Compositio Mathematica

K. R. Pearson
 On the family relation for artinian rings

Compositio Mathematica, tome 24, n 3 (1972), p. 273-275
http://www.numdam.org/item?id=CM_1972__24_3_273_0
© Foundation Compositio Mathematica, 1972, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE FAMILY RELATION FOR ARTINIAN RINGS

by
K. R. Pearson

In [4] (see also [5], Chapter III), Kruse and Price introduced the notion of two rings being in the same family. This was motivated by the relation of group isoclinism introduced by P. Hall in [3].

Rings R_{1} and R_{2} are said to be in the same family, denoted by $R_{1} \stackrel{F}{\leftrightarrow} R_{2}$, if there exist isomorphisms $\phi: R_{1} / \mathfrak{H}\left(R_{1}\right) \rightarrow R_{2} / \mathscr{H}\left(R_{2}\right)$ and $\psi: R_{1}^{2} \rightarrow R_{2}^{2}$ such that
(1) if $\left(r_{i}+\mathfrak{H}\left(R_{1}\right)\right) \phi=s_{i}+\mathfrak{Y}\left(R_{2}\right)$ for $i=1,2$ then $\left(r_{1} r_{2}\right) \psi=s_{1} s_{2}$.

Here $\mathfrak{H}(R)$ denotes the annihilator of a ring R and is defined by

$$
\mathfrak{A}(R)=\{x \in R \mid x r=r x=0 \text { for all } r \in R\} .
$$

$\stackrel{F}{\leftrightarrow}$ is an equivalence relation which is identical with isomorphism if either $R_{i}^{2}=R_{i}$ for $i=1,2$ or $\mathfrak{A}\left(R_{1}\right)=\mathfrak{A}\left(R_{2}\right)=0$.

Also, if $R_{1} \stackrel{F}{\leftrightarrow} R_{2}$, then R_{1} is nilpotent if and only if R_{2} is nilpotent. We show below how the family relation for commutative Artinian rings reduces to isomorphism between certain subrings equal to their own square and the family relation for certain nilpotent factor rings. We first need the following proposition.

Proposition. If $R_{1} \stackrel{F}{\leftrightarrow} R_{2}$ then, for all integers $m \geqq 2, R_{1}^{m} \cong R_{2}^{m}$ and $R_{1} / R_{1}^{m} \stackrel{F}{\leftrightarrow} R_{2} / R_{2}^{m}$.

Proof. Let $\phi: R_{1} / \mathfrak{H}\left(R_{1}\right) \rightarrow R_{2} / \mathfrak{H}\left(R_{2}\right)$ and $\psi: R_{1}^{2} \rightarrow R_{2}^{2}$ be isomorphisms such that (1) holds. Because of (1) it is clear that, for all $m \geqq 2$, the restriction of ψ to R_{1}^{m} is an isomorphism onto R_{2}^{m}.

Suppose $m \geqq 2$. For $i=1,2$ let $V_{i}=R_{i} / R_{i}^{m}, \alpha_{i}: R_{i} \rightarrow V_{i}$ be the canonical map and

$$
L_{i}=\left\{x \in R_{i} \mid\left(x R_{i}\right) \cup\left(R_{i} x\right) \subseteq R_{i}^{m}\right\} .
$$

Then $\mathfrak{A}\left(R_{i}\right) \subseteq L_{i}$ and $\mathfrak{A}\left(V_{i}\right)=L_{i} / R_{i}^{m}$. Because $\psi \alpha_{2}$ maps R_{1}^{2} onto $R_{2}^{2} / R_{2}^{m}=V_{2}^{2}$ and has kernel $R_{2}^{m} \psi^{-1}=R_{1}^{m}, \psi$ induces an isomorphism $\Psi: V_{1}^{2} \rightarrow V_{2}^{2}$ given by

$$
\left(x+R_{1}^{m}\right) \Psi=x \psi+R_{2}^{m} \quad \text { for } x \in R_{1}^{2} .
$$

For $i=1,2$ let β_{i} be the map from $R_{i} / \mathcal{H}\left(R_{i}\right)$ onto R_{i} / L_{i} given by

$$
\left(r_{i}+\mathfrak{Y}\left(R_{i}\right)\right) \beta_{i}=r_{i}+L_{i} \quad r_{i} \in R_{i}
$$

and let γ_{i} be the isomorphism from R_{i} / L_{i} onto $V_{i} / \mathfrak{A}\left(V_{i}\right)$ given by

$$
\left(r_{i}+L_{i}\right) \gamma_{i}=\left(r_{i}+R_{i}^{m}\right)+\mathfrak{H}\left(V_{i}\right)
$$

Then $\phi \beta_{2} \gamma_{2}$ maps $R_{1} / \mathfrak{H}\left(R_{1}\right)$ onto $V_{2} / \mathfrak{H}\left(V_{2}\right)$ and has kernel $\left(L_{2} / \mathfrak{Y}\left(R_{2}\right)\right) \phi^{-1}$. But because of (1) this equals $L_{1} / \mathfrak{H}\left(R_{1}\right)$ which is also the kernel of $\beta_{1} \gamma_{1}$. Hence ϕ induces an isomorphism Φ from $V_{1} / \mathfrak{A}\left(V_{1}\right)$ onto $V_{2} / \mathfrak{H}\left(V_{2}\right)$ given by

$$
\left(\left(r_{1}+L_{1}\right) \gamma^{-1}\right) \Phi=\left(r_{1}+9\left(R_{1}\right)\right) \phi \beta_{2} \gamma_{2} \quad r_{1} \in R_{1}
$$

Finally it is easy to check that Φ and Ψ satisfy the compatability condition corresponding to (1) and hence $V_{1} \stackrel{F}{\leftrightarrow} V_{2}$.

If R is a ring with D.C.C. on two-sided ideals (in particular, if R is Artinian), there is a least positive integer n such that $R^{m}=R^{n}$ for all $m \geqq n$. We denote R^{n} by $K(R)$. Then, of course, $K(R)^{2}=K(R)$ and $R / K(R)$ is nilpotent.

Suppose R_{1} and R_{2} are two rings with D.C.C. on twosided ideals. If $R_{1} \stackrel{F}{\leftrightarrow} R_{2}$ it follows from the proposition that $K\left(R_{1}\right) \cong K\left(R_{2}\right)$ and $R_{1} / K\left(R_{1}\right) \stackrel{F}{\leftrightarrow} R_{2} / K\left(R_{2}\right)$. That the converse is not true may be seen by considering the (non-commutative) 4 dimensional algebra R over the field with two elements and with basis e, a, b, c where multiplication is such that all products of the basis elements are zero except that $e e=e$, $e a=a, e b=b$ and $a c=b$. Then it is easy to check that R is associative, R^{2} is the subspace with basis $e, a, b, K(R)=R^{2}, \mathfrak{Y}(R)=0=\mathfrak{Y}\left(R^{2}\right)$. Hence $K(R)=K\left(R^{2}\right), R / K(R) \stackrel{F}{\hookrightarrow} R^{2} / K\left(R^{2}\right)$ but R and R^{2} are not in the same family.

However, suppose in addition that R_{1} and R_{2} are commutative. Then, if J_{i} is the Jacobson radical of R_{i}, there exists an idempotent $e_{i} \in R_{i}$ such that $e_{i}+J_{i}$ is the identity of R_{i} / J_{i} and, if $T_{i}=\left\{x-x e_{i} \mid x \in R_{i}\right\}$, $R_{i}=R_{i} e_{i}+T_{i}$ and $T_{i} \subseteq J_{i}$ is nilpotent ([1], Theorem 9.3 C). Since $R_{i} e_{i}$ is a ring with identity $e_{i},\left(R_{i} e_{i}\right)^{m}=R_{i} e_{i}$ for all $m \geqq 1$ and so, since T_{i} is nilpotent, $K\left(R_{i}\right)=R_{i} e_{i}$. Hence $R_{i}=K\left(R_{i}\right) \oplus T_{i}$ and $R_{i} / K\left(R_{i}\right) \cong$ T_{i}. Thus if $K\left(R_{1}\right) \cong K\left(R_{2}\right)$ and $R_{1} / K\left(R_{1}\right) \stackrel{F}{\leftrightarrow} R_{2} / K\left(R_{2}\right)$ then also $T_{1} \stackrel{F}{\leftrightarrow} T_{2}$ and so clearly $R_{1} \stackrel{F}{\leftrightarrow} R_{2}$. This proves the following.

Theorem. Let R and S be rings with D.C.C. on two-sided ideals. If $R \stackrel{F}{\leftrightarrow} S$ then $K(R) \cong K(S)$ and $R / K(R) \stackrel{F}{\leftrightarrow} S / K(S)$. If, in addition, R and S are commutative, the converse is also true.

Finally if $R_{1} \stackrel{F}{\leftrightarrow} R_{2}$ then it is clear that $R_{1} / J_{1} \cong R_{2} / J_{2}$. (Indeed, if \mathscr{H} is any radical property (see [2], Chapter 1) such that every ring whose square is zero is an \mathscr{H}-ring and if $\mathscr{H}(R)$ denotes the \mathscr{H}-radical of a ring R then from $R_{1} / \mathscr{H}\left(R_{1}\right) \cong R_{2} / \mathfrak{H}\left(R_{2}\right)$ it follows that $R_{1} / \mathscr{H}\left(R_{1}\right) \cong$ $R_{2} / \mathscr{H}\left(R_{2}\right)$ since $\mathfrak{A}\left(R_{i}\right) \subseteq \mathscr{H}\left(R_{i}\right)$.) But if R_{i} is a commutative Artinian ring then J_{i} is the direct sum of the radical of $K\left(R_{i}\right)$ and T_{i}. Hence if $R_{1} \stackrel{F}{\leftrightarrows} R_{2}$ and each R_{i} is commutative and Artinian, then $R_{1} / J_{1} \cong R_{2} / J_{2}$ and $J_{1} \stackrel{F}{\leftrightarrow} J_{2}$. That the converse is however false can be seen by considering R_{1} as the ring of integers modulo 4 and R_{2} the algebra over the field with two elements with basis 1 and x and with $x^{2}=0$.

REFERENCES

E. Artin, C. Nesbitt and R. M. Thrall
[1] Rings with minimum condition. University of Michigan, Ann Arbor, 1944.
N. J. Divinsky
[2] Rings and radicals. University of Toronto, 1965.
P. Hall
[3] The classification of prime-power groups. J. Reine Angew. Math. 182, 130-141 (1940).
R. L. Kruse and D. T. Price
[4] On the classification of nilpotent rings. Math. Zeit. 113, 215-223 (1970).
R. L. Kruse and D. T. Price
[5] Nilpotent rings. Gordon and Breach, New York, 1969.
(Oblatum 14-IV-71)
Dr. K. R. Pearson Department of Mathematics La Trobe University BUNDOORA
Victoria 3083
Australia

