A homotopy theoretic characterization of the translation in E n
Compositio Mathematica, Tome 24 (1972) no. 1, pp. 55-61.
@article{CM_1972__24_1_55_0,
     author = {Husch, L. S.},
     title = {A homotopy theoretic characterization of the translation in $E^n$},
     journal = {Compositio Mathematica},
     pages = {55--61},
     publisher = {Wolters-Noordhoff Publishing},
     volume = {24},
     number = {1},
     year = {1972},
     mrnumber = {339248},
     zbl = {0233.57005},
     language = {en},
     url = {http://www.numdam.org/item/CM_1972__24_1_55_0/}
}
TY  - JOUR
AU  - Husch, L. S.
TI  - A homotopy theoretic characterization of the translation in $E^n$
JO  - Compositio Mathematica
PY  - 1972
SP  - 55
EP  - 61
VL  - 24
IS  - 1
PB  - Wolters-Noordhoff Publishing
UR  - http://www.numdam.org/item/CM_1972__24_1_55_0/
LA  - en
ID  - CM_1972__24_1_55_0
ER  - 
%0 Journal Article
%A Husch, L. S.
%T A homotopy theoretic characterization of the translation in $E^n$
%J Compositio Mathematica
%D 1972
%P 55-61
%V 24
%N 1
%I Wolters-Noordhoff Publishing
%U http://www.numdam.org/item/CM_1972__24_1_55_0/
%G en
%F CM_1972__24_1_55_0
Husch, L. S. A homotopy theoretic characterization of the translation in $E^n$. Compositio Mathematica, Tome 24 (1972) no. 1, pp. 55-61. http://www.numdam.org/item/CM_1972__24_1_55_0/

E.M. Brown. [1] Unknotting in M2×I. Trans. Amer. Math. Soc. 123 (1966), 480-505. | MR | Zbl

M. Brown [2] Locally flat imbeddings of topological manifolds. Ann. of Math. (2) 75 (1962), 331-341. | MR | Zbl

M. Brown And H. Gluck [3] Stable structures on manifolds: I-III. Ann. of Math. (2) 79 (1964), 1-58. | MR | Zbl

M.L. Curtis And K.W. Kwun [4] Infinite sums of manifolds. Topology 3 (1965), 31-42. | MR | Zbl

J. Dancis [5] Topological analogues of combinatorial techniques. Conference on the Topology of Manifolds, Prindle, Weber & Schmidt, Inc., Boston, Mass., (1968), 31-46. | MR | Zbl

D.B.A. Epstein [6] Ends. Topology of 3-manifolds, Prentice-Hall, Inc., Englewood Cliffs, N. J., (1962), 110-117. | MR

T. Homma And S. Kinoshita [7] On a topological characterization of the dilatation in E3. Osaka Math. J. 6 (1954), 135-144. | MR | Zbl

W.C. Hsiang And J.L. Shaneson [8] Fake tori, the annulus conjecture, and the conjectures of Kirby. Proc. National Acad. Sci. U.S.A. 62 (1969), 687-691. | MR | Zbl

L.S. Husch AND T.M. Price [9] Finding a boundary for a 3-manifold: Ann. of Math. (2) 91 (1970), 223-235. | MR | Zbl

B.V. Kerékjártó [10] Topologische Characterisierungen der linearen Abbildungen. Acta Litt. ac. Sci. Szeged 6 (1934), 235-262. | JFM | Zbl

S. Kinoshita [11] On quasi-translations in 3-space. Fund. Math. 56 (1964), 69-79. | MR | Zbl

S. Kinoshita [12] Notes on covering transformation groups. Proc. Amer. Soc. 19 [1968), 421-424. | MR | Zbl

R C. KIRBY [13] Stable homeomorphisms and the annulus conjecture. Ann. Math. 89 (1969), 575-582. | MR | Zbl

B. Mazur [14] A note on some contractible 4-manifolds. Ann. of Math. (2) 73 (1961), 221-228. | MR | Zbl

D.R. Mcmillan, Jr. [15] Cartesian products of contractible open manifolds. Bull. Amer. Math. Soc. 67 (1961) 510-514. | MR | Zbl

V. Poénaru [16] Les decompositions de 1'hypercube en produit topologique. Bull. Soc. Math. France 88 (1960), 113-129. | Numdam | MR | Zbl

L.C. Siebenmann [17] On detecting Euclidean space homotopically among topological manifolds. Inventiones math. 6 (1968), 245-261. | MR | Zbl

L.C. Siebenmann [18] On detecting open collars. Trans. Amer. Math. Soc. 142 (1969), 201-227. | MR | Zbl

L.C. Siebenmann [19] The obstruction to finding a boundary for an open manifold of dimension greater than five. Thesis (1965) Princeton University.

C.D. Sikkema, S. Kinoshita AND S.J. Lomonaco, Jr. [20] Uncountably many quasi-translations of S3. (to appear).

E. Spanier [21 ] Algebraic Topology. Mc-Graw-Hill Book Co., New York (1966). | Zbl

E. Sperner [22] Ueber die fixpunktfreien Abbildungen der Ebene. Abh. Math. Sem. Hamburg 10 (1934), 1-47. | JFM | Zbl

J.R. Stallings [23] On infinite processes leading to differentiability in the complement of a point. Differential and Combinatorial Topology. Princeton University Press, Princeton, New Jersey (1965), 245-254. | MR | Zbl

H. Terasaka [24] On quasi-translations in En. Proc. Japan Acad. 30 (1954), 80-84. | MR | Zbl

J.H.C. Whitehead [25] A certain open manifold whose group is unity. Quart. J. Math. Oxford Ser. (2) 6 (1935), 364-366. | JFM | Zbl