Compositio Mathematica

T. A. Chapman

On the structure of Hilbert cube manifolds

Compositio Mathematica, tome 24, n 3 (1972), p. 329-353
http://www.numdam.org/item?id=CM_1972__24_3_329_0
© Foundation Compositio Mathematica, 1972, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE STRUCTURE OF HILBERT CUBE MANIFOLDS

by

T. A. Chapman

1. Introduction

Let s denote the countable infinite product of open intervals and let I^{∞} denote the Hilbert cube, i.e. the countable infinite product of closed intervals. A Fréchet manifold (or F-manifold) is a separable metric space having an open cover by sets each homeomorphic to an open subset of s. A Hilbert cube manifold (or Q-manifold) is a separable metric space having an open cover by sets each homeomorphic to an open subset of I^{∞}.

In [2] it is shown that real Hilbert space l_{2} is homeomorphic to s and indeed it is known that all separable infinite-dimensional Fréchet spaces are homeomorphic (see [2] for references). Thus F-manifolds can be viewed as separable metric manifolds modeled on any separable infinitedimensional Fréchet space. Using linear space apparatus and a number of earlier results, Henderson [9] has obtained embedding, characterization, and representation theorems concerning F manifolds (see [10] for generalizations to manifolds modeled on more general infinite-dimensional linear spaces).

In [6] a number of results similar in nature to those of [9] were obtained concerning certain incomplete, sigma-compact countably infinite-dimensional manifolds. Some results were also established in [6] concerning the relationship of such incomplete manifolds to Q-manifolds. Since the nature of these results is such that a good bit of information about Q-manifolds can be obtained from the 'related' incomplete manifolds, we thus have a device for attacking Q-manifold problems.

It is the purpose of this paper to use 'related' incomplete manifolds to establish for Q-manifolds some more results similar to those of [9]. We list the main results of this paper in section 2.

Unfortunately we leave important questions concerning Q-manifolds unanswered. We call particular attention to the paper Hilbert cube manifolds [Bull. Amer. Math. Soc. 76 (1970), 1326-1330], in which the author gives an extensive list of open questions concerning Q-manifolds.

The author is indebted to R. D. Anderson for helpful comments during the preparation of this paper.

2. Statements of results

A (topological) polyhedron is a space homeomorphic (\cong) to $|K|$, where K is a complex (i.e. a countable locally-finite simplicial complex). Unless otherwise specified all polyhedra will be topological polyhedra. West [15] has shown that $P \times s$ is an F-manifold and $P \times I^{\infty}$ is a Q manifold, for any polyhedron P.

A closed set F in a space X in said to be a Z-set in X provided that for each non-null homotopically trivial (i.e. all homotopy groups are trivial) open subset U of $X, U \backslash F$ is non-null and homotopically trivial. We use the representation $s=\Pi_{i=1}^{\infty} I_{i}^{0}$ and $I^{\infty}=\Pi_{i=1}^{\infty} I_{i}$, where for each $i>0$ I_{i}^{0} is the open interval $(-1,1)$ and I_{i} is the closed interval $[-1,1]$.

In Theorem 1 we show how to 'fatten-up' a polyhedron which is a Z-set in a Q-manifold to a 'nice' neighborhood of the polyhedron. This will be useful in the sequel.

Theorem 1. Let X be a Q-manifold and let P be a polyhedron which is also a Z-set in X. If $q \in I^{\infty} \backslash\{(0,0, \cdots)\}$, then there is an open embedding $h: P \times\left(I^{\infty} \backslash\{q\}\right) \rightarrow X$ such that $h(x,(0,0, \cdots))=x$, for all $x \in P$.

In [9] the following results are established.
(1) Every F-manifold can be embedded as an open subset of l_{2}.
(2) If X and Y are F-manifolds having the same homotopy type (i.e. $X \sim Y$), then $X \cong Y$.
(3) If X is any F-manifold, then there is a polyhedron P for which $X \cong P \times l_{2}$.
If J is a simple closed curve, then $J \times I^{\infty}$ is a Q-manifold which cannot be embedded as an open subset of I^{∞}. Also, I^{∞} and $I^{\infty} \backslash$ \{point \} are Q manifolds of the same homotopy type which are not homeomorphic. Thus the obvious straightforward analogues of (1) and (2) for Q manifolds are not valid. Most of the results that follow are concerned with obtaining partial analogues of (1), (2), and (3) for Q-manifolds.

Theorem 2. Let X be a Q-manifold and let P be any polyhedron such that $X \sim P$. Then there is a Z-set $F \subset X$ such that $X \backslash F \cong P \times\left(I^{\infty} \backslash\right.$ \{point\}).

Each Q-manifold is an ANR and it follows from [11] that each separable metric ANR has the homotopy type of some polyhedron. Thus each Q-manifold has the homotopy type of some polyhedron.

Theorem 3. Let X be any Q-manifold and let P be any polyhedron such that $X \sim P$. Then $X \times[0,1) \cong P \times\left(I^{\infty} \backslash\{\right.$ point $\left.\}\right)$.

Corollary 1. If X is any Q-manifold, then there is a polyhedron P such that $X \times[0,1) \cong P \times I^{\infty}$.

Corollary 2. If X and Y are Q-manifolds such that $X \sim Y$, then $X \times[0,1) \cong Y \times[0,1)$.

Corollary 3. If P and R are polyhedra such that $P \sim R$, then $P \times$ $\left(I^{\infty} \backslash\{\right.$ point $\left.\}\right) \cong R \times\left(I^{\infty} \backslash\{\right.$ point $\left.\}\right)$.

In a sense Corollary 3 is analogous to a result of West [15]. It is shown there that if a polyhedron P is a formal deformation of a polyhedron R (in the sense of Whitehead [16]), then $P \times I^{\infty} \cong R \times I^{\infty}$.

Theorem 4. If X is a Q-manifold, then $X \times[0,1)$ can be embedded as an open subset of I^{∞}.

Corollary 4. If X is a Q-manifold, then $X=U \cup V$, where U and V are open subsets of X which are homeomorphic to open subsets of I^{∞}.

If X is any Q-manifold, then it is shown in [5] that $X \cong X \times I^{\infty}$ (and therefore $X \cong X \times[0,1]$). Thus the above results offer some information about the internal structure of Q-manifolds.

In [10] it is shown that if X and Y are F-manifolds and $f: X \rightarrow Y$ is a homotopy equivalence, then f is homotopic to a homeomorphism of X onto Y. We obtain a corresponding property for Q-manifolds which strengthens Corollary 2.

Theorem 5. Let X, Y be Q-manifolds and let $f: X \rightarrow Y$ be a homotopy equivalence. Then there is a homeomorphism of $X \times[0,1)$ onto $Y \times[0,1)$ which is homotopic to $f \times \mathrm{id}: X \times[0,1) \rightarrow Y \times[0,1)$.

The following results are some partial answers to questions concerning compact Q-manifolds.

Theorem 6. Let X be a compact Q-manifold and assume that $X \sim P$, where P is a compact polyhedron. Then there is a copy P^{\prime} of P in X such that P^{\prime} is a Z-set in X and $X \backslash P^{\prime} \cong P \times\left(I^{\infty} \backslash\right.$ \{point $\left.\}\right)$.

Corollary 5. If X is a compact homotopically trivial Q-manifold, then $X \cong I^{\infty}$.

Theorem 7. Let X be a compact Q-manifold and assume that $X \sim P$, where P is a compact polyhedron. Then there is an embedding $h: X \rightarrow I^{\infty}$ such that $\operatorname{Bd}(h(X)) \cong P \times I^{\infty}$ and $C l\left(I^{\infty} \backslash h(X)\right) \cong I^{\infty}$.

In regard to Theorem 7 we remark that in [8] a similar, and somewhat stronger, result is established for F-manifolds.

We show that if X is an open subset of I^{∞}, then the factor $[0,1)$ of Corollary 1 can be omitted.

Theorem 8. If X is an open subset of I^{∞}, then there is a polyhedron P such that $X \cong P \times I^{\infty}$.

We remark that the proof of this result is quite different from the proof of the corresponding property for open subsets of l_{2} (see [8]).
We also establish a Schoenflies-type result for Q-manifolds.
Theorem 9. Let X and Y be Q-manifolds and let $f, g: X \rightarrow Y$ be closed embeddings which are homotopy equivalences and such that $f(X), g(X)$ are bicollared in Y ('bicollared' is defined in Section 3). Then the homeomorphism $g \circ f^{-1} \times \mathrm{id}: f(X) \times[0,1) \rightarrow g(X) \times[0,1)$ can be extended to a homeomorphism of $Y \times[0,1)$ onto itself.

We remark that in the case $X=Y=I^{\infty}$, the factor $[0,1)$ can be omitted in the statement of Theorem 9. The proof of this follows routinely from [17].

The proof of Theorem 9 applies to give us a corresponding result for F-manifolds.

Theorem 10. Let X and Y be F-manifolds and let $f, g: X \rightarrow Y$ be closed embeddings which are homotopy equivalences and such that $f(X), g(X)$ are bicollared in Y. Then the homeomorphism $g \circ f^{-1}: f(X) \rightarrow g(X)$ can be extended to a homeomorphism of Y onto itself.

In case $X=Y=l_{2}$, Theorem 10 follows routinely from the Schoenflies result of [13].

3. Preliminaries

In this section we describe some of the apparatus that will be used in the succeeding sections.

For spaces X and Y, a continuous function $f: X \rightarrow Y$ is said to be proper provided that the inverse image of each compact subset of Y is compact. Then a proper homotopy is a homotopy $F: X \times I \rightarrow Y$ which is a proper map (we let $I=[0,1]$).

For each integer $n>0$ let $W_{n}^{+}=\left\{\left(x_{i}\right) \in I^{\infty} \mid x_{n}=1\right\}$ and $W_{n}^{-}=$ $\left\{\left(x_{i}\right) \in I^{\infty} \mid x_{n}=-1\right\}$. We call W_{n}^{+}and W_{n}^{-}endslices of I^{∞}. For each integer $n>0$ we let $\pi_{n}: I^{\infty} \rightarrow \Pi_{i=1}^{n} I_{i}$ be the natural projection and put $B\left(I^{\infty}\right)=I^{\infty} \backslash s$.

A subset of I^{∞} of the form $\Pi_{i=1}^{\infty} J_{i}$ is called a basic closed set in I^{∞} provided that J_{i} is a closed subinterval of I_{i} for each $i>0$, and $J_{i}=I_{i}$ for all but finitely many i. Note that any basic closed subset of I^{∞} may be viewed as a Hilbert cube, with its topological boundary being a finite union of endslices.

Let X and Y be spaces and \mathfrak{U} be an open cover of Y. Then functions $f, g: X \rightarrow Y$ are said to be \mathfrak{U}-close provided that for each $x \in X, f(x)$ and $g(x)$ lie in some element of \mathfrak{U}. A function $f: Y \rightarrow Y$ is said to be limited by
\mathfrak{U} provided that f and id_{Y} (the identity function on Y) are \mathfrak{U}-close. A function $f: X \times I \rightarrow Y$ is said to be limited by \mathfrak{U} provided that for each $x \in X, f(\{x\} \times I)$ lies in a member of \mathfrak{U}.

Following Anderson [1] we say that a subset M of a metric space X has the compact absorption property in X (or M is a cap-set for X) if
(1) $M=\bigcup_{n=1}^{\infty} M_{n}$, where each M_{n} is a compact Z-set in X such that $M_{n} \subset M_{n+1}$, and
(2) for each $\varepsilon>0$, each integer $m>0$, and each compact subset F of X, there is an integer $n>0$ and an embedding $h: F \rightarrow M_{n}$ such that $h \mid F \cap M_{m}=\mathrm{id}$ and $d(h, \mathrm{id})<\varepsilon$.
For each integer $n>0$ let $\Sigma_{n}=\Pi_{i=1}^{\infty}[-n /(n+1), n /(n+1)]$ and $\Sigma=\bigcup_{n=1}^{\infty} \Sigma_{n}$. In [1] it is shown that Σ and $B\left(I^{\infty}\right)$ are cap-sets for I^{∞}.

We will need the following properties of cap-sets in Q-manifolds. All of these can be found in [6]. We let X represent a Q-manifold.

Lemma 3.1. Cap-sets exist in Q-manifolds, and any cap-set for X is of the form $P \times \Sigma$, for any polyhedron P satisfying $P \sim X$.

Lemma 3.2. If M is a cap-set for X and $F \subset X$ is a Z-set, then $M \cup F$ and $M \backslash F$ are cap-sets for X.

Lemma 3.3. If M and N are cap-sets for X and \mathfrak{u} is an open cover of X, then there is a homeomorphism of X onto itself which takes M onto N and which is limited by \mathfrak{u}.

Lemma 3.4. If M is a cap-set for X and $F \subset X$ is a closed set satisfying $F \cap M=\emptyset$, then F is a Z-set in X.

Lemma 3.5. If P is a polyhedron, then $P \times \Sigma_{n}$ is a Z-set in $P \times \Sigma$. If M is a cap-set for X and $F \subset M$ is a Z-set in M, then $C l_{X}(F)$ (the closure of F in X) is a Z-set in X.

Lemma 3.6. If M is a cap-set for X, then $X \backslash M$ is an F-manifold satisfying $X \backslash M \sim X$. In fact, $M \cong X \times B\left(I^{\infty}\right)$, which is a cap-set for $X \times I^{\infty}$. If $F \subset X \backslash M$ is a Z-set in $X \backslash M$, then $C l_{X}(F)$ is a Z-set in X.

Let X be a space and let \mathfrak{u} be any open cover of X. Then define $\operatorname{St}^{0}(\mathfrak{u})=\mathfrak{u}$ and for each $n>0$ define $\operatorname{St}^{n}(\mathfrak{u})$ to consist of all sets of the form $A \cup(\cup\{U \in \mathfrak{H} \mid U \cap A \neq \emptyset\})$, where $A \in \operatorname{St}^{n-1}(\mathfrak{u})$.

The following result on extensions of homeomorphisms in Q-manifolds is established in [3].

Lemma 3.7. Let X be a Q-manifold, \mathfrak{u} be an open cover of X, F_{1} and F_{2} be Z-sets in X, and let $h: F_{1} \rightarrow F_{2}$ be a homeomorphism. If there is a proper homotopy $H: F_{1} \times I \rightarrow X$ such that $H_{0}=\mathrm{id}, H_{1}=h$, and H
is limited by \mathfrak{u}, then h can be extended to a homeomorphism of X onto itself which is limited by $\mathrm{St}^{4}(\mathfrak{u})$.

The following characterization of Z-sets in Q-manifolds is established in [6].

Lemma 3.8. Let X be a Q-manifold and let $F \subset X$ be a closed set. Then F is a Z-set in X if and only if there is a homeomorphism of X onto $X \times I^{\infty}$ taking F into $X \times\{(0,0, \cdots)\}$.

It is shown in [3] that for any Z-set F in a Q-manifold X, there is a homeomorphism of X onto $X \times I^{\infty}$ such that x is taken to $(x,(0,0, \cdots)$, for all $x \in F$. It is shown in [7] that a corresponding property for F manifolds is also true.

We say that a subset A of a space X is bicollared provided that there exists an open embedding $h: A \times(-1,1) \rightarrow X$ satisfying $h(x, 0)=x$, for all $x \in A$.

Let X be a metric space and A be a closed subset of X. An open cover \mathfrak{u} of $X \backslash A$ is said to be normal with respect to A provided that for each $\varepsilon>0$, there is a $\delta>0$ such that if $U \in \mathfrak{H}$ and $d(A, U)<\delta$, then $\operatorname{diam}(U)<\varepsilon$. Under these circumstances it is easy to see that any homeomorphism $h: X \backslash A \rightarrow X \backslash A$ which is limited by \mathfrak{u} has an extension to a homeomorphism $\tilde{h}: X \rightarrow X$ which satisfies $\tilde{h} \mid A=\mathrm{id}$.

4. Proof of Theorem 1

For any complex K, we use $K^{(n)}$ to denote the $n^{\text {th }}$ barycentric subdivision of K and K_{n} to denote the n-skeleton of K. For any subset C of $|K|$ and integers $m, n>0$, we let $\operatorname{St}\left(C, K_{n}^{(m)}\right)$ denote the subset of $|K|$ consisting of the union of the closed simplexes of $K_{n}^{(m)}$ which intersect C, where $K_{n}^{(m)}$ will always mean the $m^{\text {th }}$ barycentric subdivision of K_{n}.

We now present a sequence of lemmas that will lead up to a proof of Theorem 1. The proof we give uses an induction on the n-skeletons of a triangulation of the polyhedron P. The fourth lemma we establish is the actual inductive step, and the first three are technical results that we need there.

Lemma 4.1. Let K be a complex, $n>0$ be an integer, C be a compact subset of $|K|$ such that $\operatorname{St}\left(C, K_{n+1}\right) \subset\left|K_{n}\right|$, and let $L_{1}=\operatorname{St}\left(\left|K_{n}\right|, K_{n+1}^{(2)}\right)$. Then there is a homeomorphism $h: L \times I^{\infty} \rightarrow\left|K_{n}\right| \times I^{\infty}$ such that $h \mid C \times I^{\infty}=$ id, $h\left(L \times W_{1}^{+}\right)=\left|K_{n}\right| \times W_{1}^{+}$, and $h(x,(0,0, \cdots))=(x,(0,0, \cdots))$, for all $x \in\left|K_{n}\right|$.

Proof. Let $Q=\Pi_{i=2}^{\infty} I_{i}$. It follows from Theorem 4.2 of [15] that there is a homeomorphism $h^{\prime}: L \times Q \rightarrow\left|K_{n}\right| \times Q$. Since the collapse (see
[15] for definitions) from L to $\left|K_{n}\right|$ takes place in $|K| \backslash C$, an open set missing C, the proof given there immediately implies that we may additionally require that $h^{\prime} \mid C \times Q=\mathrm{id}$. Although the condition $h^{\prime}(x,(0,0 \cdots))=(x,(0,0, \cdots))$, for all $x \in\left|K_{n}\right|$, is not mentioned in [15], it can easily be obtained from the apparatus given there. All one has to do is follow the steps in the proof of Theorem 4.2 of [15], correcting at each stage of the collapse to achieve our required condition.

Now define $h: L \times I^{\infty} \rightarrow\left|K_{n}\right| \times I^{\infty}$ so that $h\left(x,\left(x_{1}, x_{2}, \cdots\right)\right)=$ $\left(y,\left(x_{1}, y_{2}, y_{3}, \cdots\right)\right)$, for all $x \in L$ and $\left(x_{1}, x_{2}, \cdots\right) \in I^{\infty}$, where $h^{\prime}\left(x,\left(x_{2}, x_{3}, \cdots\right)\right)=\left(y,\left(y_{2}, y_{3}, \cdots\right)\right)$. Then h obviously fulfills our requirements.

Let B_{r}^{n} b: the n-dimensional ball of radius $r(0<r \leqq 1)$ and S_{r}^{n-1} the boundary of B_{r}^{n}. For convenience we will assume that

$$
\begin{aligned}
B_{r}^{n} & =\left\{\left(x_{i}\right) \in I^{\infty} \mid \sum_{i=1}^{n} x_{i}^{2} \leqq r^{2} \quad \text { and } \quad x_{i}=0 \text { for } i>n\right\}, \\
S_{r}^{n-1} & =\left\{\left(x_{i}\right) \in I^{\infty} \mid \sum_{i=1}^{n} x_{i}^{2}=r^{2} \quad \text { and } \quad x_{i}=0 \text { for } i>n\right\} .
\end{aligned}
$$

Lemma 4.2. Let X be a Q-manifold, $F \subset X$ be a closed set, and let $f: B_{1}^{n} \rightarrow X$ be an embedding such that $f\left(B_{1}^{n}\right)$ is a Z-set and $f\left(B_{1}^{n}\right) \cap F \subset$ $f\left(S_{1}^{n-1}\right)$. For any $r \in(0,1)$ there is an embedding $h: B_{r}^{n} \times I^{\infty} \rightarrow X$ satisfying the following properties.
(1) $h\left(x,(0,0, \cdots)=f(x)\right.$, for all $x \in B_{r}^{n}$,
(2) $\operatorname{Bd}\left(h\left(B_{r}^{n} \times I^{\infty}\right)\right)=h\left(B_{r}^{n} \times W_{1}^{+}\right) \cup h\left(S_{r}^{n-1} \times I^{\infty}\right)$,
(3) $\operatorname{Bd}\left(h\left(B_{r}^{n} \times I^{\infty}\right)\right)$ is bicollared,

$$
\begin{equation*}
h\left(B_{r}^{n} \times I^{\infty}\right) \cap\left(F \cup f\left(B_{1}^{n}\right)\right)=f\left(B_{r}^{n}\right) \tag{4}
\end{equation*}
$$

Proof. It is clear that there is an embedding $g_{1}: I^{\infty} \rightarrow X$ and a finite union W of endslices of I^{∞} such that $f((0,0, \cdots)) \varepsilon g_{1}\left(I^{\infty} \backslash W\right)$ and $\operatorname{Bd}\left(g_{1}\left(I^{\infty}\right)\right)=g_{1}(W)$. Choose $\varepsilon>0$ so that $f\left(B_{\varepsilon}^{n}\right) \subset g_{1}\left(I^{\infty} \backslash W\right)$ and use Lemma 3.7 to get a homeomorphism $g_{2}: X \rightarrow X$ satisfying $g_{2} \circ f\left(B_{\varepsilon}^{n}\right)=f\left(B_{1}^{n}\right)$. Then $\left(g_{2} \circ g_{1}\right)^{-1} \circ f\left(B_{1}^{n}\right)$ is a Z-set in I^{∞} missing W.

Applying Lemma 3.7 to I^{∞} there is a homomorphism $g_{3}: I^{\infty} \rightarrow I^{\infty}$ satisfying $g_{3}(W)=W$ and $g_{3} \circ\left(g_{2} \circ g_{1}\right)^{-1} \circ f(x)=x$, for all $x \in B_{r_{1}}^{n}$, where $r<r_{1}<1$. Choose $m>n$ and $\delta \in(0,1)$ such that $K \cap W=\emptyset$ and $K \cap g_{3} \circ\left(g_{2} \circ g_{1}\right)^{-1}\left(f\left(B_{1}^{n}\right) \cup F\right)=B_{r}^{n}$, where

$$
K=\pi_{n}\left(B_{r}^{n}\right) \times \prod_{i=n+1}^{m}[-\delta, \delta] \times \prod_{i=m+1}^{\infty} I_{i} .
$$

Then put

$$
Q=\pi_{n}\left(B_{r}^{n}\right) \times \prod_{i=n+1}^{m}[-\delta, \delta] \times\left[-\frac{1}{2}, 1\right] \times \prod_{i=m+2}^{\infty} I_{i} .
$$

It is obvious that there is a homeomorphism $g_{4}: B_{r}^{n} \times I^{\infty} \rightarrow Q$ satisfying

$$
\begin{aligned}
& g_{4}\left(B_{r}^{n} \times W_{1}^{+}\right)=\pi_{n}\left(B_{r}^{n}\right) \times \prod_{i=n+1}^{m}[-\delta, \delta] \times\left\{-\frac{1}{2}\right\} \times \prod_{i=m+2}^{\infty} I_{i}, \\
& g_{4}\left(S_{r}^{n-1} \times I^{\infty}\right)=\pi_{n}\left(S_{r}^{n-1}\right) \times \prod_{i=n+1}^{m}[-\delta, \delta] \times\left[-\frac{1}{2}, 1\right] \times \prod_{i=m+2}^{\infty} I_{i}
\end{aligned}
$$

and $g_{4}(x,(0,0, \cdots))=x$, for all $x \in B_{r}^{n}$. Then $h=g_{2} \circ g_{1} \circ g_{3}^{-1} \circ g_{4}$ is our required embedding.

Lemma 4.3. Let K be a complex, $n>0$ be an integer, C be a compact subset of $|K|$ satisfying $\operatorname{St}\left(C, K_{n+1}\right) \subset\left|K_{n}\right|$, and let $L=\operatorname{St}\left(\left|K_{n}\right|, K_{n+1}^{(2)}\right)$. Let X be a Q-manifold and let $h: L \times I^{\infty} \rightarrow X$ be a closed embedding such that $\operatorname{Bd}\left(h\left(L \times I^{\infty}\right)\right)=h\left(L \times W_{1}^{+}\right)$and it is bicollared. Let $F \subset X$ be a Z-set such that

$$
F \cap\left[h(L \times\{(0,0, \cdots)\}) \cup h\left(C \times I^{\infty}\right) \cup h\left(\operatorname{Bd}(L) \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right)\right]=\emptyset,
$$

where $\operatorname{Bd}(L)$ is the topological boundary of L in $\left|K_{n+1}\right|$. Then there exists a homeomorphism $f: X \rightarrow X$ such that

$$
f \mid h(L \times\{(0,0, \cdots)\}) \cup h\left(\operatorname{Bd}(L) \times I^{\infty}\right) \cup h\left(C \times I^{\infty}\right)=\mathrm{id}
$$

and $f(F) \cap h\left(L \times I^{\infty}\right) \subset h\left(\operatorname{Bd}(L) \times W_{1}^{+}\right)$.
Proof. Let $A=h(L \times[-1,0] \times\{(0,0, \cdots)\}) \cup h\left(L \times W_{1}^{-}\right)$which is a Z-set in X, and let $B=h\left(C \times I^{\infty}\right) \cup h(L \times\{(0,0, \cdots)\}) \cup h\left(\operatorname{Bd}(L) \times I^{\infty}\right)$, which is closed in X. Let $X^{\prime}=X \backslash B, A^{\prime}=A \cap X^{\prime}$, and $F^{\prime}=F \cap X^{\prime}$. Since A^{\prime} and F^{\prime} are intersections of Z-sets in X with the open subset X^{\prime} of X, it follows that A^{\prime} and F^{\prime} are Z-sets in X^{\prime}. Now choose an open cover \mathfrak{H} of X^{\prime} which is normal with respect to B.

Using Lemma 3.8 there is a homeomorphism $f_{1}: X^{\prime} \rightarrow X^{\prime} \times I^{\infty}$ such that $f_{1}\left(A^{\prime} \cup F^{\prime}\right) \subset X^{\prime} \times\{(0,0, \cdots)\}$. We can obviously obtain a homeomorphism $f_{2}: X^{\prime} \times I^{\infty} \rightarrow X^{\prime} \times I^{\infty}$ such that $f_{2} \circ f_{1}\left(F^{\prime}\right) \cap f_{1}\left(A^{\prime}\right)=\emptyset$ and f_{2} is limited by $f_{1}(\mathfrak{u})$. Then $f_{1}^{-1} \circ f_{2} \circ f_{1}: X^{\prime} \rightarrow X^{\prime}$ is a homeomorphism limited by \mathfrak{u} and satisfying $f_{1}^{-1} \circ f_{2} \circ f_{1}\left(F^{\prime}\right) \cap A^{\prime}=\emptyset$. From Section 3 it follows that $f_{1}^{-1} \circ f_{2} \circ f_{1}$ extends to a homeomorphism $g: X \rightarrow X$ such that $g \mid B=$ id and $g(F) \cap A \cup B \subset h\left(\operatorname{Bd}(L) \times W_{1}^{+}\right)$.

We can use a motion in $L \times I^{\infty}$ in only the I_{1}-direction and transfer it back to X by means of h to obtain a homeomorphism $g_{1}: X \rightarrow X$ such that $g_{1} \mid B=$ id and $g_{1} \circ g(F) \cap h\left(L \times\left[-1, \frac{1}{2}\right] \times \Pi_{i=2}^{\infty} I_{i}\right)=\emptyset$. The problem is now to move $g_{1} \circ g(F) \backslash\left(h\left(\operatorname{Bd}(L) \times W_{1}^{+}\right)\right.$the rest of the way out of $h\left(L \times I^{\infty}\right)$, with no motion taking place on B. Because $\operatorname{Bd}\left(h\left(L \times I^{\infty}\right)\right)$ is bicollared, we can easily find a homeomorphism $g_{2}: X \rightarrow X$ satisfying $g_{2} \mid B=$ id and $g_{2} \circ g_{1} \circ g(F) \cap h\left(L \times I^{\infty}\right) \subset h\left(\operatorname{Bd}(L) \times W_{1}^{+}\right)$. Then put $f=g_{2} \circ g_{1} \circ g$ to satisfy our requirements.

We now combine these results to obtain the inductive step in the proof of Theorem 1.

Lemma 4.4 Let K be a complex, let $n>0$ be an integer, and let C be a compact subset of $|K|$ such that $\operatorname{St}\left(C, K_{n+1}\right) \subset\left|K_{n}\right|$. Let X be a Q-manifold and let $\varphi:|K| \rightarrow X$ be an embedding such that $\varphi(|K|)$ is a Z-set. Let $h_{n}:\left|K_{n}\right| \times I^{\infty} \rightarrow X$ be a closed embedding such that $\operatorname{Bd}\left(h_{n}\left(\left|K_{n}\right| \times I^{\infty}\right)\right)=$ $h_{n}\left(\left|K_{n}\right| \times W_{1}^{+}\right)$and it is bicollared, $h_{n}\left(\left|K_{n}\right| \times I^{\infty}\right) \cap \varphi(|K|) \subset \varphi\left(\operatorname{St}\left(\left|K_{n}\right|\right.\right.$, $\left.K^{(3)}\right)$, and $h_{n}(x,(0,0, \cdots))=\varphi(x)$, for all $x \in\left|K_{n}\right|$. Then there exists a closed embedding $h_{n+1}:\left|K_{n+1}\right| \times I^{\infty} \rightarrow X$ such that $\operatorname{Bd}\left(h_{n+1}\left(\left|K_{n+1}\right| \times I^{\infty}\right)\right)$ $=h_{n+1}\left(\left|K_{n+1}\right| \times W_{1}^{+}\right)$and it is bicollared, $h_{n+1}\left(\left|K_{n+1}\right| \times I^{\infty}\right) \cap \varphi(|K|) \subset$ $\varphi\left(\operatorname{St}\left(\left|K_{n+1}\right|, K^{(3)}\right)\right), h_{n+1}\left|C \times I^{\infty}=h_{n}\right| C \times I^{\infty}$, and $h_{n+1}(x,(0,0, \cdots)=$ $\varphi(x)$, for all $x \in\left|K_{n+1}\right|$.

Proof. Let $L=\operatorname{St}\left(\left|K_{n}\right|, K_{n+1}^{(2)}\right)$ and let $\operatorname{Bd}(L)$ represent the boundary of L in $\left|K_{n+1}\right|$. Let $\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ be the collection of $(n+1)$-simplexes of K and note that $\sigma_{i}^{\prime}=\mathrm{Cl}\left(\sigma_{i} \backslash L\right)$ is an $(n+1)$-cell contained in the combinatorial interior of σ_{i}. For each i let $\operatorname{Bd}\left(\sigma_{i}^{\prime}\right)$ denote the combinatorial boundary of σ_{i}^{\prime}. (We are assuming that if $i \neq j$, then $\sigma_{i} \neq \sigma_{j}$. If the collection of $(n+1)$-simplexes of K is finite, then the argument is similar). It follows from the given conditions that $\varphi\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right) \cap h_{n}\left(\left|K_{n}\right| \times I^{\infty}\right)=\emptyset$.

Using Lemma 4.2 there is a closed embedding $\mathrm{f}:\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right) \times I^{\infty} \rightarrow X$ such that the following properties are satisfied.

$$
\begin{equation*}
f\left(\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right) \times I^{\infty}\right) \cap h_{n}\left(\left|K_{n}\right| \times I^{\infty}\right)=\emptyset, \tag{1}
\end{equation*}
$$

(2) $f(x,(0,0, \cdots))=\varphi(x), \quad$ for all $x \in \bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}$,

$$
\begin{equation*}
f\left(\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right) \times I^{\infty}\right) \cap \varphi(|K|)=\varphi\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right), \quad \text { and } \tag{3}
\end{equation*}
$$

(4) $\operatorname{Bd}\left(f\left(\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right) \times I^{\infty}\right)\right)=f\left(\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right) \times W_{1}^{+}\right) \cup f\left(\left(\bigcup_{i=1}^{\infty} \operatorname{Bd}\left(\sigma_{i}^{\prime}\right)\right) \times I^{\infty}\right)$ and it is bicollared.

For each i let $\operatorname{Int}\left(\sigma_{i}^{\prime}\right)=\sigma_{i}^{\prime} \backslash \operatorname{Bd}\left(\sigma_{i}^{\prime}\right)$ and put

$$
X^{\prime}=X \backslash f\left(\left(\bigcup_{i=1}^{\infty} \operatorname{Int}\left(\sigma_{i}^{\prime}\right)\right) \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right)
$$

which is a Q-manifold containing

$$
f\left(\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right) \times W_{1}^{+}\right) \cup f\left(\left(\bigcup_{i=1}^{\infty} \operatorname{Bd}\left(\sigma_{i}^{\prime}\right)\right) \times I^{\infty}\right)
$$

as a Z-set. (This last assertion easily follows since $\operatorname{Bd}\left(f\left(\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right) \times I^{\infty}\right)\right)$ is bicollared). Using Lemma 4.1 there is a homeomorphism $\theta: L \times I^{\infty} \rightarrow$ $\left|K_{n}\right| \times I^{\infty}$ such that $\theta(x,(0,0, \cdots))=(x,(0,0, \cdots))$, for all $x \in\left|K_{n}\right|$,
$\theta \mid C \times I^{\infty}=$ id, and $\theta\left(L \times W_{1}^{+}\right)=\left|K_{n}\right| \times W_{1}^{+}$. Then $\tilde{h}_{n}=h_{n} \circ \theta: L \times I^{\infty} \rightarrow$ X^{\prime} is a closed embedding such that $\tilde{h}_{n}(x,(0,0, \cdots))=\varphi(x)$, for all $x \in\left|K_{n}\right|, \quad \operatorname{Bd}\left(\tilde{h}_{n}\left(L \times I^{\infty}\right)\right)=\tilde{h}_{n}\left(L \times W_{1}^{+}\right)$and it is bicollared, and $\tilde{h}_{n}\left|C \times I^{\infty}=h_{n}\right| C \times I^{\infty}$.

Let us consider the two sets $\tilde{h}_{n}(L \times\{(0,0, \cdots)\}) \cup \tilde{h}_{n}\left(\operatorname{Bd}(L) \times I^{\infty}\right)$ and $f\left(\left(\bigcup_{i=1}^{\infty} \operatorname{Bd}\left(\sigma_{i}^{\prime}\right)\right) \times I^{\infty}\right) \cup \varphi(L)$, which are Z-sets in X^{\prime}. Define a homeomorphism α of the former onto the latter such that $\alpha \circ \tilde{h}_{n}(x,(0,0, \cdots))=$ $\varphi(x)$, for all $x \in L$, and $\alpha \circ \tilde{h}_{n}(x, t)=f(x, t)$, for all $x \in \operatorname{Bd}(L)$ and $t \in I^{\infty}$. Using the fact that $\varphi(x)=\tilde{h}_{n}(x,(0,0, \cdots))$, for all $x \in\left|K_{n}\right|$, and the fact that $f(x,(0,0, \cdots))=\varphi(x)$, for all $x \in \bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}$, it is clear that α is properly homotopic to the identity in X^{\prime}. In fact, there is an open cover \mathfrak{u} of $X^{\prime} \backslash h_{n}\left(C \times I^{\infty}\right)$ which is normal with respect to $h_{n}\left(C \times I^{\infty}\right)$ and for which there is a proper homotopy

$$
\begin{aligned}
H:\left[\left(\tilde{h}_{n}(L \times\{(0,0, \cdots)\}) \cup \tilde{h}_{n}\left(B d(L) \times I^{\infty}\right)\right) \backslash\right. & \left.h_{n}\left(C \times I^{\infty}\right)\right] \\
& \times I \rightarrow X^{\prime} \backslash h_{n}\left(C \times I^{\infty}\right)
\end{aligned}
$$

satisfying $H_{0}=\mathrm{id}$,

$$
H_{1}=\alpha \mid\left[\tilde{h}_{n}(L \times\{(0,0, \cdots)\}) \cup \tilde{h}_{n}\left(\operatorname{Bd}(L) \times I^{\infty}\right)\right] \backslash h_{n}\left(C \times I^{\infty}\right),
$$

and H is limited by \mathfrak{u}. Using Lemma 3.7 we can extend α to a homeomorphism $\tilde{\alpha}: X^{\prime} \rightarrow X^{\prime}$ satisfying $\tilde{\alpha} \mid h_{n}\left(C \times I^{\infty}\right)=\mathrm{id}$. Then

$$
\tilde{\alpha} \circ \tilde{h}_{n}: L \times I^{\infty} \rightarrow X^{\prime}
$$

is a closed embedding which satisfies $\operatorname{Bd}\left(\tilde{\alpha} \circ \tilde{h}_{n}\left(L \times I^{\infty}\right)\right)=\tilde{\alpha} \circ \tilde{h}_{n}\left(L \times W_{1}^{+}\right)$ and it is bicollared,

$$
\tilde{\alpha} \circ \tilde{h_{n}}\left|C \times I^{\infty}=h_{n}\right| C \times I^{\infty}, \tilde{\alpha} \circ \tilde{h}_{n}\left|\operatorname{Bd}(L) \times I^{\infty}=f\right| \operatorname{Bd}(L) \times I^{\infty},
$$

and $\tilde{\alpha} \circ \tilde{h}_{n}(x,(0,0, \cdots))=\varphi(x)$, for all $x \in L$.
Now let $F=f\left(\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right) \times W_{1}^{+}\right)$, which is a Z-set in X^{\prime} satisfying $F \cap\left[\tilde{\alpha} \circ \tilde{h}_{n}(L \times\{(0,0, \cdots)\}) \cup \tilde{\alpha} \circ \tilde{h}_{n}\left(\operatorname{Bd}\left(L \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right)\right]=\emptyset\right.$. Using Lemma 4.3 there is a homeomorphism $\beta: X^{\prime} \rightarrow X^{\prime}$ satisfying

$$
\beta(F) \cap \tilde{\alpha} \circ \tilde{h}_{n}\left(L \times I^{\infty}\right) \subset \tilde{\alpha} \circ \tilde{h}_{n}\left(\operatorname{Bd}(L) \times W_{1}^{+}\right)
$$

and

$$
\beta \mid \tilde{\alpha} \circ \tilde{h}_{n}(L \times\{(0,0, \cdots)\}) \cup \tilde{\alpha} \circ \tilde{h}_{n}\left(\operatorname{Bd}(L) \times I^{\infty}\right) \cup \tilde{\alpha} \circ \tilde{h}_{n}\left(C \times I^{\infty}\right)=\text { id. }
$$

Thus $f:\left(\bigcup_{i=1}^{\infty} \sigma_{i}^{\prime}\right) \times I^{\infty} \rightarrow X$ and $\beta^{-1} \circ \tilde{\alpha} \circ \tilde{h}_{n}: L \times I^{\infty} \rightarrow X$ are closed embeddings which are compatible, i.e. we can patch them together to obtain a closed embedding $h_{n+1}^{\prime}:\left|K_{n+1}\right| \times I^{\infty} \rightarrow X$ which satisfies $\operatorname{Bd}\left(h_{n+1}^{\prime}\left(\left|K_{n+1}\right| \times I^{\infty}\right)\right)=h_{n+1}^{\prime}\left(\left|K_{n+1}\right| \times W_{1}^{+}\right), \quad h_{n+1}^{\prime}\left|C \times I^{\infty}=h_{n}\right| C \times I^{\infty}$, and $h_{n+1}^{\prime}(x,(0,0, \cdots))=\varphi(x)$, for all $x \in\left|K_{n+1}\right|$.

Of course we have made no provision to require that

$$
\operatorname{Bd}\left(h_{n+1}^{\prime}\left(\left|K_{n+1}\right| \times I^{\infty}\right)\right)
$$

be bicollared, but this presents no problem since

$$
\operatorname{Bd}\left(h_{n+1}^{\prime}\left(\left|K_{n+1}\right| \times\left[-1, \frac{1}{2}\right] \times \Pi_{i=2}^{\infty} I_{i}\right)\right)
$$

is bicollared. It is also true that we might not have

$$
h_{n+1}^{\prime}\left(\left|K_{n+1}\right| \times I^{\infty}\right) \cap \varphi(|K|) \subset \varphi\left(\operatorname{St}\left(\left|K_{n+1}\right|, K^{(3)}\right)\right)
$$

but this can be clearly achieved by 'squeezing'

$$
h_{n+1}^{\prime}\left(\left|K_{n+1}\right| \times I^{\infty}\right) \text { close to } \varphi\left(\left|K_{n+1}\right|\right) .
$$

Thus we can modify h_{n+1}^{\prime} to obtain our required h_{n+1}.

Proof of Theorem 1.

Write $X=\bigcup_{n=1}^{\infty} X_{n}$, where each X_{n} is a compact set contained in the interior of X_{n+1}. Let K be a complex and let $\varphi:|K| \rightarrow P$ be a homeomorphism. Let H_{1} be a finite subcomplex of K such that $P \cap X_{1} \subset \varphi\left(\left|H_{1}\right|\right)$ and choose n_{1} large enough so that

$$
\operatorname{St}\left(\left|H_{1}\right|, K_{n_{1}+1}\right) \subset\left|K_{n_{1}}\right| .
$$

One can clearly construct a closed embedding $h_{0}:\left|K_{0}\right| \times I^{\infty} \rightarrow X$ which satisfies $h_{0}(x,(0,0, \cdots))=\varphi(x)$, for all $x \in\left|K_{0}\right|$, and

$$
\operatorname{Bd}\left(h_{0}\left(\left|K_{0}\right| \times I^{\infty}\right)\right)=h_{0}\left(\left|K_{0}\right| \times W_{1}^{+}\right)
$$

and it is bicollared. Then using Lemma 4.4 and an obvious inductive argument we can obtain a closed embedding $h_{n_{1}}:\left|K_{n_{1}}\right| \times I^{\infty} \rightarrow X$ satisfying $h_{n_{1}}(x,(0,0, \cdots))=\varphi(x)$, for all $x \in\left|K_{n_{1}}\right|$, and

$$
\operatorname{Bd}\left(h_{n_{1}}\left(\left|K_{n_{1}}\right| \times I^{\infty}\right)\right)=h_{n_{1}}\left(\mid K_{n_{1}} \times W_{1}^{+}\right)
$$

and it is bicollared.
Now let H_{2} be a finite subcomplex of K so that $\left|H_{1}\right| \subset \operatorname{Int}\left(\left|H_{2}\right|\right)$ and $\varphi(|K|) \cap X_{2} \subset \varphi\left(\left|H_{2}\right|\right)$. Choose $n_{2}>n_{1}$ such that

$$
\operatorname{St}\left(\left|H_{2}\right|, K_{n_{2}+1}\right) \subset\left|K_{n_{2}}\right|
$$

Using Lemma 4.4 and an inductive argument we can find a closed embedding $h_{n_{2}}:\left|K_{n_{2}}\right| \times I^{\infty} \rightarrow X$ such that $h_{n_{2}}(x,(0,0, \cdots))=\varphi(x)$, for all $x \in\left|K_{n_{2}}\right|, \operatorname{Bd}\left(h_{n_{2}}\left(\left|K_{n_{2}}\right| \times I^{\infty}\right)\right)=h_{n_{2}}\left(\left|K_{n_{2}}\right| \times W_{1}^{+}\right)$and it is bicollared, and $h_{n_{2}}| | H_{1}\left|\times I^{\infty}=h_{n_{1}}\right|\left|H_{1}\right| \times I^{\infty}$.

In general let $\left\{H_{i}\right\}_{i=1}^{\infty}$ be a collection of finite subcomplexes of K so that for each $i,\left|H_{i}\right| \subset \operatorname{Int}\left(\left|H_{i+1}\right|\right)$ and $\varphi(|K|) \cap X_{i} \subset \varphi\left(\left|H_{i}\right|\right)$. Choose integers $\left\{n_{i}\right\}_{i=1}^{\infty}$ such that for each $i, n_{i}<n_{i+1}$ and

$$
\operatorname{St}\left(\left|H_{i}\right|, K_{n_{i}+1}\right) \subset\left|K_{n_{i}}\right| .
$$

Using the above techniques we find that for each $i>0$ there is a closed embedding $h_{n_{i}}:\left|K_{n_{i}}\right| \times I^{\infty} \rightarrow X$ such that $h_{n_{i}}(x,(0,0, \cdots))=\varphi(x)$, for all $x \in\left|K_{n_{i}}\right|, \operatorname{Bd}\left(h_{n_{i}}\left(\left|K_{n_{i}}\right| \times I^{\infty}\right)\right)=h_{n_{i}}\left(\left|K_{n_{i}}\right| \times W_{1}^{+}\right)$and it is bicollared, and $\quad h_{n_{i+1}}| | H_{i}\left|\times I^{\infty}=h_{n_{i}}\right|\left|H_{i}\right| \times I^{\infty}$. For each $x \in\left|H_{i}\right| \times\left(I^{\infty} \backslash W_{1}^{+}\right)$ define $h^{\prime}(x)=h_{n_{i}}(x)$. It is clear that $h^{\prime}:|K| \times\left(I^{\infty} \backslash W_{1}^{+}\right) \rightarrow X$ is an open embedding satisfying $h^{\prime}(x,(0,0, \cdots))=\varphi(x)$, for all $x \in|K|$. Since $I^{\infty} \backslash W_{1}^{+} \cong I^{\infty} \backslash$ \{point \} we can clearly modify h^{\prime} to obtain our required open embedding h.

5. Proof of Theorem 2

We will first establish two technical results concerning cap-sets in Q-manifolds. These are used only in the proof of Theorem 2.

Lemma 5.1. Let X be a Q-manifold, P be a polyhedron, $\varphi: P \times \Sigma \rightarrow X$ be an embedding such that $\varphi(P \times \Sigma)$ is a cap-set for X and $\varphi\left(P \times \Sigma_{1}\right)$ is closed in X, and let F be a compact Z-set in X. Then there is a homeomorphism $h: X \rightarrow X$ such that $h(F) \subset \varphi\left(P \times \Sigma_{2}\right)$ and $h \mid \varphi\left(P \times \Sigma_{1}\right)=\mathrm{id}$.

Proof. By Lemma 3.5. it follows that $\varphi\left(P \times \Sigma_{1}\right)$ is a Z-set in X. Let $X^{\prime}=X \backslash \varphi\left(P \times \Sigma_{1}\right), F^{\prime}=F \cap X^{\prime}$, and $M=\varphi(P \times \Sigma) \backslash \varphi\left(P \times \Sigma_{1}\right)$. Then X^{\prime} is a Q-manifold, F^{\prime} is a Z-set in X^{\prime}, and M is a cap-set for X^{\prime}. Choose an open cover \mathfrak{u} of X^{\prime} which is normal with respect to $\varphi\left(P \times \Sigma_{1}\right)$.

Lemma 3.2. implies that $M \cup F^{\prime}$ is a cap-set for X^{\prime}. Using Lemma 3.3 there is a homeomorphism $f: X^{\prime} \rightarrow X^{\prime}$ such that $f\left(M \cup F^{\prime}\right)=M$ and f is limited by \mathfrak{u}. Then f clearly extends to a homeomorphism $\tilde{f}: X \rightarrow X$ satisfying $\tilde{f} \mid \varphi\left(P \times \Sigma_{1}\right)=$ id and $\tilde{f}(F) \subset \varphi(P \times \Sigma)$.

Put $F^{*}=\pi_{\Sigma} \circ \varphi^{-1} \circ \tilde{f}(F)$, which is a compact set in Σ. Clearly there is a proper isotopy $g_{t}: F^{*} \cup \Sigma_{1} \rightarrow \Sigma$ such that $g_{0}=\mathrm{id}, g_{1}\left(F^{*}\right) \subset \Sigma_{2}$ and $g_{t} \mid \Sigma_{1}=$ id for all t. Now define an isotopy

$$
h_{t}: \tilde{f}(F) \cup \varphi\left(P \times \Sigma_{1}\right) \rightarrow \varphi(P \times \Sigma) \text { by } h_{t} \circ \varphi(x, y)=\varphi\left(x, g_{t}(y)\right),
$$

for all $(x, y) \in P \times \Sigma$ that satisfy $\varphi(x, y) \in \tilde{f}(F) \cup \varphi\left(P \times \Sigma_{1}\right)$. Note that $h_{1}\left(\tilde{f}(F) \cup \varphi\left(P \times \Sigma_{1}\right)\right)$ is a Z-set in X and h_{t} is a proper isotopy. Using Lemma 3.7 we can extend h_{1} to a homeomorphism $g: X \rightarrow X$. Then $h=g \circ \tilde{f}$ fulfills our requirements.

Lemma 5.2. Let X be a Q-manifold, P be a polyhedron, and let $\varphi: P \times \Sigma \rightarrow X$ be an embedding such that $\varphi(P \times \Sigma)$ is a cap-set for X and $\varphi\left(P \times \Sigma_{2}\right)$ is closed in X. Let $h: P \times I^{\infty} \rightarrow X$ be a closed embedding so that $h(x,(0,0, \cdots))=\varphi(x,(0,0, \cdots))$, for all $x \in P$, and $\operatorname{Bd}\left(h\left(P \times I^{\infty}\right)=\right.$ $h\left(P \times W_{1}^{+}\right)$. If $F \subset X$ is a compact Z-set, then there is a homeomorphism $f: X \rightarrow X$ such that $f(F) \subset h\left(P \times I^{\infty}\right)$ and $f \mid h\left(P \times W_{1}^{-}\right)=\mathrm{id}$.

Proof. Let Let $\theta: \varphi\left(P \times \Sigma_{2}\right) \rightarrow h\left(P \times \Sigma_{2}\right)$ be the homeomorphism defined by $\theta \circ \varphi(x, y)=h(x, y)$, for all $(x, y) \in P \times \Sigma_{2}$. It is clear that θ is properly homeotopic to the identity. Let φ_{1} be an extension of θ to a homeomorphism of X onto itself. Then $\varphi_{1} \circ \varphi: P \times \Sigma \rightarrow X$ is an embedding such that $\varphi_{1} \circ \varphi(P \times \Sigma)$ is a cap-set for $X, \varphi_{1} \circ \varphi\left(P \times \Sigma_{1}\right)=$ $h\left(P \times \Sigma_{1}\right), \quad \varphi_{1} \circ \varphi\left(P \times \Sigma_{2}\right)=h\left(P \times \Sigma_{2}\right)$, and $\varphi_{1} \circ \varphi(x,(0,0, \cdots))=$ $h(x,(0,0, \cdots))$, for all $x \in P$.

It is clear that there exists a homeomorphism $\alpha: h\left(P \times \Sigma_{1}\right) \rightarrow h\left(P \times W_{1}^{-}\right)$ such that $\alpha \circ h(x,(0,0, \cdots))=h(x,(-1,0,0, \cdots))$ for all $x \in P$, and for which α is properly homotopic to the identity, with the homotopy taking place inside $h\left(P \times I^{\infty}\right)$. By choosing covers appropriately and using Lemma 3.7 we can extend α to a homeomorphism $\varphi_{2}: X \rightarrow X$ which satisfies $\varphi_{2} \mid X \backslash h\left(P \times I^{\infty}\right)=$ id. It is clear now that $\tilde{\varphi}=\varphi_{2} \circ \varphi_{1} \circ \varphi: P \times \Sigma \rightarrow X$ is an embedding such that $\tilde{\varphi}(P \times \Sigma)$ is a cap-set for X and $\tilde{\varphi}\left(P \times \Sigma_{2}\right)$ is a Z-set in X.

Using Lemma 5.1 there is a homeomorphism $f: X \rightarrow X$ such that $f(F) \subset \tilde{\varphi}\left(P \times \Sigma_{2}\right)$ and $f \mid \tilde{\varphi}\left(P \times \Sigma_{1}\right)=$ id. This implies that $f \mid h\left(P \times W_{1}^{-}\right)$ $=\mathrm{id}$. Note that $\varphi_{1} \circ \varphi\left(P \times \Sigma_{2}\right)=h\left(P \times \Sigma_{2}\right)$ and

$$
\varphi_{2} \circ \varphi_{1} \circ \varphi\left(P \times \Sigma_{2}\right)=\varphi_{2} \circ h\left(P \times \Sigma_{2}\right) \subset h\left(P \times I^{\infty}\right),
$$

which implies that $f(F) \subset h\left(P \times I^{\infty}\right)$.

Proof of Theorem 2.

Roughly the idea of the proof is to find a copy of P in X which is a Z-set, use Theorem 1 to build a 'nice' open set around this polyhedron, and use Lemma 5.2 to 'blow up' this open set to engulf a cap-set. The part of X that this open set misses is the Z-set F which we are looking for.

Using Lemma 3.1 let $\varphi: P \times \Sigma \rightarrow X$ be an embedding such that $\varphi(P \times \Sigma)$ is a cap-set for X. A routine argument proves that if A is any locally compact subset of X, then $C l(A) \backslash A$ is a closed subset of X. Thus, $F_{1}=C l\left(\varphi\left(P \times \Sigma_{2}\right)\right) \backslash \varphi\left(P \times \Sigma_{2}\right)$ is a closed subset of X missing $\varphi(P \times \Sigma)$. It follows from Lemma 3.4 that F_{1} is a Z-set in X. Put $X^{\prime}=X \backslash F_{1}$ and note that $\varphi(P \times \Sigma)$ is a cap-set for X^{\prime}. But we now have $\varphi\left(P \times \Sigma_{2}\right)$ a Z-set in X^{\prime}, because it is closed.

Using Theorem 1 there is a closed embedding $h: P \times I^{\infty} \rightarrow X^{\prime}$ such that $h(x,(0,0, \cdots))=\varphi(x,(0,0, \cdots))$, for all $x \in P$, and

$$
\operatorname{Bd}\left(h\left(P \times I^{\infty}\right)\right)=h\left(P \times W_{1}^{+}\right)
$$

Write $\varphi(P \times \Sigma)=\bigcup_{n=1}^{\infty} M_{n}$, a tower of compact Z-sets. Using Lemma 5.2 there is a homeomorphism $f_{1}: X^{\prime} \rightarrow X^{\prime}$ such that

$$
f_{1}\left(M_{1}\right) \subset h\left(P \times\left[-1, \frac{1}{2}\right] \times \Pi_{i=2}^{\infty} I_{i}\right)
$$

Then put $g_{1}=f_{1}^{-1}$ to complete the first step of our construction.

Now let $X^{\prime \prime}=X^{\prime} \backslash g_{1} \circ h\left(P \times\left[-1, \frac{1}{2}\right) \times \Pi_{i=2}^{\infty} I_{i}\right)$, which is obviously a Q-manifold containing $g_{1} \circ h\left(P \times\left\{\frac{1}{2}\right\} \times \Pi_{i=2}^{\infty} I_{i}\right)$ as a Z-set. Put $M_{2}^{\prime}=M_{2} \cap X^{\prime \prime}$, which is clearly a compact Z-set in $X^{\prime \prime}$. One can obviously construct a homeomorphism $\alpha: X^{\prime} \rightarrow X^{\prime \prime}$ such that

$$
\alpha \circ g_{1} \circ h(x,(0,0, \cdots))=g_{1} \circ h\left(x,\left(\frac{2}{3}, 0,0, \cdots\right)\right)
$$

for all $x \in P$. Then $\varphi^{\prime}=\alpha \circ g_{1} \circ \varphi: P \times \Sigma \rightarrow X^{\prime \prime}$ is an embedding such that $\varphi^{\prime}(P \times \Sigma)$ is a cap-set for $X^{\prime \prime}$ and

$$
\varphi^{\prime}(x,(0,0, \cdots))=g_{1} \circ h\left(x,\left(\frac{2}{3}, 0,0, \cdots\right)\right)
$$

for all $x \in P$. Also $g_{1} \circ h: P \times\left[\frac{1}{2}, 1\right] \times \Pi_{i=2}^{\infty} I_{i} \rightarrow X^{\prime \prime}$ is a closed embedding satisfying $\mathrm{Bd}_{X^{\prime \prime}}\left(g_{1} \circ h\left(P \times\left[\frac{1}{2}, 1\right] \times \Pi_{i=2}^{\infty} I_{i}\right)\right)=g_{1} \circ h\left(P \times W_{1}^{+}\right)$.

Once more applying Lemma 5.2 there is a homeomorphism $f_{2}: X^{\prime \prime} \rightarrow X^{\prime \prime}$ such that $f_{2} \left\lvert\, g_{1} \circ h\left(P \times\left\{\frac{1}{2}\right\} \times \prod_{i=2}^{\infty} I_{i}\right)=\right.$ id and

$$
f_{2}\left(M_{2}^{\prime}\right) \subset g_{1} \circ h\left(P \times\left[\frac{1}{2}, \frac{3}{4}\right] \times \Pi_{i=2}^{\infty} I_{i}\right)
$$

Then let \tilde{f}_{2} be the extension of f_{2} to all of X^{\prime} such that

$$
\tilde{f}_{2} \left\lvert\, g_{1} \circ h\left(P \times\left[-1, \frac{1}{2}\right] \times \Pi_{l=2}^{\infty} I_{i}\right)=\mathrm{id} .\right.
$$

Now put $g_{2}=\tilde{f}_{2}^{-1}$, which is a homeomorphism of X^{\prime} onto itself satisfying $g_{2} \left\lvert\, g_{1} \circ h\left(P \times\left[-1, \frac{1}{2}\right] \times \Pi_{i=2}^{\infty} I_{i}\right)=\mathrm{id}\right.$ and

$$
M_{2} \subset g_{2} \circ g_{1} \circ h\left(P \times\left[-1, \frac{3}{4}\right] \times \Pi_{i=2}^{\infty} I_{i}\right)
$$

It is then clear that we can obtain a sequence $\left\{g_{i}\right\}_{i=1}^{\infty}$ of homeomorphisms of X^{\prime} onto itself such that

$$
M_{n} \subset g_{n} \circ g_{n-1} \circ \cdots \circ g_{1} \circ h\left(P \times\left[-1,1-\frac{1}{2^{n}}\right] \times \prod_{i=2}^{\infty} I_{i}\right)
$$

and

$$
g_{n} \left\lvert\, g_{n-1} \circ \cdots g_{1} \circ h\left(P \times\left[-1,1-\frac{1}{2^{n-1}}\right] \times \prod_{i=2}^{\infty} I_{i}\right)=\mathrm{id}\right.
$$

for all $n>1$. Then let $g(x)=\lim _{n \rightarrow \infty} g_{n} \circ \cdots \circ g_{1}(x)$ for all

$$
x \in h\left(P \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right.
$$

It is clear that $g: h\left(P \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right) \rightarrow X^{\prime}$ is an open embedding such that $g \circ h\left(P \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right)$contains $\varphi(P \times \Sigma)$. Thus

$$
F_{2}=X^{\prime} \backslash g \circ h\left(P \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right)
$$

is a Z-set in X^{\prime} and therefore $F=F_{1} \cup F_{2}$ is a Z-set in X such that $X \backslash F \cong P \times\left(I^{\infty} \backslash W_{1}^{+}\right)$.

6. Proofs of Theorems 3, 4, 5 and their Corollaries

The following result will be used in the proof of Theorem 3.
Lemma 6.1. Let X be a Q-manifold and let $F \subset X$ be a Z-set. Then $(X \backslash F) \times[0,1) \cong X \times[0,1)$, where the homeomorphism can be chosen to be homotopic to the inclusion of $(X \backslash F) \times[0,1)$ in $X \times[0,1)$.

Proof. If X_{1} is any Q-manifold and $C \subset X_{1}$ is any Z-set, then $C \times[0,1]$ is a Z-set in $X_{1} \times[0,1]$. In order to see this let us take a homeomorphism h_{1} of X_{1} onto $X_{1} \times I^{\infty}$ taking C into $X_{1} \times\{(0,0, \cdots)\}$. Then $h_{1} \times \mathrm{id}: X_{1} \times[0,1] \rightarrow X_{1} \times I^{\infty} \times[0,1]$ is a homeomorphism which takes $C \times[0,1]$ into $X_{1} \times\{(0,0, \cdots)\} \times[0,1]$. Let

$$
h_{2}: X_{1} \times I^{\infty} \times[0,1] \rightarrow X_{1} \times I^{\infty}
$$

be a homeomorphism in which [0,1] is factored back into X_{1} Then $h_{2} \circ\left(h_{1} \times \mathrm{id}\right): X_{1} \times[0,1] \rightarrow X_{1} \times I^{\infty}$ is a homeomorphism taking $C \times[0,1]$ into $X_{1} \times\{(0,0, \cdots)\}$, and by Lemma 3.8 it follows that

$$
h_{2} \circ\left(h_{1} \times \mathrm{id}\right)(C \times[0,1])
$$

is a Z-set in $X_{1} \times I^{\infty}$. Thus $C \times[0,1]$ is a Z-set in $X_{1} \times[0,1]$.
Let $A=(X \times\{1\}) \cup(F \times[0,1])$ and $B=(X \times\{1\}) \cup\left(F \times\left[\frac{1}{2}, 1\right]\right)$ be subsets of $X \times[0,1]$. Since A and B are Z-sets in $X \times[0,1]$ we can use Lemma 3.7 to get a homeomorphism $f: X \times[0,1] \rightarrow X \times[0,1]$ satisfying $f(A)=B$ and $f \mid X \times\{1\}=$ id. It follows from [3] that we can additionally choose f to be isotopic to $\mathrm{id}_{X \times[0,1]}$ (with each level fixed on $X \times\{1\}$). Therefore $f \mid X \times[0,1)$ gives a homeomorphism of $X \times[0,1)$ onto itself which is homotopic (in $X \times[0,1)$) to $\mathrm{id}_{\mathrm{X} \times[0,1)}$.

Let $h_{t}:[0,1] \rightarrow[0,1]$ be a homotopy which satisfies the following properties:
(1) $h_{0}=\mathrm{id}$,
(2) $h_{1}\left(\left[\frac{1}{2}, 1\right]\right)=\{1\}$,
(3) $h_{1} \left\lvert\,\left[0, \frac{1}{2}\right]\right.$ is a homeomorphism of $\left[0, \frac{1}{2}\right]$ onto $[0,1]$,
(4) $h_{t}:[0,1] \rightarrow[0,1]$ is a homeomorphism for all $t \neq 1$.

Define a continuous function $g: X \times[0,1] \rightarrow X \times[0,1]$ as follows: for each $x \in X$ and $y \in[0,1]$, let $g(x, y)=\left(x, h_{t}(y)\right)$, where $t=1 /(1+d(x, F))$. Clearly $g \mid(X \times[0,1]) \backslash B$ gives a homeomorphism of $(X \times[0,1]) \backslash B$ onto $X \times[0,1)$ which is homotopic to the inclusion of $(X \times[0,1]) \backslash B$ in $X \times[0,1)$. Then $g \circ f \mid(X \backslash F) \times[0,1)$ gives a homeomorphism of $(X \backslash F) \times[0,1)$ onto $X \times[0,1)$ which is homotopic to the inclusion of $(X \backslash F) \times[0,1)$ in $X \times[0,1)$.

We will also need the following result.

Lemma 6.2. Let X be a Q-manifold, P be a polyhedron, and let $f: P \times\left(I^{\infty} \backslash W_{1}^{+}\right) \rightarrow X$ be a homotopy equivalence. Then there exists an open embedding $g: P \times\left(I^{\infty} \backslash W_{1}^{+}\right) \rightarrow X$ such that g is homotopic to f and $X \backslash g\left(P \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right)$is a Z-set in X.

Proof. It follows routinely from the coordinate structure of I^{∞} that there is a homeomorphism of $I^{\infty} \times I^{\infty}$ onto I^{∞} which is homotopic to the projection of $I^{\infty} \times I^{\infty}$ onto the first factor. Since $X \times I^{\infty} \cong X$, it follows that there is a homeomorphism $\beta: X \times I^{\infty} \rightarrow X$ which is homotopic to π_{X}, the projection of $X \times I^{\infty}$ onto X. Define $f^{\prime}: P \rightarrow X$ by $f^{\prime}(x)=f(x,(0,0, \cdots))$, for all $x \in P$. Then f^{\prime} is also a homotopy equivalence.

It follows from [15] that $P \times s$ is an F-manifold and it follows routinely from the definition that $X \times s$ is an F-manifold. Note that

$$
f^{\prime} \times \mathrm{id}_{s}: P \times s \rightarrow X \times s
$$

is a homotopy equivalence. Thus $f^{\prime} \times \mathrm{id}_{s}$ is homotopic to a homeomorphism $\alpha: P \times s \rightarrow X \times s$ (see [10]).

Now $P \times \Sigma$ is a cap-set for $P \times s$ (see [6]) and therefore $\alpha(P \times \Sigma)$ is a cap-set for $X \times I^{\infty}$ (since $X \times I^{\infty}$ can be deformed into $X \times s$ with 'small' motions). Hence $\beta \circ \alpha(P \times \Sigma)$ is a cap-set for X. As in the proof of Theorem 2 let $F_{1}=C l\left(\varphi\left(P \times \Sigma_{2}\right)\right) \backslash \varphi\left(P \times \Sigma_{2}\right)$, where $\varphi=\beta \circ \alpha \mid P \times \Sigma$, and let $h: P \times I^{\infty} \rightarrow X \backslash F_{1}$ be a closed embedding such that

$$
h(x,(0,0, \cdots))=\varphi(x,(0,0, \cdots))
$$

for all $x \in P$, and $\operatorname{Bd}\left(h\left(P \times I^{\infty}\right)\right)=h\left(P \times W_{1}^{+}\right)$. In the proof of Theorem 2 a homeomorphism $g^{\prime}: h\left(P \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right) \rightarrow X \backslash F$ was constructed, where F is a Z-set in X containing F_{1}. Moreover it is clear from the construction given there that g^{\prime} is homotopic to the inclusion of $h\left(P \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right)$in X. Thus $g=g^{\prime} \circ h \mid P \times\left(I^{\infty} \backslash W_{1}^{+}\right)$gives an open embedding of $P \times\left(I^{\infty} \backslash W_{1}^{+}\right)$in X whose complement is a Z-set in X. Moreover g is homotopic to $h^{\prime}=h \mid P \times\left(I^{\infty} \backslash W_{1}^{+}\right)$. All that is left to do is prove that h^{\prime} is homotopic to f.

To this end let $r: P \times\left(I^{\infty} \backslash W_{1}^{+}\right) \rightarrow P \times\{(0,0, \cdots)\}$ be given by $r(x, t)=(x,(0,0, \cdots))$, for all $x \in P$ and $t \in I^{\infty} \backslash W_{1}^{+}$. It is clear that h^{\prime} is homotopic to $h^{\prime} \circ r$ and $h^{\prime} \circ r=\beta \circ \alpha \circ r$. Since α is homotopic to $f^{\prime} \times \mathrm{id}_{s}$ it follows that $\beta \circ \alpha \circ r$ is homotopic to $\beta \circ\left(f^{\prime} \times \mathrm{id}_{s}\right) \circ r$. But $\beta \circ\left(f^{\prime} \times \mathrm{id}_{s}\right) \circ r$ is homotopic to $\pi_{X} \circ\left(f^{\prime} \times \mathrm{id}_{s}\right) \circ r$. But $\pi_{X} \circ\left(f^{\prime} \times \mathrm{id}_{s}\right) \circ r=$ $f \circ r$, and since r is homotopic to $\operatorname{id}_{P \times\left(I^{\infty} \mid W_{1}+\right)}$ it follows that $f \circ r$ is homotopic to f.

Proofs of Theorems 3 and 5.
Let $f: X \rightarrow Y$ be a homotopy equivalence, where X and Y are Q -
manifolds. Let P be a polyhedron for which there exists a homotopy equivalence $g: P \times\left(I^{\infty} \backslash W_{1}^{+}\right) \rightarrow X$. Using Lemma 6.2 we see that g is homotopic to a homeomorphism $\alpha: P \times\left(I^{\infty} \backslash W_{1}^{+}\right) \rightarrow X \backslash F_{1}$, where $F_{1} \subset X$ is a Z-set. Also $f \circ g$ is homotopic to a homeomorphism $\beta: P \times\left(I^{\infty} \backslash W_{1}^{+}\right) \rightarrow Y \backslash F_{2}$, where $F_{2} \subset Y$ is a Z-set. Using Lemma 6.1 it follows that $\alpha \times \mathrm{id}:\left(P \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right) \times[0,1) \rightarrow\left(X \mid F_{1}\right) \times[0,1)$ is homotopic to a homeomorphism $\gamma:\left(P \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right) \times[0,1) \rightarrow X \times[0,1)$, with the homotopy taking place in $X \times[0,1)$. Similarly $\beta \times$ id is homotopic to a homeomorphism $\delta:\left(P \times\left(I^{\infty} \backslash W_{1}^{+}\right)\right) \times[0,1) \rightarrow Y \times[0,1)$, with the homotopy taking place in $Y \times[0,1)$.

In order to see that $X \times[0,1) \cong P \times\left(I^{\infty} \backslash\{\right.$ point $\left.\}\right)$ note that γ^{-1} gives a homeomorphism of $X \times[0,1)$ onto $P \times\left(I^{\infty} \backslash W_{1}^{+}\right) \times[0,1)$. Since $I^{\infty} \backslash W_{1}^{+}=[-1,1) \times \Pi_{i=2}^{\infty} \quad I_{i}$ and since $[-1,1) \times[0,1)$ is obviously homeomorphic to $[-1,1) \times[0,1]$, we have $X \times[0,1) \cong P \times\left(I^{\infty} \backslash W_{1}^{+}\right)$. To finish the proof of Theorem 3 all we need do is note that $I^{\infty} \backslash W_{1}^{+} \cong I^{\infty} \backslash\{$ point $\}$.

For the proof of Theorem 5 note that $\delta \circ \gamma^{-1}: X \times[0,1) \rightarrow Y \times[0,1)$ is a homeomorphism. All that remains to be done is prove that $\delta \circ \gamma^{-1}$ is homotopic to $f \times \mathrm{id}$, or equivalently, to prove that δ is homotopic to $(f \times \mathrm{id}) \circ \gamma$. But δ is homotopic to $\beta \times \mathrm{id}$, which in turn is homotopic to $(f \circ g) \times \mathrm{id}=(f \times \mathrm{id}) \circ(g \times \mathrm{id})$. Since $g \times \mathrm{id}$ is homotopic to $\alpha \times \mathrm{id}$, and $\alpha \times$ id is homotopic to γ, we are done.

Proof of Corollary 1.

Choose any polyhedron P for which $P \sim X$ and use Theorem 3 to get $X \times[0,1) \cong P \times\left(I^{\infty} \backslash\{\right.$ point $\left.\}\right)$. Now $I^{\infty} \backslash\{$ point $\} \cong I^{\infty} \times[0,1)$, hence $P \times\left(I^{\infty} \backslash\{\right.$ point $\left.\}\right) \cong(P \times[0,1)) \times I^{\infty}$. But $P \times[0,1)$ can obviously be triangulated by a complex.

Proof of Corollary 2.
Apply Theorem 3.
Proof of Corollary 3.
Apply Theorem 3.

Proof of Theorem 4.

Let $Y=X \times s$, which is obviously an F-manifold satisfying $Y \sim X$. Using Henderson's open embedding theorem let $g: Y \rightarrow s$ be an open embedding. Let U be an open subset of I^{∞} for which $U \cap s=g(Y)$. Then U is a Q-manifold, and as $U \cap B\left(I^{\infty}\right)$ is obviously a cap-set for U, it follows from Lemma 3.6 that $U \sim g(Y)$. Thus $X \sim U$. Using Corollary 2 we have $X \times[0,1) \cong U \times[0,1)$, and using the fact that $U \times[0,1] \cong U$ we have $U \times[0,1) \cong U \backslash F$, for some closed subset F of U. Thus $X \times[0,1) \cong U \backslash F$, which is open in I^{∞}.

Proof of Corollary 4.

Let $f: X \rightarrow X \times[0,1]$ be a homeomorphism and put

$$
U=f^{-1}(X \times[0,1)), V=f^{-1}(X \times(0,1])
$$

7. Proofs of Theorem 6, its Corollary, and Theorem 7

The following result will be used in the proof of Theorem 6.
Lemma 7.1. Let X be a compact Q-manifold and assume that $X \sim P$, for some compact polyhedron P. Then there is a copy P^{\prime} of P in X which is a Z-set and a pseudo-isotopy $h_{t}: X \rightarrow X$ which satisfies the following properties.
(1) $h_{0}=\mathrm{id}$,
(2) $h_{1}(X)=P^{\prime}$,
(3) $h_{t} \mid P^{\prime}=$ id for all t, and
(4) $h_{t}: X \rightarrow X$ is an embedding for all $t \neq 1$.

Proof. Let $f: X \rightarrow X \times I^{\infty}$ be a homeomorphism. Since $X \times s$ is an F-manifold and $X \times s \sim P$, it follows that there is a homeomorphism $\varphi: P \times s \rightarrow X \times s$. Using the fact that $\varphi(P \times\{(0,0, \cdots)\})$ is a compact subset of $X \times s$, it is clear that there is an isotopy $f_{t}: X \times I^{\infty} \rightarrow X \times I^{\infty}$ such that $f_{0}=$ id, $f_{1}\left(X \times I^{\infty}\right) \subset X \times s$, and $f_{t} \mid \varphi(P \times\{(0,0, \cdots)\})=\mathrm{id}$, for all t.

One can obviously get a pseudo-isotopy $g_{t}: \varphi(P \times s) \rightarrow \varphi(P \times s)$ such that $g_{0}=$ id, $g_{1} \circ \varphi(P \times s)=\varphi(P \times\{(0,0, \cdots)\}), g_{t}$ is an embedding for all $t \neq 1$, and $g_{t} \mid \varphi(P \times\{(0,0, \cdots)\})=\mathrm{id}$, for all t. Then let $h_{t}^{\prime}: X \times I^{\infty} \rightarrow X \times I^{\infty}$ be defined by

$$
h_{t}^{\prime}(x)= \begin{cases}f_{2 t}(x), & \text { for } 0 \leqq t \leqq \frac{1}{2} \\ g_{2 t-1} \circ f_{1}(x), & \text { for } \frac{1}{2} \leqq t \leqq 1\end{cases}
$$

Obviously h_{t}^{\prime} is a pseudo-isotopy satisfying
$h_{0}^{\prime}=\mathrm{id}, h_{1}^{\prime}\left(X \times I^{\infty}\right)=\varphi(P \times\{(0,0, \cdots)\}), h_{t}^{\prime} \mid \varphi(P \times\{(0,0, \cdots)\})=\mathrm{id}$ for all t, and h_{t}^{\prime} is an embedding for all $t \neq 1$. Then let

$$
P^{\prime}=f^{-1} \circ \varphi(P \times\{(0,0, \cdots)\})
$$

and let $h_{t}: X \rightarrow X$ be defined by $h_{t}(x)=f^{-1} \circ h_{t}^{\prime} \circ f(x)$.

Proof of Theorem 6.

Using Theorem 3 and the fact that $X \cong X \times[0,1]$, there is a copy X^{\prime} of X in X which is a Z-set and there is a homeomorphism

$$
f: P \times\left(I^{\infty} \backslash W_{1}^{+}\right) \rightarrow X \backslash X^{\prime}
$$

Using Lemma 7.1 let P^{\prime} be a copy of P in X^{\prime} and let $h_{t}: X^{\prime} \rightarrow X^{\prime}$ be a pseudo-isotopy satisfying $h_{0}=\mathrm{id}, h_{1}\left(X^{\prime}\right)=P^{\prime}, h_{t}$ is an embedding for all $t \neq 1$, and $h_{t} \mid P^{\prime}=$ id for all t. Since $P^{\prime} \subset X^{\prime}$ it easily follows that P^{\prime} is a Z-set in X.

Let $\left\{U_{i}\right\}_{i=1}^{\infty}$ be any collection of open subsets of X such that $\bigcap_{i=1}^{\infty} U_{i}=P^{\prime}$ and $X^{\prime} \subset U_{1}$. Using the compactness of P and X we can find a number $t_{1} \in(-1,1)$ such that $f\left(P \times\left[t_{1}, 1\right) \times \Pi_{i=2}^{\infty} I_{i}\right) \subset U_{1}$. Let $V_{1}=X \backslash f\left(P \times\left[-1, t_{1}\right] \times \Pi_{i=2}^{\infty} I_{i}\right)$, which is an open set containing X^{\prime}. By choosing $t \in(0,1)$ sufficiently close to 1 we have an embedding $h_{t}: X^{\prime} \rightarrow X^{\prime} \cap U_{2}$ which is properly homotopic to the identity, where the image of the proper homotopy is entirely contained in X^{\prime}. Moreover this proper homotopy is limited by some open cover of V_{1} which is normal with respect to $X \backslash V_{1}$. Thus we can apply Lemma 3.7 to extend h_{t} to a homeomorphism $g_{1}: X \rightarrow X$ which satisfies

$$
g_{1} \mid f\left(P \times\left[-1, t_{1}\right] \times \Pi_{i=2}^{\infty} I_{i}\right)=\mathrm{id},
$$

$g_{1} \mid P^{\prime}=$ id, and $g_{1}\left(X^{\prime}\right) \subset U_{2}$.
Now choose $t_{2} \in\left(t_{1}, 1\right)$ such that $g_{1} \circ f\left(P \times\left[t_{2}, 1\right) \times \Pi_{i=2}^{\infty} I_{i}\right) \subset U_{2}$ and use the above techniques to construct a homeomorphism $g_{2}: X \rightarrow X$ satisfying $g_{2}\left|g_{1} \circ f\left(P \times\left[-1, t_{2}\right] \times \Pi_{i=2}^{\infty} I_{i}\right)=\mathrm{id}, g_{2}\right| P^{\prime}=\mathrm{id}$, and

$$
g_{2} \circ g_{1}\left(X^{\prime}\right) \subset U_{3}
$$

It is clear that we can continue this process to obtain homeomorphisms $\left\{g_{i}\right\}_{i=1}^{\infty}$ of X onto itself and numbers $t_{1}<t_{2}<\cdots<1$ limiting to 1 such that

$$
g_{i+1} \mid g_{i} \circ \cdots \circ g_{1} \circ f\left(P \times\left[-1, t_{i+1}\right] \times \Pi_{i=2}^{\infty} I_{i}\right)=\mathrm{id}
$$

$g_{i} \circ \cdots \circ g_{1}\left(X^{\prime}\right) \subset U_{i+1}$, and $g_{i} \mid P^{\prime}=\mathrm{id}$, for all i. Then define $g: P \times\left(I^{\infty} \backslash W_{1}^{+}\right) \rightarrow X \backslash P^{\prime}$ by $g(x)=\lim g_{i} \circ \cdots \circ g_{1} \circ f(x)$. Clearly g is a homeomorphism which is what we wanted.

Proof of Corollary 5.

It follows from [12] that any homotopically trivial metric ANR is contractible. Thus X must be a compact contractible Q-manifold, hence it has the homotopy type of a point. It follows from Theorem 6 that $X \backslash\{$ point $\} \cong I^{\infty} \backslash$ point $\}$, thus $X \cong I^{\infty}$.

We will need the following result for the proof of Theorem 7.
Lemma 7.2. Let X be a compact Q-manifold for which $X \sim P$, for some compact polyhedron P. Then there is an embedding $h: P \times I^{\infty} \rightarrow X$ such that $\mathrm{Bd}\left(h\left(P \times I^{\infty}\right)\right)=h\left(P \times W_{1}^{+}\right)$and there is a strong deformation retraction of X onto $h\left(P \times W_{1}^{-}\right)$.

Proof. Let $\varphi: P \times s \rightarrow X \times s$ be a homeomorphism and let

$$
h^{\prime}: P \times I^{\infty} \rightarrow X \times I^{\infty}
$$

be an embedding such that $h^{\prime}(x,(0,0, \cdots))=\varphi(x,(0,0, \cdots))$, for all $x \in P$, and $\operatorname{Bd}\left(h^{\prime}\left(P \times I^{\infty}\right)\right)=h^{\prime}\left(P \times W_{1}^{+}\right)$. Now $h^{\prime}\left(\mathrm{P} \times W_{1}^{-}\right)$is a Z-set in $X \times I^{\infty}$, thus Lemma 3.7 implies that there is a homeomorphism $f: X \times I^{\infty} \rightarrow X \times I^{\infty}$ for which $f \circ h^{\prime}\left(P \times W_{1}^{-}\right)=\varphi\left(P \times \Sigma_{1}\right)$.

Using an argument similar to that used in the proof of Lemma 7.1, there is a strong deformation retraction h_{t} of $X \times I^{\infty}$ onto $\varphi\left(P \times \Sigma_{1}\right)$. Thus $f^{-1} \circ h_{t} \circ f$ gives a strong deformation retraction of $X \times I^{\infty}$ onto $h^{\prime}\left(P \times W_{1}^{-}\right)$. Using the fact that $X \cong X \times I^{\infty}$ we can easily transfer this information back to X.

Proof of Theorem 7.

The procedure will be to attach a copy of I^{∞} to X so that the resulting space is a compact contractible Q-manifold.

Assume that $\operatorname{dim}(P) \leqq n$ and consider P as linearly embedded in the $(2 n+1)$-cell $\Pi_{i=1}^{2 n+1} I_{i}$. Let $f: P \times[1,2] \times I^{\infty} \rightarrow X$ be an embedding such that $\operatorname{Bd}\left(f\left(P \times[1,2] \times I^{\infty}\right)\right)=f\left(P \times\{2\} \times I^{\infty}\right)$, where we consider

$$
P \times[1,2] \subset E^{2 n+2}
$$

$((2 n+2)$-dimensional Euclidean space), and for which there is a strong deformation retraction of X onto $f\left(P \times\{1\} \times I^{\infty}\right)$.

Let X^{*} be the space constructed by attaching $\left(\Pi_{i=1}^{2 n+2} I_{i}\right) \times I^{\infty}$ to X, with the attaching map being $f \mid P \times\{1\} \times I^{\infty}$. To show that X^{*} is a Q manifold all we have to do is check at $f\left(P \times\{1\} \times I^{\infty}\right)$. We know from [15] that the product of any polyhedron with I^{∞} gives a Q-manifold. Since there is obviously a neighborhood of $f\left(P \times\{1\} \times I^{\infty}\right)$ in X^{*} which is homeomorphic to $\left[\left(\Pi_{i=1}^{2 n+2} I_{i}\right) \cup(P \times[1,2])\right] \times I^{\infty}$, we conclude that X^{*} is a compact Q-manifold.

To see that X^{*} is contractible we note that there is a strong deformation retraction of X^{*} onto the attached copy of $\left(\Pi_{i=1}^{2 n+2} I_{i}\right) \times I^{\infty}$ in X^{*}. Thus it follows that X^{*} is contractible, hence $X^{*} \cong I^{\infty}$ by Corollary 5. The proof of the theorem is now complete.

8. Proof of Theorem 8

We will need the following preliminary result. A proof can easily be constructed using techniques similar to those used to establish Lemma 3.1 of [4]. For this reason we do not give a proof.

Lemma 8.1. Let J^{∞} be a copy of I^{∞}. There is a continuous function $g: I^{\infty} \times[1, \infty) \rightarrow I^{\infty} \times J^{\infty}$ which satisfies the following properties.
(1) for n an integer and $n \leqq u<n+1, g_{u}$ is a homeomorphism of I^{∞} onto $\left(I_{1} \times \cdots \times I_{n} \times[n-u, u-n] \times\{(0,0, \cdots)\}\right) \times J^{\infty}$, where g_{u} is defined by $g_{u}(x)=g(x, u)$, for all $x \in I^{\infty}$, and
(2) for $u \in[1, \infty)$ and $n \leqq u$ (n an integer),

$$
\pi_{n} \circ \pi_{I^{\infty}} \circ g_{u}\left(\left(x_{i}\right)\right)=\left(x_{1}, \cdots, x_{n}\right)
$$

for all $\left(x_{i}\right) \in I^{\infty}$.
We will need one more preliminary result before we establish Theorem 8. We will need a definition first.

Let G be an open subset of I^{∞}. A continuous function $\varphi: G \rightarrow[1, \infty)$ is said to have the local product property with respect to G provided that for each $x \in G$ there is an integer $m(x) \leqq \varphi(x)$ such that the following properties are satisfied.
(1) for all $x=\left(x_{i}\right) \in G,\left\{\left(x_{1}, \cdots, x_{m(x)}\right)\right\} \times \prod_{i=m(x)+1}^{\infty} I_{i} \subset G$
(2) for all $x=\left(x_{i}\right) \in G$ and $\left(y_{m(x)+1}, y_{m(x)+2}, \cdots\right) \in$

$$
\prod_{i=m(x)+1}^{\infty} I_{i}, \varphi\left(\left(x_{i}\right)\right)=\varphi\left(x_{1}, \cdots, x_{m(x)}, y_{m(x)+1}, y_{m(x)+2}, \cdots\right)
$$

and
(3) φ is unbounded near $I^{\infty} \backslash G$, i.e. for each $x \in \operatorname{Bd}(G)$ and each integer $n>0$, there is an open set U containing x such that $\varphi(G \cap U) \subset$ $[n, \infty)$.

Lemma 8.2. Let G be an open subset of I^{∞} and assume that there is a continuous function $\varphi: G \rightarrow[1, \infty)$ which has the local product property with respect to G. Let $\alpha: E^{1} \rightarrow E^{1}$ (where E^{1} is the real line) be defined by $\alpha(x)=x$, for $x \geqq 0$, and $\alpha(x)=0$, for $x \leqq 0$. Then $G \cong G(\varphi) \times J^{\infty}$, where

$$
G(\varphi)=\left\{\left(x_{i}\right) \in G| | x_{i} \mid \leqq \alpha(\varphi(x)-(i-1)), \text { for all } i \geqq 1\right\} .
$$

Proof. Let $g: I^{\infty} \times[1, \infty) \rightarrow I^{\infty} \times J^{\infty}$ be the continuous function of Lemma 8.1. For each $x \in G$ let $h(x)=g(x, \varphi(x))$, which gives a homeomorphism of G onto $G(\varphi) \times J^{\infty}$. The details of the argument are elementary.

Proof of Theorem 8.
Using a standard technique (for example see Lemma 6.1 of [6]) there is a countable star-finite collection \mathfrak{H} of basic open subsets of I^{∞} such that $G=\bigcup\{U \mid U \in \mathfrak{U}\}$ and $C l(U) \subset G$, for all $U \in \mathfrak{U}$. (An open subset of I^{∞} is basic provided that its closure is a basic closed set). It is clear that by subdividing $\{C l(U) \mid U \in \mathfrak{U}\}$ we can get a countable star-finite collection
\mathscr{F} of basic closed subsets of I^{∞} such that (1) $G=\bigcup\{F \mid F \in \mathfrak{F}\}$, (2) for each $F \in \mathfrak{F}$, Int (F) is a non-null basic open subset of I^{∞}, and (3) if $F_{1}, F_{2} \in \mathfrak{F}$ and $F_{1} \neq F_{2}$, then $F_{1} \cap F_{2}$ lies in an endslice of each.

Without loss of generality we may assume that G is connected. Thus we can order \mathfrak{F} as $\left\{F_{i}\right\}_{i=1}^{\infty}$ so that

$$
\begin{aligned}
\operatorname{St}\left(F_{1}, \mathfrak{F}\right) & =F_{1} \cup F_{2} \cup \cdots \cup F_{i(1)} \\
\operatorname{St}^{2}\left(F_{1}, \mathfrak{F}\right) & =F_{1} \cup F_{2} \cup \cdots \cup F_{i(1)} \cup F_{i(1)+1} \cup \cdots \cup F_{i(2)} \\
& \vdots
\end{aligned}
$$

where $1=i(0)<i(1)<\cdots$ and $\operatorname{St}^{n}\left(F_{1}, \mathfrak{F}\right)$ has the usual meaning.
For each $j>0$ let $m(j)$ denote a positive integer such that $F_{j}=A_{j} \times \Pi_{i=m(j)+1}^{\infty} I_{i}$, where A_{j} is a basic closed subset of $\Pi_{i=1}^{m(j)} I_{i}$. By subdividing $\left\{F_{i}\right\}_{i=1}^{\infty}$ sufficiently (if necessary) we can choose $\{m(j)\}_{j=1}^{\infty}$ so that $m(j)=m(i(k))+1$, for all j satisfying $i(k)+1 \leqq j \leqq i(k+1)$.

For each $j>0$ let $R_{j}=\left(A_{j} \times I_{m(j)+1}\right) \times\{(0,0, \cdots)\}$.
Then $\left\{R_{j}\right\}_{j=1}^{\infty}$ is a locally-finite collection of finite-dimensional cells in G. It is clear that we can define a piecewise linear function $\varphi^{\prime}: \bigcup_{j=1}^{\infty} R_{j} \rightarrow[1, \infty)$ which satisfies
(1) $\varphi^{\prime}(x)=m(1)+2$, for all $x \in R_{1}$,
(2) $m(1)+j+1<\varphi^{\prime}(x) \leqq m(1)+j+2$, for all integers $j \geqq 1$ and $\left.x \in\left(\bigcup_{i=i(j-1)+1}^{i(j)} R_{i}\right) \backslash \bigcup_{i=1}^{i(j-1)} R_{i}\right)$, and
(3) $\varphi^{\prime}(x)=m(1)+j+2$, for all $x \in\left(\bigcup_{i=i(j-1)+1}^{i(j)} R_{i}\right) \cap\left(\bigcup_{i=i(j)+1}^{\infty} R_{i}\right)$.

Then extend φ^{\prime} to a continuous function $\varphi: G \rightarrow[1, \infty)$ by defining $\varphi\left(\left(x_{i}\right)\right)=\varphi^{\prime}\left(x_{1}, \cdots, x_{m(j)+1}, 0,0, \cdots\right)$, for all $\left(x_{i}\right) \in F_{j}$. It is clear that φ has the local product property with respect to G. Using Lemma 8.2 we find that $G \cong G(\varphi) \times J^{\infty}$. If we can prove that $G(\varphi)$ can be triangulated by a complex, then we will be done.

We have chosen $\left\{F_{i}\right\}_{i=1}^{\infty}$ so that for the corresponding $\left\{R_{i}\right\}_{i=1}^{\infty}$, $R_{i} \cap R_{j}$ lies in a face of each, for $i \neq j$. It is obvious that we could have chosen $\left\{F_{i}\right\}_{i=1}^{\infty}$ so that if $i>j$, then $R_{i} \cap R_{j}$ is exactly a face of \boldsymbol{R}_{i}. This will aid in an inductive triangulation of $G(\varphi)$. The details of the triangulation are tedious, but elementary. Accordingly we only sketch the details.

There is obviously a triangulation Δ_{1}^{\prime} of R_{1} such that for each i, with $1<i \leqq i(1), R_{i} \cap R_{1}$ is triangulated by a subcomplex of Δ_{1}^{\prime}. We can extend Δ_{1}^{\prime} to a triangulation Δ_{1} of

$$
B_{1}=\left\{\left(x_{i}\right) \in F_{1}| | x_{i} \mid \leqq \alpha\left(\varphi\left(\left(x_{i}\right)\right)-(i-1)\right), \text { for all } i \geqq 1\right\}
$$

so that for $1<i \leqq i(1), R_{i} \cap B_{1}$ is triangulated by a subcomplex of Δ_{1}.
We have chosen $\left\{R_{i}\right\}_{i=1}^{\infty}$ so that for each $i>0, R_{i+1} \cap\left(R_{1} \cup \cdots \cup R_{i}\right)$
is a union of faces of R_{i+1}. Using this fact and an inductive procedure on $\left\{R_{2}, \cdots, R_{i(1)}\right\}$ we can extend Δ_{1} to a triangulation Δ_{2}^{\prime} of

$$
B_{1} \cup\left(R_{2} \cup \cdots \cup R_{i(1)}\right)
$$

so that if $i(1)<i \leqq i(2)$, then $R_{i} \cap\left(B_{1} \cup\left(R_{2} \cup \cdots \cup R_{i(1)}\right)\right)$ is triangulated by a subcomplex of Δ_{2}^{\prime}. Put
$B_{2}=\left\{\left(x_{i}\right) \in F_{1} \cup \cdots \cup F_{i(1)}| | x_{i} \mid \leqq \alpha\left(\varphi\left(\left(x_{i}\right)\right)-(i-1)\right)\right.$, for all $\left.i \geqq 1\right\}$
and extend Δ_{2}^{\prime} to a triangulation Δ_{2} of B_{2} so that for $i(1)<i \leqq i(2)$, $R_{i} \cap B_{2}$ is triangulated by a subcomplex of Δ_{2}. It is clear that we can inductively continue this process to obtain our desired triangulation.

9. Proofs of Theorems $\mathbf{9}$ and 10

The following lemma is a basic separation result which will be needed in the proofs of Theorems 9 and 10.

Lemma 9.1. Let X be a metric ANR, A be a closed subset of X which is an ANR and for which the inclusion map $i: A \rightarrow X$ is a homotopy equivalence, and let $h: A \times(-1,1) \rightarrow X$ be an open embedding such that $h(x, 0)=x$, for all $x \in A$. Then we can write $X \backslash A=U \cup V$, where U and V are disjoint open subsets of X satisfying $h(A \times(0,1)) \subset U$ and $h(A \times(-1,0)) \subset V$. Moreover, there are strong deformation retractions of $C l(U)$ and $C l(V)$ onto A.

Proof. The proof of the existence of disjoint open subsets U, V of X satisfying $X \backslash A=U \cup V, h(A \times(0,1)) \subset U$, and $h(A \times(-1,0)) \subset V$ is straightforward. We merely remark that in the case A is connected the desired separation follows immediately from the reduced Mayer-Vietoris sequence of the excisive couple $\{h(A \times(-1,1)), X \backslash A\}$. In case A is not connected one can do a standard argument on the components of A.

The inclusion map $i: A \rightarrow X$ being a homotopy equivalence means that A is a weak deformation retract of X. Since A and X are ANR's it follows that A is a strong deformation retract of X (see [14], page 31). Let $f_{t}: X \rightarrow X$ be a strong deformation retraction of X onto A, where $f_{0}=\operatorname{id}$ and f_{1} is a retraction of X onto A.

Let $g: X \rightarrow X$ be defined by

$$
g(x)= \begin{cases}x, & \text { for } x \in C l(U) \\ f_{1}(x), & \text { for } x \in C l(V)\end{cases}
$$

which is clearly continuous. Define $h_{t}=g \circ f_{t}$, for all $r \in[0,1]$. It is clear that $h_{t}(C l(U)) \subset C l(U)$, for all t. Thus $h_{t} \mid C l(U)$ defines a strong defor-
mation retraction of $C l(U)$ onto A. Similarly A is a strong deformation retract of $C l(V)$.

We will now give a proof of Theorem 9. For its proof we will use Lemma 9.1 and some of the results that have been established for Q-manifolds in this paper. We will not prove Theorem 10, since similar results for F-manifolds that have been established elsewhere will permit a proof similar to that given for Theorem 9.

Proof of Theorem 9.

Note that X and Y are metric ANR's and the inclusion maps $i: f(X) \rightarrow Y, j: g(X) \rightarrow Y$ are obviously homotopy equivalences. Thus we can apply Lemma 9.1 to obtain disjoint pairs U_{1}, U_{2} and V_{1}, V_{2} of open subsets of Y such that the following properties are satisfied.
(1) $Y \backslash f(X)=U_{1} \cup U_{2}$ and $Y \backslash g(X)=V_{1} \cup V_{2}$,
(2) $f(X)=C l\left(U_{1}\right) \cap C l\left(U_{2}\right)$ and $g(X)=C l\left(V_{1}\right) \cap C l\left(V_{2}\right)$,
(3) $f(X)$ is collared in each of $C l\left(U_{1}\right), C l\left(U_{2}\right)$, and $g(X)$ is collared in each of $C l\left(V_{1}\right), C l\left(V_{2}\right)$,
(4) $f(X)$ is a strong deformation retract of each of $C l\left(U_{1}\right), C l\left(U_{2}\right)$, and $g(X)$ is a strong deformation retract of each of $C l\left(V_{1}\right), C l\left(V_{2}\right)$.

From (3) it easily follows that $C l\left(U_{1}\right)$ and $C l\left(V_{1}\right)$ are Q-manifolds. Let $r: C l\left(U_{1}\right) \rightarrow f(X)$ be a retraction homotopic to id and note that the map $g \circ f^{-1} \circ r: C l\left(U_{1}\right) \rightarrow C l\left(V_{1}\right)$ is a homotopy equivalence. Using Theorem 6 we know that $\left(g \circ f^{-1} \circ r\right) \times$ id : $C l\left(U_{1}\right) \times[0,1) \rightarrow C l\left(V_{1}\right) \times$ $[0,1)$ is homotopic to a homeomorphism $h_{1}: C l\left(U_{1}\right) \times[0,1) \rightarrow C l\left(V_{1}\right) \times$ $[0,1)$.

Now $g \times$ id : $X \times[0,1) \rightarrow C l\left(V_{1}\right) \times[0,1)$ and $h_{1} \circ(f \times \mathrm{id}): X \times[0,1) \rightarrow$ $C l\left(V_{1}\right) \times[0,1)$ are homotopic embeddings. It is easy to see that $(g \times \mathrm{id})(X \times[0,1))$ and $h_{1} \circ(f \times \mathrm{id})(X \times[0,1))$ are Z-sets in $C l\left(V_{1}\right) \times$ [0,1). Using Corollary 6.1 of [3] there is a homeomorphism

$$
h_{2}: C l\left(V_{1}\right) \times[0,1) \rightarrow C l\left(V_{1}\right) \times[0,1)
$$

which satisfies $h_{2} \circ h_{1} \circ(f \times \mathrm{id})=g \times$ id. Put $h^{\prime}=h_{2} \circ h_{1}$, which is a homeomorphism of $\operatorname{Cl}\left(U_{1}\right) \times[0,1)$ onto $C l\left(V_{1}\right) \times[0,1)$ which satisfies $h^{\prime} \circ(f \times \mathrm{id})=g \times \mathrm{id}$.

Similarly we can obtain a homeomorphism

$$
h^{\prime \prime}: C l\left(U_{2}\right) \times[0,1) \rightarrow C l\left(V_{2}\right) \times[0,1)
$$

which satisfies $h^{\prime \prime} \circ(f \times \mathrm{id})=g \times$ id. Then define $h: Y \times[0,1) \rightarrow$ $Y \times[0,1)$ by $h \mid C l\left(U_{1}\right) \times[0,1)=h^{\prime}$ and $h \mid C l\left(U_{2}\right) \times[0,1)=h^{\prime \prime}$.

REFERENCES

R. D. Anderson

[1] On sigma-compact subsets of infinite-dimensional spaces, Trans. Amer. Math. Soc. (to appear).
R. D. Anderson and R. H. Bing
[2] A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771-792.
R. D. Anderson and T. A. Chapman
[3] Extending homeomorphisms to Hilbert cube manifolds, Pac. J. of Math. 38 (1971), 281-293.
R. D. Anderson and R. Schori
[4] A factor theorem for Fréchet manifolds, Bull. Amer. Math. Soc., 75 (1969), 53-56.
[5] Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315-330.
T. A. Chapman
[6] Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399-426.
William H. Cutler
[7] Deficiency in F-manifolds, preprint.
D. W. Henderson
[8] Open subsets of Hilbert space, Compositio Math. 21 (1969), 312-318.
D. W. Henderson
[9] Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc. 75 (1969), 759-762.
D. W. Henderson and R. Schori
[10] Topological classification of infinite-dimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1969), 121-124.
J. Milnor
[11] On spaces having the homotopy of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272-280.
R. S. Palais
[12] Homotopy theory of infinite-dimensional manifolds, Topology 5 (1966), 1-16.
D. E. Sanderson
[13] An infinite-dimensional Schoenflies theorem, Trans. Amer. Math. Soc. 148 (1970), 33-39.
E. H. Spanier
[14] Algebraic topology, McGraw-Hill, New York, 1966.
James E. West
[15] Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc. 150 (1970), 1-25.

J. H. C. Whitehead

[16] Simplicial spaces, nuclei, and m-groups, Proc. Lond. Math. Soc. (2) 45 (1939), 243-327.

R. Y. T. Wong

[17] Extending homeomorphisms by means of collarings, Proc. Amer. Math. Soc. 19 (1968), 1443-1447.
(Oblatum 25-IX-1970) and (8-XI-1971) The University of Kentucky Lexington, Kentucky

