for hl = 1 or h2 = 1.

Assume that h &#x3E; 2, hl &#x3E; 1, h2 &#x3E; 1 and proceed by induction on h.
For i = 1, 2 there exist subalgebras Ki and Li of J with Ki ~ Li such that

and

Let m = 03BB1(h-1), {i,j} = {1,2} and X = (Hl o H2)(m). Since J =
(Hj, Ki&#x3E; then the inductive hypothesis applied to the pair Ki, Hj yields

J(m)~Ki+Hj,
and so

Let Y = X, Hj n Li) = X+Hj n Li, since X a J. Then

and so

By definition Ki idealises Hi and therefore from 1.4

This and the fact that X ~ Y give

Now Hi hi-1 Li and Hj n Li hj Li and so the inductive hypothesis
applied to the pair Hi, Hj n Li gives

where Ji = (Hi, Hj n Li&#x3E;. Thus

As X a J then by 1.3

Therefore from 1.1
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U a J and so Li can be taken to be Hi + U. Since Hihi-1 Li then
by 1.2

Finally since L1  J, L2  J and J = L1 +L2 then by 1.1

Clearly {1+3m}{h1+h2-2} ~ 4m(h-2) = 03BB1(h) and so

This proves the inductive step and with it the theorem.

DEFINITION. Suppose that H ~ L, K  L. The permutizer PH(K) of K
in H is defined as the join of all subalgebras M of H such that

It is not hard to show that PH(K) + K = PH(K), K) and so PH(K) is in
fact the maximal subalgebra of H satisfying the requirement that its join
with K equal its vector space sum with K.

COROLLARY 2.1.1. Under the same hypothesis as theorem 2.1,

PROOF. Let K = J(03BB1), H2&#x3E; = J(Âl) + H2, since J(Âl)  J. From 2.1,
K ~ Hl + H2 and so K = K n (Hl + H2 ) = K n Hl + H2. This implies
K n H1 ~ PH1(H2). But H(03BB1)1 ~ J(03BB1) n H1 ~ K n Hl and the result
follows.

DEFINITION. Suppose A and B are subalgebras of L. Then A and B are
said to be permutable if (A, B) = A + B, i.e. PA(B) = A.

LEMMA 2.2. Suppose that J = (Hl’ H2&#x3E;, Hl h1 J and H2 a h2 J.
If Hl and H2 are permutable then there exists Àz = Â2(h, r) such that

whenever h1 + h2 ~ h and r1+r2 ~ r.

PROOF. Define Â2(h, r) = r if h = 0 or 1 and 03BB2(h, r) = 2h- 2r other-
wise. For h ~ 2, Hl  J and H2 a J and the result follows from 1.1.

Suppose h &#x3E; 2 and assume inductively that the result is true for h-1.
Let m = 03BB2(h -1, r ) and {i,j} = {1, 2}. There exists Li such that
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By hypothesis J = Hi+ Hj and so Li = Hj n Li which implies Hi and
Hj n Li are permutable. Since also Hj ~ LihjLi then the inductive
hypothesis applied to Hi and Hj n Li gives

Finally J = L1 +L2 , L1  J, L2  J and so by 1.1

Clearly 2m = 03BB2(h, r) and this proves the inductive step and the lemma.

LEMMA 2.3. Let H a m L, K n L and J = (H, K). If J and K are.
permutable and H r J then

PROOF. By induction on r. For r = 1 H a J. Let

be the ideal closure series of H in L; thus Hi+1 = (H)Hi&#x3E; for i = 0,
1, ···, m - 1. Then it follows by easy induction on i that K idealises each
Hi . Thus Hi+1 a Hi +K and so by lemma 5 of [2]

for i = 0, 1,···, m -1, and so J = Hm+KmnL. This is the result

for r = 1. Assume r &#x3E; 1 and the lemma true for r -1 in place of r.
There exists a series

Let K1 = Ai n K, J = H+K, H ~ Ai and so Ai = Ai n (H+K) =
H+K1 which implies H and K1 are permutable. Furthermore H r-1 AI
and K1  K n L and so by the inductive hypothesis

where p = m(n+1)(n+2) ··· ((n+1)+(r-1)-1). Now by definition
A1  J and J = A i +K and so applying the first part of the proof,

and the induction is complete.

THEOREM 2.4. Suppose that J = (Hl’ H2&#x3E; with Hl h1 L and H2 a h2 L.
Then there exists Â3 = Â3(h, r) such that

îvhenever hl + h2 ::g h and rl + r2 ~ r.
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PROOF. Define À3(h, r) = (2h)! + À1 (h) + IZ2 (2h, r). Let M = J(03BB1).
By 2.1, M ~ Hl + H2 . Since M  J, M, H2&#x3E; = M+ H2 ~ Hl + H2 .
Therefore

where U = (M + H2 ) n Hl. Thus U and H2 are permutable. Since Ma J
then by 2.3 M+ H2  h2 J and so U  h2 Hl which implies U h1+h2 L.
From above U and H2 are permutable and so by 2.3

Clearly for any integer n, 03BB1 ~ n, J(n) ~ M ~ U+ H2 . Now J(n) is a

characteristic ideal of J ; 2h2 + h1 ~ h and so

Let m = Â2(2h, r). Uh1+h2 L, H2h2L, and U and H2 are permutable.
Therefore by 2.2

Since J(03BB1) ~ U+H2 and U(r1) ~ H1(r1) it follows that

and the theorem is proved.

COROLLARY 2.4.1. The join of a pair of soluble subideals is soluble.

3. The main theorem

LEMMA 3.1. Suppose that

PROOF. By 2.3 and induction on r.

THEOREM 3.2. Suppose that J = H1, H2, ···, Hn) and Hi  hiL for
i = 1, 2, ..., n. Then there exists À4 = 03BB4(h, r ) such that

and

whenever and

PROOF. The case n = 2 is theorem 2.4. Assume then that rc &#x3E; 2 and let
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If h = 0 then Hi = L for all i and so define 03BB4(0, r ) = r. If hi = 0 for
some i then Hi = L and so L(r) ~ U, L(r)  L. Thus assume no h i is

zero and that 03BB4(h-1,r) has been defined for all r so as to satisfy all
requirements.

Let

and

Since 1 ~ h i , (h1+h2+···hn)-hi ~ h -1 and so by the inductive
hypothesis on h

and

hi ~ 1 and so there is an Li such that

Put

and

Consider Ji as the join of Li and the Hj for j different from i as shown
above. Then by the induction on h

Let

and

since Ji(m)  Ji and V ~ Ji. Therefore from (5) V ~ Li + Ki(l) and so

Now Hi « Li and Ji(m) ~ V. Therefore by 1.4

Let
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From (3) Ki(l) lL. Hi hi L and hi ~ h, ri ~ r. So applying theorem
2.4 to the pair Hi, K(l)i yields

and

From (2) and (4) it follows that

Put

Since J(m)i Ji then X = Xl +... + Xn by 1.4(d). Again Xi a X and so
if Yi = Xi(p) and Y = (Y1, ..., Yn&#x3E; then Yi Y and Y = Y1 + Y2 +
··· + Yn. From (6) Xi ~ Mi and by definition Xi  J(m)i  Ji. This
implies yi2 Ji and so Yi2 M(p)i. From (9) M(p)ip L and so

Yi(2+P) L. Further as each hi is non-zero by assumption then n ~ h.
Therefore by 3.1

and from (10)

Since n ~ h and X = Xl +··· + Xn , Xi a X for all i then by 1.1

Finally let

Celarly J ~ Ji = Li, {Hj|j~ i}&#x3E; and so from (12), (13) and (14)

i.e.

Now J(q) a J and from above J(q) ~ Y and so by (11)
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Define

Then from (15), (16) and (17) it follows that

and

This proves the inductive step and with it the theorem.

THEOREM 3.3. The join of ’ fznitely many soluble subideals is soluble.

PROOF. Immédiate from 3.2.

COROLLARY 3.3.1. Suppose J is a Lie algebra such that every terni of
the derived series of J is the join of finitely many nilpotent subideals.
Then J is nilpotent.

PROOF. Let J = H, K,···, T&#x3E; where H, K, ···, T are nilpotent
subideals. By 3.3 J is soluble of derived length d, say. Induct on d. For
d = 1 the result is trivial. Assume d &#x3E; 1. J2 satisfies the hypothesis and
has derived length d -1 and so by the induction on dJ’ is nilpotent.
Since H is a nilpotent subideal of J then there is an integer c such that
[J2,cH] = 0. Further (H+J2)/J2 is nilpotent. Therefore by lemma 2.1
of Stewart [4] H+ J2 is nilpotent. Of course H+ J2 a J. Similarly
K+J2,···,T+J2 are nilpotent ideals of J. Hence by lemma 1 of

Hartley [2] ]

is nilpotent.

REMARK. There exist non-nilpotent Lie algebras which are joins of
finitely many nilpotent subideals (see for example section 7.2 of [2]).
Thus 3.3.1 shows that the class of Lie algebras which are joins of finitely
many nilpotent subideals is not closed under the taking of subalgebras
or ideals.
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