Topological stability for infinite-dimensional manifolds
Compositio Mathematica, Tome 23 (1971) no. 1, pp. 87-100.
@article{CM_1971__23_1_87_0,
     author = {Schori, R.},
     title = {Topological stability for infinite-dimensional manifolds},
     journal = {Compositio Mathematica},
     pages = {87--100},
     publisher = {Wolters-Noordhoff Publishing},
     volume = {23},
     number = {1},
     year = {1971},
     mrnumber = {287586},
     zbl = {0219.57003},
     language = {en},
     url = {http://www.numdam.org/item/CM_1971__23_1_87_0/}
}
TY  - JOUR
AU  - Schori, R.
TI  - Topological stability for infinite-dimensional manifolds
JO  - Compositio Mathematica
PY  - 1971
SP  - 87
EP  - 100
VL  - 23
IS  - 1
PB  - Wolters-Noordhoff Publishing
UR  - http://www.numdam.org/item/CM_1971__23_1_87_0/
LA  - en
ID  - CM_1971__23_1_87_0
ER  - 
%0 Journal Article
%A Schori, R.
%T Topological stability for infinite-dimensional manifolds
%J Compositio Mathematica
%D 1971
%P 87-100
%V 23
%N 1
%I Wolters-Noordhoff Publishing
%U http://www.numdam.org/item/CM_1971__23_1_87_0/
%G en
%F CM_1971__23_1_87_0
Schori, R. Topological stability for infinite-dimensional manifolds. Compositio Mathematica, Tome 23 (1971) no. 1, pp. 87-100. http://www.numdam.org/item/CM_1971__23_1_87_0/

R.D. Anderson [1] Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519. | MR | Zbl

R.D. Anderson and R. Schori [2] A factor theorem for Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 53-56. | MR | Zbl

R.D. Anderson and R. Schori [3] Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969) 315-330. | MR | Zbl

C. Bessaga and M.I. Kadec [4] On topological classification of non-separable Banach spaces, (to appear). | MR | Zbl

C. Bessaga and A. Pelczynski [5] Some remarks on homeomorphisms of Banach spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astro. Phys. 8 (1960), 757-761. | MR | Zbl

Edward Čech, [6] Topological spaces (revised by Z. Frolik and M. Katetov), Academia Publishing House, Prague, 1966. | MR | Zbl

M. Eidelheit and S. Mazur [7] Eine Bemerkung über die Räume vom Typus (F), Studia Mathematica 7 (1938), 159-161. | JFM | Zbl

D.W. Henderson [8] Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc. 75 (1969), 759-762. | MR | Zbl

D.W. Henderson [9] Infinite-dimensional manifolds are open subsets of Hilbert space, Topology, 9 (1970), 25-33. | MR | Zbl

D.W. Henderson [10] Micro-bundles with infinite-dimensional fibers are trivial. Inventiones Mathematical (to appear). | MR | Zbl

D.W. Henderson [11] Stable classification of infinite-dimensional manifolds by homotopy type. Inventiones Mathematical (to appear). | MR | Zbl

D.W. Henderson and R. Schori [12] Topological classification of infinite-dimensional manifolds by homotopy type, Bull. Amer. Math. Soc. 76 (1970), 121-124. | MR | Zbl

E.A. Michael [13] Local properties of topological spaces, Duke Math. J. 21 (1954), 163-172. | MR | Zbl

P.L. Renz [14] The contractibility of the homeomorphism group of some product spaces by Wong's method. Mathematica Scandinavia (to appear). | Zbl

A.H. Stone [15] Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948) 977-982. | MR | Zbl

J.E. West [16] Fixed-point sets of transformation groups on infinite-product spaces, Proc. Amer. Math. Soc. 21 (1969), 575-582. | MR | Zbl

R.Y.T. Wong [17] On homeomorphisms of certain infinite dimensional spaces, Trans. Amer. Math. Soc. 128 (1967), 148-154. | MR | Zbl