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1. Introduction

Let s denote the countable infinite product of open intervals and let
100 denote the Hilbert cube, i.e. the countable infinite product of closed
intervals. A Fréchet manifold (or F-manifold) is a separable metric space
having an open cover by sets each homeomorphic to an open subset of s.
A Hilbert cube manifold (or Q-manifold) is a separable metric space
having an open cover by sets each homeomorphic to an open subset of 100.

In [2] it is shown that real Hilbert space 12 is homeomorphic to s and
indeed it is known that all separable infinite-dimensional Fréchet spaces
are homeomorphic (see [2] for references). Thus F-manifolds can be
viewed as separable metric manifolds modeled on any separable infinite-
dimensional Fréchet space. Using linear space apparatus and a number
of earlier results, Henderson [9] has obtained embedding, characteri-
zation, and representation theorems concerning F manifolds (see [10] for
generalizations to manifolds modeled on more general infinite-dimen-
sional linear spaces).

In [6] a number of results similar in nature to those of [9] were obtained
concerning certain incomplete, sigma-compact countably infinite-dimen-
sional manifolds. Some results were also established in [6] concerning
the relationship of such incomplete manifolds to Q-manifolds. Since the
nature of these results is such that a good bit of information about
Q-manifolds can be obtained from the ’related’ incomplete manifolds,
we thus have a device for attacking Q-manifold problems.

It is the purpose of this paper to use ’related’ incomplete manifolds to
establish for Q-manifolds some more results similar to those of [9]. We
list the main results of this paper in section 2.

Unfortunately we leave important questions concerning Q-manifolds
unanswered. We call particular attention to the paper Hilbert cube

manifolds [Bull. Amer. Math. Soc. 76 (1970), 1326-1330], in which the
author gives an extensive list of open questions concerning Q-manifolds.

The author is indebted to R. D. Anderson for helpful comments during
the preparation of this paper.
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2. Statements of results

A (topological) polyhedron is a space homeomorphic (~) to |K|,
where K is a complex (i.e. a countable locally-finite simplicial complex).
Unless otherwise specified all polyhedra will be topological polyhedra.
West [15] has shown that P x s is an F-manifold and P I~ is a Q-
manifold, for any polyhedron P.
A closed set F in a space X in said to be a Z-set in X provided that for

each non-null homotopically trivial (i.e. all homotopy groups are trivial)
open subset U of X, UBF is non-null and homotopically trivial. We use
the representation s = 1I£ 1 iio and 100 = 03A0~i= 1 Ii, where for each i &#x3E; 0

I0i is the open interval ( -1, 1 ) and h is the closed interval [ -1, 1 ].
In Theorem 1 we show how to ’fatten-up’ a polyhedron which is a

Z-set in a Q-manifold to a ’nice’ neighborhood of the polyhedron. This
will be useful in the sequel.

THEOREM 1. Let X be a Q-manifold and let P be a polyhedron which is
also a Z-set in X. If q E I~B{(0,0,···)}, then there is an open embedding
h : P x (I~B{q}) ~ X such that h(x, (0, 0, ...)) = x, for all x ~ P.

In [9] the following results are established.

(1) Every F-manifold can be embedded as an open subset of l2 .
(2) If X and Y are F-manifolds having the same homotopy type (i.e.

X - Y), then X -- Y.
(3) If X is any F-manifold, then there is a polyhedron P for which

X ~ P l2.
If J is a simple closed curve, then Jx 100 is a Q-manifold which cannot

be embedded as an open subset of I°°. Also, 100 and I~B{point} are Q-
manifolds of the same homotopy type which are not homeomorphic.
Thus the obvious straightforward analogues of (1) and (2) for Q-
manifolds are not valid. Most of the results that follow are concerned

with obtaining partial analogues of (1), (2), and (3) for Q-manifolds.
THEOREM 2. Let X be a Q-manifold and let P be any polyhedron such

that X - P. Then there is a Z-set F c X such that XEF éé P x (I~B
{point}).
Each Q-manifold is an ANR and it follows from [11] that each

separable metric ANR has the homotopy type of some polyhedron. Thus
each Q-manifold has the homotopy type of some polyhedron.

THEOREM 3. Let X be any Q-manifold and let P be any polyhedron such
that X - P. Then X x [0,1) ~ P x (I~B{point}).
COROLLARY 1. If X is any Q-manifold, then there is a polyhedron P

such that X x [0, 1) ~ P x I~.
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COROLLARY 2. If X and Y are Q-manifolds such that X - Y, then

Xx [0, 1) ~ Yx [0,1).

COROLLARY 3. If P and R are polyhedra such that P - R, then P x

(I~B{point}) ~ R x (I~B{point}).
In a sense Corollary 3 is analogous to a result of West [15]. It is shown

there that if a polyhedron P is a formal deformation of a polyhedron R
(in the sense of Whitehead [16]), then P x 100 ~ R x 100.

THEOREM 4. If X is a Q-manifold, then X x [0, 1) can be embedded as an
open subset of 100 .

COROLLARY 4. If X is a Q-manifold, then X = U u V, where U and V
are open subsets of X which are homeomorphic to open subsets of I~.

If X is any Q-manifold, then it is shown in [5] that X éé Xx 100 (and
therefore X ~ X x [0, 1 ]). Thus the above results offer some information
about the internal structure of Q-manifolds.

In [ 10 ] it is shown that if X and Y are F-manifolds and f : X ~ Y is a
homotopy equivalence, then f is homotopic to a homeomorphism of X
onto Y. We obtain a corresponding property for Q-manifolds which
strengthens Corollary 2.

THEOREM 5. Let X, Y be Q-manifolds and let f : X ~ Y be a homotopy
equivalence. Then there is a homeomorphism of X x [0, 1) onto Y x [0, 1)
which is homotopic to f x id : X x [0, 1) - Y x [0, 1).
The following results are some partial answers to questions concerning

compact Q-manifolds.

THEOREM 6. Let X be a compact Q-manifold and assume that X - P,
where P is a compact polyhedron. Then there is a copy P’ of P in X such
that P’ is a Z-set in X and XBP’ ~ P x (I~B{point}).

COROLLARY 5. If X is a compact homotopically trivial Q-manifold, then
X ~ I~.

THEOREM 7. Let X be a compact Q-manifold and assume that X - P,
where P is a compact polyhedron. Then there is an embedding h : X - 100
such that Bd(h(X)) ~ P  I~ and Cl(I~Bh(X)) ~ 100.

In regard to Theorem 7 we remark that in [8 ] a similar, and somewhat
stronger, result is established for F-manifolds.
We show that if X is an open subset of 1°°, then the factor [0,1) of

Corollary 1 can be omitted.

THEOREM 8. If X is an open subset of I~, then there is a polyhedron P
such that X ~ P x 100 .
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We remark that the proof of this result is quite different from the proof
of the corresponding property for open subsets of l2 (see [8]).
We also establish a Schoenflies-type result for Q-manifolds.

THEOREM 9. Let X and Y be Q-manifolds and let f, g : X ~ Y be closed
embeddings which are homotopy equivalences and such that f(X), g(X) are
bicollared in Y (’bicollared’ is defined in Section 3). Then the homeomor-
phism g~f-1 x id : f(X) x [0,1) - g(X) x [0, 1) can be extended to a

homeomorphism of Y x [0, 1) onto itself.
We remark that in the case X = Y = I~, the factor [0,1 ) can be omitted

in the statement of Theorem 9. The proof of this follows routinely from
[17].
The proof of Theorem 9 applies to give us a corresponding result for

F-manifolds.

THEOREM 10. Let X and Y be F-manifolds and let f, g : X - Y be closed
embeddings which are homotopy equivalences and such that f(X), g(X) are
bicollared in Y. Then the homeomorphism g of-l :f(X) ~ g(X) can be
extended to a homeomorphism of Y onto itself.

In case X = Y = l2 , Theorem 10 follows routinely from the Schoen-
flies result of [13].

3. Preliminaries

In this section we describe some of the apparatus that will be used in
the succeeding sections.
For spaces X and Y, a continuous function f : X ~ Y is said to be

proper provided that the inverse image of each compact subset of Y is
compact. Then a proper homotopy is a homotopy F : X x I ~ Y which is a
proper map (we let I = [0, 1 ]).
For each integer n &#x3E; 0 let W+n = {(xi)~I~|xn= 1} and W-n =

{(xi) ~ I~|xn = -1}. We call W+n and Wn endslices of I~. For each
integer n &#x3E; 0 we let 7rn : I~ ~ II n 1 Ii be the natural projection and put
B(I~) = I~Bs.
A subset of I~ of the form H~i=1Ji is called a basic closed set in I~

provided that Ji is a closed subinterval of Ii for each i &#x3E; 0, and Ji = Ii
for all but finitely many i. Note that any basic closed subset of 100 may
be viewed as a Hilbert cube, with its topological boundary being a finite
union of endslices.

Let X and Y be spaces and U be an open cover of Y. Then functions

f, g : X ~ Y are said to be U-close provided that for each x E X, f(x) and
g(x) lie in some element of . A function f : Y ~ Y is said to be limited by
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03BC provided that f and idy (the identity function on Y) are u-close. A
function f : X x I ~ Y is said to be limited by u provided that for each
x E X, f({x} x I ) lies in a member of U.

Following Anderson [1] we say that a subset M of a metric space X
has the compact absorption property in X (or M is a cap-set for X) if

(1) M = Mn, where each Mn is a compact Z-set in X such that
Mn ~ Mn+1, and

(2) for each a &#x3E; 0, each integer m &#x3E; 0, and each compact subset F of
X, there is an integer n &#x3E; 0 and an embedding h : F - Mn such
that hlF n Mm = id and d(h, id)  e.

For each integer n &#x3E; 0 let 03A3n = [-n(n + 1), n/(n + 1)] and

l = Un= 1 03A3n. In [1 ] it is shown that E and B(I°°) are cap-sets for I"0.
We will need the following properties of cap-sets in Q-manifolds. All

of these can be found in [6]. We let X represent a Q-manifold.

LEMMA 3.1. Cap-sets exist in Q-manifolds, and any cap-set for X is of
the form P x 03A3, for any polyhedron P satisfying P - X.

LEMMA 3.2. If M is a cap-set for X and F c X is a Z-set, then M ~ F
and MBF are cap-sets for X.

LEMMA 3.3. If M and N are cap-sets for X and u is an open cover of X,
then there is a homeomorphism of X onto itself which takes M onto N
and which is limited by u.

LEMMA 3.4. If M is a cap-set for X and F c X is a closed set satisfying
F n M = ~, then F is a Z-set in X.

LEMMA 3.5. If P is a polyhedron, then P x In is a Z-set in P x I. If M
is a cap-set for X and F c M is a Z-set in M, then ClX(F) (the c!osure of
F in X) is a Z-set in X.

LEMMA 3.6. If M is a cap-set for X, then XBM is an F-manifold satisfying
XBM ~ X. In fact, M ~ X x B(I~), which is a cap-set for X x 100. If
F c XBM is a Z-set in XBM, then Clx(F) is a Z-set in X.

Let X be a space and let u be any open cover of X. Then define

St0(u) = u and for each n &#x3E; 0 define Stn(u) to consist of all sets of the
form A ~ (~{U E ul U n A ~ 0}), where A E Stn -1 (u).
The following result on extensions of homeomorphisms in Q-manifolds

is established in [3 ].

LEMMA 3.7. Let X be a Q-manifold, u be an open cover of X, Fl and F2
be Z-sets in X, and let h : F1 ~ F2 be a homeomorphism. If there is a

proper homotopy H : Fl  I ~ X such that Ho = id, Hl = h, and H
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is limited by u, then h can be extended to a homeomorphism of X onto
itse f which is limited by St4(U).
The following characterization of Z-sets in Q-manifolds is established

in [6].

LEMMA 3.8. Let X be a Q-manifold and let F c X be a closed set. Then
F is a Z-set in X if and only if there is a homeomorphism of X onto X x I~
taking F into X  {(0, 0, ···)}.

It is shown in [3] that for any Z-set F in a Q-manifold X, there is a
homeomorphism of X onto X x I~ such that x is taken to (x, (0, 0, ... ),
for all x E F. It is shown in [7] that a corresponding property for F-
manifolds is also true.

We say that a subset A of a space X is bicollared provided that there
exists an open embedding h:A (-1,1) ~ X satisfying h(x, 0) = x, for
all xEA.

Let X be a metric space and A be a closed subset of X. An open cover

u of XBA is said to be normal with respect to A provided that for each
8 &#x3E; 0, there is a 03B4 &#x3E; 0 such that if U E u and d(A, U)  b, then

diam(U)  8. Under these circumstances it is easy to see that any

homeomorphism h : XBA ~ XBA which is limited by u has an extension
to a homeomorphism À : X - X which satisfies h|A = id.

4. Proof of Theorem 1

For any complex K, we use K(n) to denote the nth barycentric subdivision
of K and .Kn to denote the n-skeleton of K. For any subset C of |K| and
integers m, n &#x3E; 0, we let St(C, K(m)n) denote the subset of IKI consisting
of the union of the closed simplexes of K(m)n which intersect C, where
K(m) will always mean the mth barycentric subdivision of Kn.
We now present a sequence of lemmas that will lead up to a proof of

Theorem 1. The proof we give uses an induction on the n-skeletons of a
triangulation of the polyhedron P. The fourth lemma we establish is the
actual inductive step, and the first three are technical results that we need
there.

LEMMA 4.1. Let K be a complex, n &#x3E; 0 be an integer, C be a compact
subset of IKI such that St(C, Kn+1) c IKnl, and let Il = St(|Kn|, K(2)n+1).
Then there is a homeomorphism h : L x I~ ~ |Kn| x 100 such that hiC x 100 =

id, h(L x W+1) = |Kn| x Wi , and h(x, (0, 0, ...)) = (x, (0, 0, ···)), for
all x ~ |Kn|.

PROOF. Let Q = Ii. It follows from Theorem 4.2 of [15] that
there is a homeomorphism h’ : L x Q ~ |Kn| x Q. Since the collapse (see
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[15] for definitions) from L to IKnl takes place in |K|BC, an open set
missing C, the proof given there immediately implies that we may
additionally require that h’|C Q = id. Although the condition

h’(x, (0, 0···)) = (x, (0, 0, ···)), for all x ~ |Kn|, is not mentioned in

[15], it can easily be obtained from the apparatus given there. All one
has to do is follow the steps in the proof of Theorem 4.2 of [15], cor-
recting at each stage of the collapse to achieve our required condition.
Now define h : L x I~ ~ |Kn| x 100 so that h(x, (x1, x2, ···)) =

(y, (x1, y2, y3, ···)), for all x E L and (x1, x2, ···) ~ I~, where

h’(x, (x2, x3, ···)) = ( y, (y2, y3, ···)). Then h obviously fulfills our

requirements.
Let 85 b the n-dimensional ball of radius r (0  r ~ 1) and Sr -1 the

boundary of 85 . For convenience we will assume that

LEMMA 4.2. Let X be a Q-manifold, F c X be a closed set, and let
f : Bn1 ~ X be an embedding such that f(Bn1) is a Z-set and f(Bn1) n F c
f(Sn-11). For any r E (0,1) there is an embedding h : Bnr x I~ ~ X satisfying
the following properties.

PROOF. It is clear that there is an embedding gl : I~ ~ X and a finite
union W of endslices of 100 such that f((0, 0, ...)) 03B5 g1(I~BW) and
Bd(g1(I~)) = g1(W). Choose s &#x3E; 0 so that f(Bn03B5) c g1(I~BW) and
use Lemma 3.7 to get a homeomorphism g2 : X ~ X satisfying
g2 ~f(Bn03B5) = f(Bn1). Then (g2 ~g1)-1 ~f(Bn1) is a Z-set in 100 missing W.

Applying Lemma 3.7 to 100 there is a homomorphism g3: I~ ~ 100
satisfying g3(W) = W and g3 ~ (g2~g1)-1 0 f(x) = x, for all x ~ Bnr1,
where r  rl  1. Choose m &#x3E; n and 03B4 e (0, 1) such that K n W = 0
and K n g3 ~ (g2 o g1)-1(f(Bn1)~ F) = Bnr, where

Then put
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It is obvious that there is a homeomorphism g4 : Bnr x I~ ~ Q satisfying

and g4(X, (0,0,...)) = x, for all x E Bnr. Then h = g2 o gl ~g-13 ~ g4 is
our required embedding.

LEMMA 4.3. Let K be a complex, n &#x3E; 0 be an integer, C be a compact
subset of IKI satisfying St(C, Kn+l) c |Kn|, and let L = St (IK K(2)n+1).
Let X be a Q-manifold and let h : L x I~ ~ X be a closed embedding such
that Bd(h(LxIoo)) = h(L x wt) and it is bicollared. Let Fe X be a

Z-set such that

where Bd(L) is the topological boundary of L in |Kn+1|. Then there exists
a homeomorphism f : X ~ X such that

PROOF. Let A = h(L  [-1,0] {(0, 0, ···)}) u h(L x Wl-) which is a
Z-set in X, and let B = h(CxIoo) u h(L  {(0, 0, ···)}) u h(Bd(L) x I~),
which is closed in X. Let X’ = XBB, A’ = A n X’, and F’ = F n X’.
Since A’ and F’ are intersections of Z-sets in X with the open subset

X’ of X, it follows that A’ and F’ are Z-sets in X’. Now choose an open
cover u of X’ which is normal with respect to B.

Using Lemma 3.8 there is a homeomorphism f1: X’ ~ X’ x 100 such
that f1(A’ ~ F’ ) c X’  {(0, 0, ···)}. We can obviously obtain a homeo-
morphism f2: X’  I~ - X’ x I~ such that f2 ~f1(F’) ~ f1(A’) =  and
f2 is limited by fl (u). Then fl-l o f2 o fl : X’ - X’ is a homeomorphism
limited by u and satisfying fj 1 o f2 o f1(F’) n A’ = . From Section 3
it follows that fl 1 o f2 o fl extends to a homeomorphism g : X ~ X such
that glB = id and g(F) n A u B c h(Bd(L) x Wi ).
We can use a motion in L x I°° in only the Il-direction and transfer it

back to X by means of h to obtain a homeomorphism g1:X ~ X such
thatgllB = id andgl o g(F) n h(L x [-1,1 2] Ii)= . The problem
is now to move gl ~ g(F)B(h(Bd(L)  Wl’) the rest of the way out of
h(L I~), with no motion taking place on B. Because Bd(h(L x I-» is
bicollared, we can easily find a homeomorphism g2:X ~ X satisfying
92 IB = id and g2 o gl o g(F) n h(L I~) c h(Bd(L) x W+1). Then put
f = 92 0 91 0 9 to satisfy our requirements.
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We now combine these results to obtain the inductive step in the proof
of Theorem 1.

LEMMA 4.4 Let K be a complex, let n &#x3E; 0 be an integer, and let C be a

compact subset of |K| such that St(C, Kn+ 1) ~ |Kn|. Let X be a Q-manifold
and let qJ : |K| ~ X be an embedding such that qJ(lKI) is a Z-set. Let

hn : IKnl x I~ ~ X be a closed embedding such that Bd(hn(|Kn| x I~)) =
hn(|Kn| X Wl+) and it is bicollared, hn(|Kn| x I"0) n qJ(IKI) c qJ(St(/Kn/,
K(3))), and hn(x, (0, 0, ···)) = ~(x), for all x ~ /Kn/. Then there exists a
closed embedding hn+ 1 : /Kn+ 1 | I’ - X such that Bd(hn+ 1 (/Kn+ 11 X I~))
= hn+1(|Kn+1|  Wl+) and it is bicollared, hn+1(|Kn+1| xIoo) n qJ(IKI) c
qJ(St(IKn+ 1/’ K(3))), hn+ 1 |C X I- = hn| C X I~, and hn+ 1 (x, (0, 0, ...) =
~(x), for all XE |Kn+1|.

PROOF. Let L = St (IK n+1) and let Bd(L) represent the boundary
of L in |Kn+1|. Let {03C3i}~i=1 be the collection of (n + 1 )-simplexes of K
and note that u; = Cl(03C3iBL) is an (n+1)-cell contained in the com-
binatorial interior of 6i . For each i let Bd(03C3’i) denote the combinatorial
boundary of 03C3’i. (We are assuming that if i ~ j, then ui 0 uj. If the
collection of (n + 1 )-simplexes of K is finite, then the argument is similar).
It follows from the given conditions that ~(03C3’i) n hn(|Kn| x I~) = .

Using Lemma 4.2 there is a closed embedding f : (~i=1 03C3’i) x I~ ~ X
such that the following properties are satisfied.

and it is bicollared.

For each i let Int(03C3’i) = 03C3’iBBd(03C3’i) and put

which is a Q-manifold containing

as a Z-set. (This last assertion easilv follows since Bd(f((03C3’i) x 7°°))
is bicollared). Using Lemma 4.1 there is a homeomorphism 0 : L x I~ ~
IKnl  I~ such that O(x, (0, 0, ...)) = x, (0, 0, ...)), for all XE IKnl, 
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OIC x 100 = id, and 03B8(L W+1) = |Kn|  W+1. Then hn = hn~e:L  I --;
X’ is a closed embedding such that hn(x, (0, 0, ···))= ~(x), for all

xEIKnl, Bd(hn(L  I~)) = hn(L  W+1) and it is bicollared, and

ÍÏnlCxIoo =.
Let us consider the two sets hn(L x {(0,0, ···)}) ~ fi,,(Bd(L) x I~) and

f(( 1 Bd(03C3’i)) x I~) ~ ~(L), which are Z-sets in X’. Define a homeo-
morphism a of the former onto the latter such that a o ÍÏn(x, (0, 0, ···)) =
~(x), for all x E L, and a o ÍÏn(x, t) = f(x, t), for all x ~ Bd(L) and t E I~.
Using the fact that ~(x) = ÍÏn(x, (0, 0, ···)), for all x ~ |Kn|, and the
fact that f(x, (0,0,···)) = ~(x), for all x ~ it is clear that a
is properly homotopic to the identity in X’. In fact, there is an open cover
u of X’Bhn(C  I~) which is normal with respect to hn(C x I’) and for
which there is a proper homotopy

satisfying Ho = id,

and H is limited by u. Using Lemma 3.7 we can extend a to a homeo-
morphism 03B1: X’ ~ X’ satisfying 03B1|hn(C I~) = id. Then

is a closed embedding which satisfies Bd(03B1 o hn(L x I~)) = â o hn(L x Wi )
and it is bicollared,

and

Thus f : (X and  are closed

embeddings which are compatible, i.e. we can patch them together to
obtain a closed embedding  which satisfies

Bd(h’n+1(|Kn+1  I~)) = h’n+ (|Kn+1 X Wl+), h’n+1|C  I~ = ,
and h’n+1(x, (0,0,...)) = ~(x), for all XE |Kn+1|.
Of course we have made no provision to require that
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be bicollared, but this presents no problem since

is bicollared. It is also true that we might not have

but this can be clearly achieved by ’squeezing’

Thus we can modify h’. 1 to obtain our required hn+1.

PROOF OF THEOREM 1.

Write X = Un 1 Xn, where each Xn is a compact set contained in the
interior of Xn+ 1. Let K be a complex and let cp : |K| ~ P be a homeomor-
phism. Let Hl be a finite subcomplex of K such that P n Xl c 9 (j Hl 1)
and choose nl large enough so that

One can clearly construct a closed embedding h0 : |K0|  I~ ~ X
which satisfies h0(x, (0, 0, ···)) = ~(x), for all x e 1 Ko 1, and

and it is bicollared. Then using Lemma 4.4 and an obvious inductive
argument we can obtain a closed embedding hnl : IKnll  I~ ~ X
satisfying hnl(x, (0, 0, ···)) = ~(x), for all x ~ |Kn1|, and

and it is bicollared.

Now let H2 be a finite subcomplex of K so that IHll | c Int(lH2D and
~(|K|) ~ X2 ~ (p(JH21). Choose n2 &#x3E; nl such that

Using Lemma 4.4 and an inductive argument we can find a closed em-
bedding hn2 : |Kn2|  I~ ~ X such that hn2(x, (0,0, ...)) = ~(x), for all
XE IKn21, Bd(hn2(|Kn2| x 1(0)) = hn2(|Kn2| x Wl+) and it is bicollared, and
.

In general let {Hi}~i=1 be a collection of finite subcomplexes of K
so that for each i, |Hi| c Int(|Hi+1|) and ~(|K|) n Xi c ~(|Hi|). Choose
integers {ni}~i=1 such that for each i, ni  ni+1 and



340

Using the above techniques we find that for each i &#x3E; 0 there is a closed

embedding hni: |Kni| x I X such that hni(x, (0, 0, ···)) = ~(x), for
all x ~ IKnil, Bd(hni(|Kni| x I~)) = hni(|Kni| x W+1) and it is bicollared,
and hni+1||Hi| I~ = hnil|Hi| I~. For each x ~ |Hi| (I~BW+1)
define h’(x) = hni(x). It is clear that h’: IKI x (I~BW+1) ~ X is an open
embedding satisfying h’(x, (0,0, ...)) = ~(x), for all XE |K|. Since

I~BW+1 ~ I~B{point} we can clearly modify h’ to obtain our required
open embedding h.

5. Proof of Theorem 2

We will first establish two technical results concerning cap-sets in

Q-manifolds. These are used only in the proof of Theorem 2.

LEMMA 5.1. Let X be a Q-manifold, P be a polyhedron, ~ : P  03A3 ~ X
be an embedding such that cp(P  03A3) is a cap-set for X and ~(P  03A31) is
closed in X, and let F be a compact Z-set in X. Then there is a homeo-

morphism h : X ~ X such that h(F) c ~(P  03A32) and h|~(P 03A31) = id.

PROOF. By Lemma 3.5. it follows that ~(P  03A31) is a Z-set in X. Let
X’ = XB~(P  03A31), F’ = F n X’, and M = ~(P  03A3)B~(P  03A31). Then
X’ is a Q-manifold, F’ is a Z-set in X’, and M is a cap-set for X’. Choose
an open cover u of X’ which is normal with respect to ~(P  03A31).
Lemma 3.2. implies that Mu F’ is a cap-set for X’. Using Lemma 3.3

there is a homeomorphism f : X’ ~ X’ such that f(M w F’ ) = M and
f is limited by u. Then f clearly extends to a homeomorphism f:X ~ X
satisfying f|~(P  03A31) = id and l(F) c ~(P  03A3).

Put F* = nI o cp -1 o l(F), which is a compact set in 03A3. Clearly there is
a proper isotopy gt : F* ~ 03A31 ~ 03A3 such that go = id, gl (F*) c 03A32 and

gt|03A31 = id for all t. Now define an isotopy

for all (x,y) ~ P  03A3 that satisfy ~(x,y)~(F) ~~(P 03A31). Note that
h1((F) ~ ~(P  03A31)) is a Z-set in X and ht is a proper isotopy. Using
Lemma 3.7 we can extend hl to a homeomorphism g : X ~ X. Then
h = g~f fulfills our requirements.

LEMMA 5.2. Let X be a Q-manifold, P be a polyhedron, and let

cp : P  E ~ X be an embedding such that cp(P x 1) is a cap-set for X and
cp(P x 03A32) is closed in X. Let h : P x I~ ~ X be a closed embedding so that
h(x, (0, 0, ···)) = cp(x, (0, 0, ···)), for all x e P, and Bd(h(P x I~) =
h(P x Wi+). If F c X is a compact Z-set, then there is a homeomorphism
f : X ~ X such that f(F) c h(P I~) and f|h(P  W-1) = id.
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PROOF. Let Let  be the homeomorphism
defined by 03B8~~(x,y) = h(x, y), for all (x, y) E P xI 2. It is clear that

0 is properly homeotopic to the identity. Let qJ 1 be an extension of

0 to a homeomorphism of X onto itself. Then ~1~~:P 03A3~X is an
embedding such that ~1~~(P 03A3) is a cap-set for X, ~1~~(P 03A31) =
h(P 03A31),  and ~1 0 (p (x, (0, 0, ...)) =
h(x, (0, 0, ···)), for all x E P.

It is clear that there exists a homeomorphism a : h(P  03A31) ~ h(P x W-1)
such that ce o h(x, (0, 0, ···)) = h(x, (-1, 0, 0, ···)) for all x E P, and for
which a is properly homotopic to the identity, with the homotopy taking
place inside h(P x I~). By choosing covers appropriately and using Lem-
ma 3.7 we can extend a to a homeomorphism qJ2 : X ~ X which satisfies
~2|XBh(P x I~) = id. It is clear now that ip = qJ2 0 ~1~ qJ : P 03A3 ~ X

is an embedding such that (o (P x 1) is a cap-set for X and ~(P 03A32) is
a Z-set in X.

Using Lemma 5.1 there is a homeomorphism f : X ~ X such that
f(F) c (P 03A32) and f|(P 03A31) = id. This implies that f|h(P  Wl-)
= id. Note that ~1 0 ~(P  03A32) = h(P x 03A32) and

which implies that f(F) c h(P x I~).
PROOF OF THEOREM 2.

Roughly the idea of the proof is to find a copy of P in X which is a
Z-set, use Theorem 1 to build a ’nice’ open set around this polyhedron,
and use Lemma 5.2 to ’blow up’ this open set to engulf a cap-set. The part
of X that this open set misses is the Z-set F which we are looking for.
Using Lemma 3.1 let ~:P 03A3 ~ X be an embedding such that

cp(P x 1) is a cap-set for X. A routine argument proves that if A is any
locally compact subset of X, then Cl(A)BA is a closed subset of X.

Thus, F1 = Cl(~(P 03A32))B~(P 03A32) is a closed subset of X missing
cp(P x 03A3). It follows from Lemma 3.4 that Fl is a Z-set in X. Put

X’ = XBF1 and note that cp(P x 1) is a cap-set for X’. But we now have
~(P 03A32) a Z-set in X’, because it is closed.

Using Theorem 1 there. is a closed embedding h : P x I~ ~ X’ such
that h(x, (0, 0, ···)) = (p (x, (0, 0, ... )), for all x ~ P, and

Write ~(P 03A3) = Mn, a tower of compact Z-sets. Using Lemma
5.2 there is a homeomorphism fl : X’ ~ X’ such that

Then put g1 = fl- 1 to complete the first step of our construction.
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Now let X" = X’Bgl o h (P [-1, ) Ii), which is obviously
a Q-manifold containing  as a Z-set. Put

M2 - M2 n X", which is clearly a compact Z-set in X". One can
obviously construct a homeomorphism et : X’ ~ X" such that

for all x E P. Then ~’ = a o gl ~~: P X I - X" is an embedding such
that lfJ’ (P x 03A3) is a cap-set for X" and

for all XE P. Also gl o h : P x [1 2, 1 ] x  X" is a closed embedding
satisfying Bdx" (gl o h(P x [1 2, 1]  03A0Ii)) = 91 o h(P x W+1).
Once more applying Lemma 5.2 there is a homeomorphism

f2 : X" ~ X" such that f2|g1 o h(P x {1 2}  Ii) = id and

Then let f2 be the extension of f2 to all of X’ such that

Now put g2 = f2 1, which is a homeomorphism of X’ onto itself satis-
fying g2|g1 ~ h(P  [-1, 1 2] Ii) = id and

It is then clear that we can obtain a sequence [gi}~i=1 of homeomor-
phisms of X’ onto itself such that

and

for all n &#x3E; 1. Then let g(x) = limgn 0 ...0 g1(x) for all

It is clear that g : h(P x (I)) ~ X’ is an open embedding such that
g o h(P x (I~BW+1)) contains ~(P  03A3). Thus

is a Z-set in X’ and therefore F = F, u F2 is a Z-set in X such that
XBF ~ P x (I~BW+1).
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6. Proofs of Theorems 3, 4, 5 and their Corollaries

The following result will be used in the proof of Theorem 3.

LEMMA 6.1. Let X be a Q-manifold and let F c X be a Z-set. Then
(XBF) x [0, 1) ~ X x [0, 1), where the homeomorphism can be chosen to
be homotopic to the inclusion of (XBF) x [0, 1) in X x [0, 1).

PROOF. If Xl is any Q-manifold and C c Xl is any Z-set, then
C x [0, 1 ] is a Z-set in Xl x [0, 1 ]. In order to see this let us take a homeo-
morphism h 1 of Xl onto Xl x 100 taking C into Xl  {(0, 0, ···)}. Then
hl x id : Xl x [0, 1 ] ~ X1 x 100 x [0, 1 ] is a homeomorphism which takes
C x [o, 1 ] into Xl  {(0, 0, ···)} x [0, 1]. Let

be a homeomorphism in which [0,1] ] is factored back into Xl Then
h2 o (h1 x id) : Xl x [0,1 ] ~ X1 x 1°° is a homeomorphism taking C x [0,1 ]
into Xl  {(0, 0, ···)}, and by Lemma 3.8 it follows that

is a Z-set in Xl x 100. Thus C x [o, 1 ] is a Z-set in Xl x [0,1].
Let A = (X {1}) u (F x [0,1]) and B = (X {1}) u (F x [ 2, 1]) be

subsets of X x [0, 1 ]. Since A and B are Z-sets in X x [o, 1 ] we can use
Lemma 3.7 to get a homeomorphism f : X x [0, 1 ] - X x [0, 1 ] satisfying
f(A) = B and f|X  {1} = id. It follows from [3 ] that we can additionally
choose f to be isotopic to idX [0,1] (with each level fixed on X {1}).
Therefore f|X  [0, 1) gives a homeomorphism of X x [0, 1) onto itself
which is homotopic (in X x [0, 1)) to idX  [0, 1).

Let ht : [0,1] ~ [0,1] ] be a homotopy which satisfies the following
properties:

(1) ho = id,
(2) h1([1 2, 1]) = {1},
(3) h1|[0, 2 is a homeomorphism of [0, 2 onto [0, 1],
(4) ht : [0, 1 ] ~ [0, 1 ] is a homeomorphism for all t ~ 1.

Define a continuous function g : X x [o, 1 ] - X x [o, 1 ] as follows: for
each x E X and y E [0, 1 ], letg(x, y) = (x, ht(y)), where t = 1/(1 + d(x, F)).
Clearly g|(X  [0, 1])BB gives a homeomorphism of (X x [0, 1])BB onto
X x [0, 1) which is homotopic to the inclusion of (X x [0, 1])BB in
X  [0, 1). Then g~f|(XBF) [0,1) gives a homeomorphism of

(XBF)  [0, 1) onto X x [0,1) which is homotopic to the inclusion of

(XBF)  [0, 1) in X x [0, 1).
We will also need the following result.
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LEMMA 6.2. Let X be a Q-manifold, P be a polyhedron, and let

f:P (I~BW+1) ~ X be a homotopy equivalence. Then there exists an
open embedding g : P x (I~BW+1) ~ X such that g is homotopic to f
and XBg(P x (I~BW+1)) is a Z-set in X.

PROOF. It follows routinely from the coordinate structure of I°° that
there is a homeomorphism of 100 x 100 onto 100 which is homotopic to
the projection of I~ I~ onto the first factor. Since X I~ ~ X, it

follows that there is a homeomorphism j8 : X x I~ ~ X which is homoto-
pic to 03C0X, the projection of X I~ onto X. Define f’:P~X by
f’(x) = f(x, (0, 0....)), for all x E P. Then f’is also a homotopy equi-
valence.

It follows from [15] that P x s is an F-manifold and it follows routinely
from the definition that X x s is an F-manifold. Note that

is a homotopy equivalence. Thus f’ x ids is homotopic to a homeomor-
phism 03B1:P s ~ X  s (see [10]).
Now P x 1 is a cap-set for P x s (see [6]) and therefore a(P x 1) is a

cap-set for X  I~ (since X  I~ can be deformed into X x s with ’small’

motions). Hence fi o a(P x 1) is a cap-set for X. As in the proof of
Theorem 2 let F1 = Cl(~(P 03A32))B~(P 03A32), where qJ = po 03B1|P 03A3,
and let h : P  I~ ~ XBF1 be a closed embedding such that

for all x E P, and Bd(h(P x I~)) = h(P x wt). In the proof of Theorem 2
a homeomorphism g’ : h(P x (I~BW+1)) ~ " was constructed, where
F is a Z-set in X containing Fl . Moreover it is clear from the construction
given there that g’ is homotopic to the inclusion of h(P x (I~BW+1)) in
X. Thus g = g’~h|P (I~BW+1) gives an open embedding of

P x (I~BW+1) in X whose complement is a Z-set in X. Moreover g is
homotopic to h’ = h/P x (I~BW+1). All that is left to do is prove that h’
is homotopic to f.
To this end let r:P (I~BW+1)~P {(0,0,···)} be given by

r (x, t) = (x, (0, 0, ···)), for all x E P and t E I~BW+1. It is clear that
h’ is homotopic to h’ o r and h’or = 03B2o03B1or. Since a is homotopic to
f’ x ids it follows that 03B2 o a o r is homotopic to j8 o ( f’ x ids) o r. But
po ( f’ x ids) a ris homotopic to 03C0X o ( f’ x ids) o r. But 03C0X o ( f’ x ids) o r =
for, and since r is homotopic to idP (I~BW1+) it follows that f o r is
homotopic to f.

PROOFS OF THEOREMS 3 AND 5.

Let f : X - Y be a homotopy equivalence, where X and Y are Q-
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manifolds. Let P be a polyhedron for which there exists a homotopy
equivalence g:P (I~BW+1) ~ X. Using Lemma 6.2 we see that g
is homotopic to a homeomorphism a : P x (I~BW+1) ~ XBF1, where
F, c X is a Z-set. Also f o g is homotopic to a homeomorphism
03B2: P x (I~BW+1) ~ YBF2, where F2 c Y is a Z-set. Using Lemma 6.1
it follows that a x id : (P x (I~BW+1)) x [0, 1) ~ (XIF1) x [0,1) is homo-
topic to a homeomorphism y : (P x (I~BW+1)) x [0, 1 ) ~ X x [0, 1 ), with
the homotopy taking place in X x [0, 1). Similarly 03B2 x id is homotopic to
a homeomorphism  with the

homotopy taking place in Y x [0, 1 ).
In order to see that X x [0, 1) ~ P x (I~B{point}) note that y -1 gives

a homeomorphism of X  [0,1) onto P (I~BW+1) [0,1). Since

I~BW+1 = [-1,1) II?:: 2 Ii and since [-1, 1) [0,1) is obviously
homeomorphic to [ -1, 1 ) x [0, 1 ], we have X x [0,1) ~ P x (I~BW+1).
To finish the proof of Theorem 3 all we need do is note that

I~BW+1 ~ I~B{Point}.
For the proof of Theorem 5 note that ô o y -1 : X x [O, 1 ) - Y x [0, 1 )

is a homeomorphism. All that remains to be done is prove that ô o 03B3-1 is
homotopic to f x id, or equivalently, to prove that b is homotopic to

( f x id) o y. But 03B4 is homotopic to 03B2 x id, which in turn is homotopic to

( f o g) x id = ( f x id) o (g x id). Since 9 x id is homotopic to a x id, and
a x id is homotopic to y, we are done.

PROOF OF COROLLARY 1.

Choose any polyhedron P for which P ~ X and use Theorem 3 to get
X x [0, 1) ~ P x (I~B{point}). Now I~B{point} ~ 100 x [0, 1), hence
P (I~B{point}) ~ (P x [0, 1))  I~. But P x [0, 1) can obviously be
triangulated by a complex.

PROOF OF COROLLARY 2.

Apply Theorem 3.

PROOF OF COROLLARY 3.

Apply Theorem 3.

PROOF OF THEOREM 4.

Let Y = X x s, which is obviously an F-manifold satisfying Y ~ X.
Using Henderson’s open embedding theorem let g : Y - s be an open
embedding. Let U be an open subset of 100 for which Uns = g(Y).
Then U is a Q-manifold, and as U n B(I~) is obviously a cap-set for U,
it follows from Lemma 3.6 that U - g(Y). Thus X - U. Using Corollary
2 we have X x [0,1) ~ U x [0, 1 ), and using the fact that U x [0,1] ~ U
we have U x [0,1) ~ UBF, for some closed subset F of U. Thus

X x [0, 1) ~ UBF, which is open in 100.
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PROOF OF COROLLARY 4.

Let f : X - X x [0, 1 ] be a homeomorphism and put

7. Proofs of Theorem 6, its Corollary, and Theorem 7

The following result will be used in the proof of Theorem 6.

LEMMA 7.1. Let X be a compact Q-manifold and assume that X - P,
for some compact polyhedron P. Then there is a copy P’ of P in X which is
a Z-set and a pseudo-isotopy ht : X ~ X which satisfies the following
properties.

(1) ho - id,
(2) h1(X) = P’,
(3) htlP’ = id for all t, and
(4) ht:X ~ X is an embedding for all t ~ 1.

PROOF. Let f:X ~ X x 100 be a homeomorphism. Since X x s is an
F-manifold and X  s ~ P, it follows that there is a homeomorphism
ç : P x s ~ X x s. Using the fact that ç(P x ((0, 0, ···)}) is a compact
subset of X x s, it is clear that there is an isotopy f : X  I~ ~ X  I~

such that fo = id, f1(X I~) c X x s, and ft|~(P {(0, 0,···)}) = id,
for all t.

One can obviously get a pseudo-isotopy gt : ~(P s) ~ ~(P s) such
that go = id, g, ~(P s) = ç(P x ((0, 0, ···)}), gt is an embedding for
all t ~ 1, and  = id, for all t. Then let

hr : X  I~ ~ X x 100 be defined by

Obviously ht is a pseudo-isotopy satisfying

h’0 = id, h’1(X I~) = ~(P  {(0, 0, ···)}), (P {(0, 0, ···)}) = id

for all t, and h’t is an embedding for all t ~ 1. Then let

and let ht : X - X be defined by ht(x) = f-1 ~h’t o f(x).
PROOF OF THEOREM 6.

Using Theorem 3 and the fact that X ~ X x [0, 1 ], there is a copy X’
of X in X which is a Z-set and there is a homeomorphism
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Using Lemma 7.1 let P’ be a copy of P in X’ and let ht : X’ ~ X’ be a
pseudo-isotopy satisfying ho = id, h1(X’) = P’, ht is an embedding for
all te 1, and ht|P’ = id for all t. Since P’ c X’ it easily follows that
P’ is a Z-set in X.

Let {Ui}~i=1 be any collection of open subsets of X such that

Ui = P’ and X’ c Ul . Using the compactness of P and X we can
find a number t, E ( -1, 1 ) such that f(P [t 1, 1) Ii) c Ul . Let
V1 = XBf(P [-1, t1]  Ii), which is an open set containing X’.
By choosing t E (0, 1) sufficiently close to 1 we have an embedding
ht : X’ ~ X’ n U2 which is properly homotopic to the identity, where
the image of the proper homotopy is entirely contained in X’. Moreover
this proper homotopy is limited by some open cover of Yl which is
normal with respect to XBV1. Thus we can apply Lemma 3.7 to extend
ht to a homeomorphism g1 : X ~ X which satisfies

g1|P’ = id, and gi(X’) c U2.
Now choose t2 E (tl, 1) such that gl of(P [t2, 1) 03A0~i=2Ii) c U2

and use the above techniques to construct a homeomorphism g2 : X ~ X
satisfyingg21g1 of (P [-1, t2] 03A0Ii) = id,g2IP’ = id, and

It is clear that we can continue this process to obtain homeomorphisms
{gi}~i= 1 of X onto itself and numbers tl  t2 ··· 1 limiting to 1

such that

gi~···0 91 (X’) - Ui+1, and gilP’ = id, for all i. Then define

g : P x (I~BW+1) ~ XBP’ by g(x) = lim gi o ... o gl o f(x). Clearly g
is a homeomorphism which is what we wanted.

PROOF OF COROLLARY 5. 

It follows from [12] that any homotopically trivial metric ANR is
contractible. Thus X must be a compact contractible Q-manifold, hence
it has the homotopy type of a point. It follows from Theorem 6 that
XB{point} ~ I~B{point}, thus X ~ 100.
We will need the following result for the proof of Theorem 7.

LEMMA 7.2. Let X be a compact Q-manifold for which X - P, for some
compact polyhedron P. Then there is an embedding h : P x I~ ~ X such
that Bd(h(P I~)) = h(P x wi+) and there is a strong deformation
retraction of X onto h(P x Wi).

PROOF. Let qJ : P x s ~ X x s be a homeomorphism and let
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be an embedding such that h’(x, (0, 0, ···)) = ~(x, (0, 0, ···)), for all
x E P, and Bd(h’(P  I~)) = h’ (P x Wi ). Now h’ (P x W-1) is a Z-set

in X x I~, thus Lemma 3.7 implies that there is a homeomorphism
~(P  03A31).

Using an argument similar to that used in the proof of Lemma 7.1,
there is a strong deformation retraction ht of X  I~ onto ~(P 03A31).
Thus f-1 o ht o f gives a strong deformation retraction of X  I~ onto

h’(P x W-1). Using the fact that X à X  I~ we can easily transfer this
information back to X.

PROOF OF THEOREM 7.

The procedure will be to attach a copy of I~ to X so that the resulting
space is a compact contractible Q-manifold.
Assume that dim(P) ~ n and consider P as linearly embedded in the

(2n + 1 )-cell . Let f : P x [ 1, 2 ] x I~ ~ X be an embedding such
that Bd(f(P x [1, 2] x 1(0)) = f(P x {2} x 1(0), where we consider

((2n + 2)-dimensional Euclidean space), and for which there is a strong
deformation retraction of X onto f(P x {1} x I~).

Let X* be the space constructed by attaching () I~ to X,
with the attaching map being f)P x {1} x I°°. To show that X* is a Q-
manifold all we have to do is check at f(P x {1}  I~). We know from
[15] that the product of any polyhedron with I°° gives a Q-manifold.
Since there is obviously a neighborhood of f(P {1} I~) in X* which
is homeomorphic to [(we conclude that

X* is a compact Q-manifold.
To see that X* is contractible we note that there is a strong deformation

retraction of X* onto the attached copy of (Ii)  I~ in X*. Thus
it follows that X* is contractible, hence X* ^-_, 100 by Corollary 5. The
proof of the theorem is now complete.

8. Proof of Theorem 8

We will need the following preliminary result. A proof can easily be
constructed using techniques similar to those used to establish Lemma
3.1 of [4]. For this reason we do not give a proof.

LEMMA 8.1. Let J~ be a copy of 100. There is a continuous function
g:I~  [1, ~) ~ I~  J~ which satisfies the following properties.
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(1) for n an integer and n ~ u  n + 1, gu is a homeomorphism of I~ onto

(Il  ··· x ln x [n - u, u - n ]  {(0, 0, ···)}) x Joo, where gu is defined
by gu(x) = g(x, u), for all x E 100, and

(2) for u E [1, oo) and n ~ u (n an integer),

We will need one more preliminary result before we establish Theorem
8. We will need a definition first.

Let G be an open subset of I~. A continuous function cp : G ~ [1, oo)
is said to have the local product property with respect to G provided that
for each x e G there is an integer m(x) ~ cp(x) such that the following
properties are satisfied.

(3) qJ is unbounded near I~BG, i.e. for each x ~ Bd(G) and each integer
n &#x3E; 0, there is an open set U containing x such that ~(G n U) c
[n, oo ).

LEMMA 8.2. Let G be an open subset of 100 and assume that there is a
continuous function qJ : G - [1, ~) which has the local product property
with respect to G. Let a : E1 ~ El (where El is the real line) be defined by
a(x) = x, for x ~ 0, and a(x) = 0, for x ~ 0. Then G ~ G(~)  J~,
where

PROOF. Let g : 1 "0 x [1, oo ) ~ I~  J~ be the continuous function of

Lemma 8.1. For each x e G let h(x) = g(x, ~(x)), which gives a homeo-
morphism of G onto G(cp) x J~. The details of the argument are elemen-
tary.

PROOF OF THEOREM 8.

Using a standard technique (for example see Lemma 6.1 of [6]) there
is a countable star-finite collection U of basic open subsets of 100 such that
G =  and Cl(U) c G, for all U~U. (An open subset of
I°° is basic provided that its closure is a basic closed set). It is clear that
by subdividing {Cl(U)| U ~U} we can get a countable star-finite collection



350

g of basic closed subsets of 100 such that (1) G = ~{F|F~J}, (2) for
each F~J, Int (F) is a non-null basic open subset of I~, and (3) if
Fl, F2 ~ J and F1 ~ F2, then Fl n F2 lies in an endslice of each.
Without loss of generality we may assume that G is connected. Thus

we can order J as {Fi}~i= 1 so that

where 1 = i(0)  i(1)  ··· and Stn(F1, J) has the usual meaning.
For each j &#x3E; 0 let m(j) denote a positive integer such that

Fj = Aj x  + 1Ii, where Aj is a basic closed subset of . By
subdividing  sufficiently (if necessary) we can choose {m(j)}~j=1
so that m(j) = m(i(k))+ 1, for all j satisfying i(k) + 1 ~ j ~ i(k+ 1).
For each j &#x3E; 0 let Rj = (Aj  Im(j)+1) {(0, 0, ···)}.
Then {Rj}~j=1 is a locally-finite collection of finite-dimensional cells

in G. It is clear that we can define a piecewise linear function

qJ’ : U1=lRj -+ [1, oo ) which satisfies

Then extend ç’ to a continuous function cp : G ~ [1, oo) by defining
~((xi)) = xm(j)+1, 0, 0, ... ), for all (xi) c- F,. It is clear that
cp has the local product property with respect to G. Using Lemma 8.2 we
find that G ~ G(~) J~. If we can prove that G(~) can be triangulated
by a complex, then we will be done.
We have chosen {Fi}~i=1 so that for the corresponding {Ri}~i=1,

Ri n Rj lies in a face of each, for i ~ j. It is obvious that we could have
chosen {Fi}~i=1 so that if i &#x3E; j, then R n Rj is exactly a face of R i .
This will aid in an inductive triangulation of G(~). The details of the
triangulation are tedious, but elementary. Accordingly we only sketch
the details.

There is obviously a triangulation 0394’1 of R1 such that for each i, with
1  i ~ i(1), Ri n R 1 is triangulated by a subcomplex of 0394’1. We can
extend 0394’1 to a triangulation 03941 of

so that for 1  i ~ i(1), R i ~ B1 is triangulated by a subcomplex of d 1.
We have chosen {Ri}~i=1 so that for each i &#x3E; 0, Ri+1 n (R1 ~···~Ri)
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is a union of faces of Ri+1. Using this fact and an inductive procedure
on {R2, ···, Ri(1)} we can extend 03941 to a triangulation 0394’2 of

so that if i(1)  i ~ i(2), then Ri n (Bl u (R2 ~···~ Ri(1))) is trian-
gulated by a subcomplex of 0394’2. Put

and extend J’ 2 to a triangulation d 2 of B2 so that for i(1)  i ~ i(2),
R n B2 is triangulated by a subcomplex of J2 - It is clear that we can
inductively continue this process to obtain our desired triangulation.

9. Proofs of Theorems 9 and 10

The following lemma is a basic separation result which will be needed
in the proofs of Theorems 9 and 10.

LEMMA 9.1. Let X be a metric ANR, A be a closed subset of X which is
an ANR and for which the inclusion map i : A ~ X is a homotopy equi-
valence, and let h : A x ( -1, 1) ~ X be an open embedding such that
h(x, 0) = x, for all x E A. Then we can write XB A = U ~ V, where U
and V are disjoint open subsets of X satisfying h(A x (0, 1)) c U and
h(A x ( -1, 0)) c V. Moreover, there are strong deformation retractions
of Cl(U) and Cl(V) onto A.

PROOF. The proof of the existence of disjoint open subsets U, V of X
satisfying XBA = U u V, h(A x (0, 1)) c U, and h(A x (-1, 0)) ~ V is
straightforward. We merely remark that in the case A is connected the
desired separation follows immediately from the reduced Mayer-Vietoris
sequence of the excisive couple {h(A x ( -1, 1)), XBA}. In case A is not
connected one can do a standard argument on the components of A.
The inclusion map i : A ~ X being a homotopy equivalence means

that A is a weak deformation retract of X. Since A and X are ANR’s it

follows that A is a strong deformation retract of X (see [14], page 31).
Let f : X - X be a strong deformation retraction of X onto A, where
fo = id and fl is a retraction of X onto A.

Let g : X - X be defined by

which is clearly continuous. Define ht = g o f , for all r E [0,1]. It is clear
that ht(Cl(U)) ~ Cl(U), for all t. Thus ht|Cl(U) defines a strong defor-
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mation retraction of Cl(U) onto A. Similarly A is a strong deformation
retract of Cul( ).
We will now give a proof of Theorem 9. For its proof we will use

Lemma 9.1 and some of the results that have been established for

Q-manifolds in this paper. We will not prove Theorem 10, since similar
results for F-manifolds that have been established elsewhere will permit
a proof similar to that given for Theorem 9.

PROOF OF THEOREM 9.

Note that X and Y are metric ANR’s and the inclusion maps
i:f(X) ~ Y, j:g(X) ~ Y are obviously homotopy equivalences. Thus
we can apply Lemma 9.1 to obtain disjoint pairs Ul, U2 and Vl, V2 of
open subsets of Y such that the following properties are satisfied.

(1 ) YV(X) = Ul U U2 and YBg(X) = V1 ~ V2,
(2) f(X) = Cl(Ul) n Cl(U2) and g(X) = Cl(Vl) n Cl(V2),
(3) f(X) is collared in each of Cl(Ul), Cl(U2), and g(X) is collared in

each of Cl(Vl), Cl(V2),
(4) f(X) is a strong deformation retract of each of Cl( Ul ), Cl(U2), and

g(X) is a strong deformation retract of each of CI(Yl), Cl(V2).

From (3) it easily follows that CI(Ul) and Cl(Vl) are Q-manifolds.
Let r : Cl(U1) ~ f(X) be a retraction homotopic to id and note that the
map g~f-1~r:Cl(U1) ~ Cl(Vl) is a homotopy equivalence. Using
Theorem 6 we know that (g of-1 o r ) x id : Cl( Ul ) x [0, 1 ) ~ Cl(Y1) x
[0, 1) is homotopic to a homeomorphism hl : Cl(Ul) x [0, 1) ~ Cl(V1) x
[0, 1).

Now g x id : X x [0, 1) ~ Cl(Yl ) x [0, 1 ) and h1~(f id):X [0, 1 ) ~
Cl(Vl)x[0,1) are homotopic embeddings. It is easy to see that

(gxid)(Xx [0, 1)) and hl o (fxid)(Xx [0, 1)) are Z-sets in Cl(Vl)x
[0, 1). Using Corollary 6.1 of [3] there is a homeomorphism

which satisfies h2 o hl o ( f x id) = g x id. Put h’ = h2 o h 1, which is a

homeomorphism of Cl(U1)  [0, 1) onto Cl(V1)  [o, 1 ) which satisfies
h’ o (fxid) = gxid.

Similarly we can obtain a homeomorphism

which satisfies h" o ( f x id) = g x id. Then define h : Y x [0, 1) ~
Y x [0, 1 ) by h|Cl(U1)  [0, 1 ) = h’ and hl Cl(U2) x [0, 1 ) = h".
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