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1. Introduction

This paper is a direct continuation of Stam [6], which will be cited as I.
The notation and definitions of I will be taken over without reference. The

same holds for the assumptions of I, section 1: strict d-dimensionality,
finite second moments and nonzero flrst moment vector.

We now assume

The restriction of UF to the strip {x : t ~ x ~ t + a} is a finite measure
with variation tending to 03BC-11 a as t ~ oo if X11 is nonarithmetic. It will be
shown that this measure satisfies a local central limit theorem for t ~ oo,

if E|X11|03C1  oo and F is nonarithmetic. The limit theorem (theorem 3.1 )
has the usual form applying to the n-fold convolution of a probability
measure, with n replaced by 03BC-11t. See e.g. Spitzer [4], Ch. IL7 and
Stone [8]. For arithmetic F a similar result holds (theorem 3.2).
We might have considered any strip {x : t ~ (c, x) ~ t + a} with the

unit vector c such that (fi, c) &#x3E; 0. What is done here is choosing a coor-
dinate system with positive xl-axis in the direction of c.
The global version of the limit theorem, with M2 =... = Ild = 0, was

proved in Stam [5]. Theorems 5.3 and 5.4 of 1 are special cases of the
local theorems, viz. 03BC2 = ··· = 03BCd = 0, X2 = ··· = Xd = 0.

Proofs follow the same lines as in I, with the complication that limits
for xi - oo have to be uniform with respect to x2, ···, xd .

Section 4 contains some results on the order of decrease of UF(A + x)
as x | ~ oo if certain moments of F exist.
The following notation is used throughout this paper. Let E be the co-

variance matrix of the random variables X1j-03BC-1103BCjX11, j = 2, ···, d,
and 03B5ih the (i, h)-element of E -1. We put
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so that 03BC03C1+11x-03C11L(x) for fixed Xl &#x3E; 0 is a gaussian probability density
on Rd-,.

By Ld we denote the class of continuous functions on Rd with compact
support.

2. Preliminary lemmas

LEMMA 2.1. If for every g E Kd

uniformly in the direction of ac, then the same is true for every g E rcd.
The class Kd is defined in I, definition 2.3.

PROOF. It is sufficient to show that to any 9 E rcd and any a &#x3E; 0 there

is g03B5 E Kd with 

uniformly in x, where W = WG + WH. The relation (2.1) then follows
by the inequality

To prove (2.2) we take a probability density h E Kd and put

Then ha E Kd and g ~ Kd. We have

Since g E Ld, we have by I, lemma 2.4

where 0  03B4  1 and the bounded set D is taken so that g(î) = 0,
g(z-t) = 0 for 1 o D and all t with |T| ~ 1. Since g is uniformly con-
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tinuous, we first may take à so small that the second term on the right
in (2.5) is smaller than 1 403B5, and then a so large that by (2.3) the first term
is smaller than 1 403B5.

LEMMA 2.2. If F is gaussian, the density WF of WF satisfies

uniformly in X2, ..., xd .

COROLLARY. Under the conditions of lemma 2.2

uniformly in x 2, ..., Xd, if 9 ~ Ld.

PROOF. By I, lemma 2.2, it is sufficient that (2.6) holds uniformly in a
cane C03B8 = {x : x, ~ 0, |xj-03BC-1103BCjx1| ~ 0 xl , j ~ 2}. Let

with Sm = X1 + ··· + Xm. Then the density fm of Fm and the joint
density qm of Ym1, ···, Ymd are connected by

Let P be the covariance matrix of Yl l , ’ ’ ’, Yla, and 7rij be the (i, j)-
element of P -1. Put

Since E{Ym1} = m/11, E{Ymk} = 0, k ~ 2, the relation (2.8) gives

where

Since 1tll Det P = Det F,,
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where p(m) is the m-fold convolution of the normal density with mean pi
and variance 03C0-111. It is noted that 1tll &#x3E; 0 since P is nonsingular. So

In defining the cone Co we take 9 so small that

We divide Co into Ce RA and Ce RÂ with

Put = (203C0)-03C1(Det E)-t. Since E is nonsingular we have for x E CORA

with cl &#x3E; 0. Moreover, by the inequality [exp ( - a) - exp (-03B2)| ~ la-PI |
03B1 ~ 0, 03B2 ~ 0, we have for x E C03B8 RcA

where

For given e &#x3E; 0 by (2.12), (2.13), (2.14) we may take A so large that
IWF(x)-L(x)1  e for x1 ~ C3 and x E CORA, since

uniformly in z for z ~ c3 &#x3E; 0. For this A the right-hand side of (2.15)
then tends to zero as xi - oo, uniformly in C03B8 RcA. For the second term
we apply the renewal theorem for densities. The first term is more com-
plicated. It is noted that |~| ~ c4|x1|1 2, where c4 depends on A. We may
define the family of random variables Mz, z &#x3E; 0, with
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Then z-1Mz ~ 03BC-1 in quadratic mean as z - oo. We refer to Kalma [1],
[2]. A similar technique is used in the proof of theorem 5.3 in I. A direct

proof proceeds by dividing the sum over m into three parts:

The corollary follows from (2.6) and the fact that

uniformly in x2, ···, xd and uniformly with respect to z in bounded sets.

LEMMA 2.3. Let {x(t, i), (t, 03C4) ~ E ~ Rk} be a family of positive
random variables such that

uniformly in î, where c is a positive constant. Then for any 0 and any
03B5 &#x3E; 0

uniformly in i. If moreover to any ô &#x3E; 0 there are K(b) and T(03B4) with

for t ~ T(ô) and every i, we have

uniformly in i.

REMARK. A sufficient condition for (2.18) is the existence of s &#x3E; 1 with

See Loève [3], § 11.4.

PROOF. The relation (2.17) follows from (2.16) for 0 = 1 by Cheby-
chev’s inequality and then for any real B since

for some positive 11 independent of t and i.
Now let B be the distribution function of XO(t, î). Then
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We now prove (2.19) by first taking 11 = 8/3, then K = K(1 303B5) as in (2.18)
and finally applying (2.17).
LEMMA 2.4. If F is nonarithmetic and 9 e Ld,

uniformly in X2, ..., xd .

PROOF. From lemma 2.2 (corollary), lemma 2.1 and 1, theorem 3.2.

LEMMA 2.5. Let a Cartesian coordinate system exist, such that the com-

ponents Z1, ···, Zd of X 1 in this system have joint characteristic function ,
with 03B6(u) = 1 if Ul, ..., Ud are integer multiples of 2n and |03B6(u)|  1

elsewhere. Then

uniformly in X2, ..., Xd if x is restricted to lattice points of F.

PROOF. From lemma 2.2 and 1, theorem 3.4. The rotation of the F-
lattice is a consequence of our choice of coordinates.

LEMMA 2.6. For fixed nonnegative integer k with E|X11|k  oo, let

Then, if F is nonarithmetic, we have for 9 ~ Ld,

uniformly in X2, ..., xd .

PROOF. We will show that

uniformly in X2, ..., Xd. The relation (2.21) then follows by the in-
equality
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which is a consequence of the fact that g ~ Ld.
In the same way as in the proof of I, theorem 5.3.

with lim|x|~~ 03A6(x) = 0, uniformly in the direction of x, and

Since Q is a finite signed measure, we may write Qk = K’ + K", where K’
is restricted to a bounded set and the variation of K" is so small that in

the first and third term on the right are smaller than 3 E. For the first term
we apply I, lemma 2.4. The second term is written

Here the first term tends to zero as xi - oo, uniformly in x2, ···, xd, by
lemma 2.4, since K’ is restricted to a bounded set. The same holds for the
second term by (1.3). One should distinguish the sets RA and RcA defined
by (2.12a).

3. Local limit theorems for UF

THEOREM 3.1. If F is nonarithmetic and EIX111P  00,

for g ~ Ld, uniformly in x2, ···, xd .
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PROOF. When d is odd, the theorem coincides with lemma 2.6 for
k = p.
Now assume that d is even, d ~ 6. It is no restriction to assume that

g ~ 0. First we intend to show

(I) The relation (3.1) holds uniformly in the set RcA, with RcA defined
by (2.12a).

Putting

we have by lemma 2.6 with k = 0, 1, 2,

with

uniformly in X2, ..., xd . Consider the family of positive integer valued
random variables {M(x), x E RcA, x, &#x3E; 0}:

Expectation with respect to the distribution (3.8) will be denoted by El.
From (3.4)-(3.7) and the inequality

it follows that

uniformly in x2, ···, xd . By lemma 2.3 and (3.9) this implies

uniformly in RcA - and hence the desired result (I) - if to every à &#x3E; 0 there

are J(ô) and T(ô) with
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for all x E RcA with x1 ~ T(ô). In the same way as 1, (5.8), we derive

for h ~ 0, where

So, since g E Ld, it is sufficient for (3.12) that

The first term in (3.15) tends to zero as xi - oo, uniformly in RA, since
R is a finite measure. From (3.10), (2.17), (3.8) and (3.9) we have for

both uniformly in RA. For J &#x3E; pi , and x E RA

were 11 is a bounded funtcion by I, lemma 2.4, and limt~~ il(t) = 0 by
(3.16). This proves (3.15) and therefore (I).
Now we will prove

(II). To any a &#x3E; 0 and A &#x3E; 0 there is 03BE(03B5, A) with

for all x E RA with x1 ~ 03BE(03B5, A), where RA is given by (2.12a) and Co, ci
do not depend on A or e.
By (3.13), since g E Ld,
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Here the first term tends to zero as xi - oo, uniformly in x2, ···, xd and

by lemma 2.4 the second term is majorized by

where 0 is a bounded function by I, lemma 2.4, and limt~~ 0(t) = 0.
So the second term in (3.19) tends to zero as x, -+ ao. The inequality
(3.17) now follows by considering the first term of (3.19), using the defi-
nition of L(x) and writing R = R’ + R" where the measure R’ has total
variation smaller than te and R" is restricted to a bounded set.
The theorem now follows from (I), (II) and the definition of L(x).
For d = 2 and d = 4 the proof of (I) remains unchanged up to and

including (3.10). The relation (3.11) now follows from the remark to
lemma 2.3, since 0  2 - p  2. The proof of (II) holds for d = 4 but
not for d = 2 since (3.13) is derived by Minkowski’s inequality with
exponent p.
For d = 2 we have

so

and (II) now follows by lemma 2.4 and lemma 2.6 with k = 1.

THEOREM 3.2. Under the lattice conditions of lemma 2.5, if EIX111P  00,

uniformly in X2, ..., xd , if x is restricted to lattice points of F.

PROOF. From lemma 2.5, by methods similar to those used in the proof
of theorem 3.1. We need the following version of (2.21):

uniformly in x2, ···, xd, if x is restricted to lattice points of F.
It is noted that a corresponding theorem for densities may be derived

by similar techniques, if (p E L1. A similar remark hold for the results
of 1.
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4. Existence of moments of order unequal to p

Theorems 5.1 and 5.2 of 1 give some information about the order of
decrease of UF(A+x) if x ~ oo in a direction different from fi. The fol-
lowing supplementary result will be derived by direct appeal to one-
dimensional renewal theory. Second moments need not be finite.

THEOREM 4.1. Let S = {x : (x, 03BC) ~ 03B8|x||03BC|}, with -1 ~ 0  1. Then,
if E|X11|p  00, where p &#x3E; 1, we have

PROOF. It is sufficient to show that (1) holds with S replaced by

where y E (0,1) and the unit vector 03B1 are such that 03BC ~ C. We may choose
our coordinate system in such a way that pi &#x3E; 0 and

where 03B2 is a positive constant. By applying the inequality |x| ~ |x1| if
p  2 and |x| ~ |x1|1+03B2 for x ~ K if p ~ 2, we find

with c = 1 or c = 1+03B2. Let U1 = ¿f Fr; be the one-dimensional
renewal measure belonging to the probability distribution F1 of X11.
Then

(See Stone and Wainger [9], Stam [7].)
Let UF denote the density of UF, if present. The density version of

theorem 3.1 says that if E|X11|03C1  oo,

uniformly in x2, ···, xd . Here q(x) for fixed xi is a gaussian probability
density in x2, ···, xd with covariance matrix proportional to xl . The

form of (4.2) suggests that p may be replaced by p if E|X11|p  oo, and

that a similar remark might apply to (3.1).
For p &#x3E; p this is not true. As an example take X11, ···, Xla indepen-

dent, X11 negative exponential with parameter 1 and X1j gaussian with
zero expectation and unit variance, j = 2, ···, d. For x2 = ··· = xd = 0
we then should have
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for any p &#x3E; 0. Take d = 5. We have

Here the first term between brackets gives rise to x-2 plus exponential
terms and the second term to a contribution of order x-3 by the law of
large numbers for the Poisson distribution with parameter tending to 00 .
For p  p we would obtain xp1 03BCF(x) - 0 and this is correct for

2  p  p.

THEOREM 4.2. If E|X11|p  00, where 2  p  p, and F has fini te second
moments, we have for bounded A, uniformly in X2, ..., Xd,

PROOF. By the boundedness of A and by (3.13) with p replaced by p
we have

where R is defined by (3.14) with p replaced by p. So

where H = ~~1 (m+1)pFm. Since p  p we have

(See the proof of (3.8) in I.) Since R is a finite measure, (4.3) follows
from (4.4).

Summary

Let X1, X2, ··· be strictly d-dimensional random vectors with common
distribution F, with finite second moments and with 03BC1 = EX11 &#x3E; 0.

Let U(A) = Ir Fm(A), where Fm is the m-fold convolution of F. The
restriction of U to the strip {x : t ~ x1 ~ t+a} is a finite measure with
variation tending to 03BC-11 a if F is nonarithmetic. For t ~ oo this measure
satisfies a central limit theorem. The paper derives the local form of this

limit theorem. A version of it for purely arithmetic F also is given. The
global form was proved by the author in Zeitschrift für Wahrsch. th. u.
verw. Geb., 10 (1968), 81-86. The paper is a continuation of Comp.
Math. 21 (1969), 383-399.
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