COMPOSITIO MATHEMATICA

A. J. STAM Renewal theory in *r* dimensions II

Compositio Mathematica, tome 23, nº 1 (1971), p. 1-13 <http://www.numdam.org/item?id=CM_1971__23_1_1_0>

© Foundation Compositio Mathematica, 1971, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

RENEWAL THEORY IN r DIMENSIONS II

by

A. J. Stam

1. Introduction

This paper is a direct continuation of Stam [6], which will be cited as I. The notation and definitions of I will be taken over without reference. The same holds for the assumptions of I, section 1: strict d-dimensionality, finite second moments and nonzero first moment vector.

We now assume

(1.1)
$$\mu_1 > 0.$$

The restriction of U_F to the strip $\{\bar{x} : t \leq x \leq t+a\}$ is a finite measure with variation tending to $\mu_1^{-1}a$ as $t \to \infty$ if X_{11} is nonarithmetic. It will be shown that this measure satisfies a local central limit theorem for $t \to \infty$, if $E|X_{11}|^{\rho} < \infty$ and F is nonarithmetic. The limit theorem (theorem 3.1) has the usual form applying to the *n*-fold convolution of a probability measure, with *n* replaced by $\mu_1^{-1}t$. See e.g. Spitzer [4], Ch. II.7 and Stone [8]. For arithmetic F a similar result holds (theorem 3.2).

We might have considered any strip $\{\bar{x} : t \leq (\bar{c}, \bar{x}) \leq t+a\}$ with the unit vector \bar{c} such that $(\bar{\mu}, \bar{c}) > 0$. What is done here is choosing a coordinate system with positive x_1 -axis in the direction of \bar{c} .

The global version of the limit theorem, with $\mu_2 = \cdots = \mu_d = 0$, was proved in Stam [5]. Theorems 5.3 and 5.4 of I are special cases of the local theorems, viz. $\mu_2 = \cdots = \mu_d = 0$, $x_2 = \cdots = x_d = 0$.

Proofs follow the same lines as in I, with the complication that limits for $x_1 \rightarrow \infty$ have to be uniform with respect to x_2, \dots, x_d .

Section 4 contains some results on the order of decrease of $U_F(A+\bar{x})$ as $|\bar{x}| \to \infty$ if certain moments of F exist.

The following notation is used throughout this paper. Let E be the covariance matrix of the random variables $X_{1j} - \mu_1^{-1} \mu_j X_{11}$, $j = 2, \dots, d$, and ε_{ih} the (i, h)-element of E^{-1} . We put

(1.2)
$$Z(\bar{x}) = \exp\left[-\frac{1}{2}\mu_1 x_1^{-1} \sum_{i=2}^{d} \sum_{j=2}^{d} \varepsilon_{ij} (x_i - \mu_1^{-1} \mu_i x_1) (x_j - \mu_1^{-1} \mu_j x_1)\right],$$

(1.3) $L(\bar{x}) = \mu_1^{-1} (2\pi)^{-\rho} (\operatorname{Det} E)^{-\frac{1}{2}} Z(\bar{x}),$

so that $\mu_1^{\rho+1} x_1^{-\rho} L(\bar{x})$ for fixed $x_1 > 0$ is a gaussian probability density on R_{d-1} .

By \mathscr{C}_d we denote the class of continuous functions on R_d with compact support.

2. Preliminary lemmas

LEMMA 2.1. If for every $g \in K_d$

(2.1)
$$\lim_{|\bar{x}|\to\infty}\int_{a}^{b}g(\bar{y}-\bar{x})\{W_{G}(d\bar{y})-W_{H}(d\bar{y})\}=0,$$

uniformly in the direction of \bar{x} , then the same is true for every $g \in C_d$. The class K_d is defined in I, definition 2.3.

PROOF. It is sufficient to show that to any $g \in \mathcal{C}_d$ and any $\varepsilon > 0$ there is $g_{\varepsilon} \in K_d$ with

(2.2)
$$\int |g(\bar{y}-\bar{x})-g_{\varepsilon}(\bar{y}-\bar{x})|W(d\bar{y})| < \frac{1}{2}\varepsilon,$$

uniformly in \bar{x} , where $W = W_G + W_H$. The relation (2.1) then follows by the inequality

$$\left| \int g(\bar{y} - \bar{x}) \{ W_G(d\bar{y}) - W_H(d\bar{y}) \} \right| \leq \left| \int g_{\varepsilon}(\bar{y} - \bar{x}) \{ W_G(d\bar{y}) - W_H(d\bar{y}) \} \right| + \int |g(\bar{y} - \bar{x}) - g_{\varepsilon}(\bar{y} - \bar{x})| W(d\bar{y}).$$

To prove (2.2) we take a probability density $h \in K_d$ and put

(2.3)
$$h_a(\bar{z}) = ah(a\bar{z}), \qquad a > 0,$$

(2.4)
$$g_a(\bar{z}) = \int g(\bar{z} - \bar{x}) h_a(\bar{x}) d\bar{x}.$$

Then $h_a \in K_d$ and $g_a \in K_d$. We have

$$\int |g(\bar{y}-\bar{x})-g_a(\bar{y}-\bar{x})|W(d\bar{y}) \leq \iint |g(\bar{y}-\bar{x})-g(\bar{y}-\bar{x}-\bar{t})|W(d\bar{y})h_a(\bar{t})d\bar{t}.$$

Since $g \in \mathscr{C}_d$, we have by I, lemma 2.4

(2.5)
$$\int |g(\bar{y}-\bar{x})-g_a(\bar{y}-\bar{x})|W(d\bar{y}) \leq C_1 \int_{|\bar{t}|\geq\delta} h_a(\bar{t})d\bar{t} + \int_{|\underline{t}|\leq\delta} \int_{D+\underline{x}} |g(\bar{y}-\bar{x})-g(\bar{y}-\bar{x}-\bar{t})|W(d\bar{y})h_a(\bar{t})d\bar{t},$$

where $0 < \delta < 1$ and the bounded set *D* is taken so that $g(\bar{z}) = 0$, $g(\bar{z}-\bar{t}) = 0$ for $\bar{z} \notin D$ and all \bar{t} with $|\bar{t}| \leq 1$. Since *g* is uniformly con-

tinuous, we first may take δ so small that the second term on the right in (2.5) is smaller than $\frac{1}{4}\varepsilon$, and then *a* so large that by (2.3) the first term is smaller than $\frac{1}{4}\varepsilon$.

LEMMA 2.2. If F is gaussian, the density w_F of W_F satisfies

(2.6)
$$\lim_{x_1\to\infty}|w_F(\bar{x})-L(\bar{x})|=0,$$

uniformly in x_2, \dots, x_d .

COROLLARY. Under the conditions of lemma 2.2

(2.7)
$$\lim_{x_1\to\infty}\left\{\int g(\bar{z}-\bar{x})W_F(d\bar{z})-L(\bar{x})\int g(\bar{z})d\bar{z}\right\}=0,$$

uniformly in x_2, \dots, x_d , if $g \in \mathcal{C}_d$.

PROOF. By I, lemma 2.2, it is sufficient that (2.6) holds uniformly in a cone $C_{\theta} = \{\bar{x} : x_1 \ge 0, |x_j - \mu_1^{-1} \mu_j x_1| \le \theta x_1, j \ge 2\}$. Let

$$Y_{m1} = S_{m1}, Y_{mk} = S_{mk} - \mu_1^{-1} \mu_k S_{m1}, k = 2, \cdots, d,$$

with $\overline{S}_m = \overline{X}_1 + \cdots + \overline{X}_m$. Then the density f_m of F^m and the joint density q_m of Y_{m1}, \cdots, Y_{md} are connected by

(2.8)
$$f_m(\bar{x}) = q_m(x_1, x_2 - \mu_1^{-1} \mu_2 x_1, \cdots, x_d - \mu_1^{-1} \mu_d x_1).$$

Let P be the covariance matrix of Y_{11}, \dots, Y_{1d} , and π_{ij} be the (i, j)-element of P^{-1} . Put

(2.9)
$$\eta = \pi_{11}^{-1} \sum_{j=2}^{a} \pi_{ij} (x_j - \mu_1^{-1} \mu_j x_1).$$

Since $E{Y_{m1}} = m\mu_1$, $E{Y_{mk}} = 0$, $k \ge 2$, the relation (2.8) gives

$$f_m(\bar{x}) = (2\pi m)^{-\frac{1}{2}d} (\text{Det } P)^{-\frac{1}{2}} \exp\left[-\frac{\pi_{11}}{2m}(x_1 - m\mu_1 + \eta)^2\right]$$

$$\cdot \exp\left[\frac{\pi_{11}}{2m}\eta^2 - \frac{1}{2m}\sum_{i=2}^d\sum_{j=2}^d \pi_{ij}(x_i - \mu_1^{-1}\mu_i x_1)(x_j - \mu_1^{-1}\mu_j x_1)\right],$$

$$f_m(\bar{x}) = (2\pi m)^{-\frac{1}{2}d} (\text{Det } P)^{-\frac{1}{2}} Z_m(\bar{x}) \exp\left[-\frac{\pi_{11}}{2m}(x_1 - m\mu_1 + \eta)^2\right]$$

where

(2.10)
$$Z_m(\bar{x}) = \exp\left[-\frac{1}{2m}\sum_{i=2}^d \sum_{j=2}^d \varepsilon_{ij}(x_i - \mu_1^{-1}\mu_i x_1)(x_j - \mu_1^{-1}\mu_j x_1)\right].$$

Since π_{11} Det P = Det E,

$$f_m(\bar{x}) = (2\pi m)^{-\rho} (\text{Det } E)^{-\frac{1}{2}} p^{(m)}(x_1 + \eta) Z_m(\bar{x}),$$

where $p^{(m)}$ is the *m*-fold convolution of the normal density with mean μ_1 and variance π_{11}^{-1} . It is noted that $\pi_{11} > 0$ since *P* is nonsingular. So

(2.11)
$$w_F(\bar{x}) = (2\pi)^{-\rho} (\text{Det } E)^{-\frac{1}{2}} \sum_{m=1}^{\infty} p^{(m)}(x_1 + \eta) Z_m(\bar{x}).$$

In defining the cone C_{θ} we take θ so small that

$$(2.12) |\eta| \leq \frac{1}{2}x_1, \overline{x} \in C_{\theta}.$$

We divide C_{θ} into $C_{\theta} R_A$ and $C_{\theta} R_A^c$ with

(2.12a)
$$R_{A} = \{ \bar{x} : A^{2} | x_{1} | \leq \sum_{j=2}^{d} (x_{j} - \mu_{1}^{-1} \mu_{j} x_{1})^{2} \}.$$

Put $\lambda = (2\pi)^{-\rho} (\text{Det } E)^{-\frac{1}{2}}$. Since E is nonsingular we have for $\bar{x} \in C_{\theta} R_{A}$

(2.13)
$$w_{F}(\bar{x}) \leq \lambda \sum_{m=1}^{\infty} p^{(m)}(x_{1}+\eta) \exp\left(-c_{1} A^{2} x_{1} m^{-1}\right)$$
$$\leq \lambda \sum_{m=1}^{\infty} p^{(m)}(x_{1}+\eta) \exp\left\{-\frac{2}{3} c_{1} A^{2} m^{-1}(x_{1}+\eta)\right\},$$

(2.14)
$$L(x) \leq \mu_1^{-1} \lambda \exp(-c_1 \mu_1 A^2),$$

with $c_1 > 0$. Moreover, by the inequality $|\exp(-\alpha) - \exp(-\beta)| \le |\alpha - \beta|$ $\alpha \ge 0, \beta \ge 0$, we have for $\bar{x} \in C_{\theta} R_A^c$

$$|w_{F}(\bar{x}) - L(\bar{x})| \leq \lambda \sum_{m=1}^{\infty} p^{(m)}(x_{1} + \eta) |Z_{m}(\bar{x}) - Z(\bar{x})| + \lambda |h(x_{1} + \eta) - \mu_{1}^{-1}| Z(\bar{x})$$

$$(2.15) \leq cA^{2} \sum_{m=1}^{\infty} p^{(m)}(x_{1} + \eta) \left| \frac{x_{1}}{m} - \mu_{1} \right| + \lambda |h(x_{1} + \eta) - \mu_{1}^{-1}|,$$

where

$$h(x) = \sum_{m=1}^{\infty} p^{(m)}(x).$$

For given $\varepsilon > 0$ by (2.12), (2.13), (2.14) we may take A so large that $|w_F(\bar{x}) - L(\bar{x})| < \varepsilon$ for $x_1 \ge c_3$ and $\bar{x} \in C_{\theta} R_A$, since

$$\lim_{A\to\infty}\sum_{m=1}^{\infty}p^{(m)}(z)\exp\left(-\tfrac{2}{3}c_1A^2m^{-1}z\right)=0,$$

uniformly in z for $z \ge c_3 > 0$. For this A the right-hand side of (2.15) then tends to zero as $x_1 \to \infty$, uniformly in $C_{\theta} R_A^c$. For the second term we apply the renewal theorem for densities. The first term is more complicated. It is noted that $|\eta| \le c_4 |x_1|^{\frac{1}{2}}$, where c_4 depends on A. We may define the family of random variables M_z , z > 0, with

$$P\{M_z = m\} = p^{(m)}(z)/h(z), \qquad m = 1, 2, \cdots$$

Then $z^{-1}M_z \to \mu^{-1}$ in quadratic mean as $z \to \infty$. We refer to Kalma [1], [2]. A similar technique is used in the proof of theorem 5.3 in I. A direct proof proceeds by dividing the sum over *m* into three parts:

$$\left|\frac{x_1}{m}-\mu_1\right|<\varepsilon, \quad \frac{x_1}{m}-\mu_1\leq -\varepsilon \quad \text{and} \quad \frac{x_1}{m}-\mu_1\geq \varepsilon.$$

The corollary follows from (2.6) and the fact that

$$\lim_{x_1\to\infty} \left\{ L(\bar{x}+\bar{z})-L(\bar{x}) \right\} = 0,$$

uniformly in x_2, \dots, x_d and uniformly with respect to \overline{z} in bounded sets.

LEMMA 2.3. Let $\{x(t, \bar{\tau}), (t, \bar{\tau}) \in E \subset R_k\}$ be a family of positive random variables such that

(2.16)
$$\lim_{t \to \infty} E[\{x(t, \bar{\tau}) - c\}^2] = 0,$$

uniformly in $\overline{\tau}$, where c is a positive constant. Then for any θ and any $\varepsilon > 0$

(2.17)
$$\lim_{t\to\infty} P\{|x^{\theta}(t,\bar{\tau})-c^{\theta}| \ge \varepsilon\} = 0,$$

uniformly in $\bar{\tau}$. If moreover to any $\delta > 0$ there are $K(\delta)$ and $T(\delta)$ with

(2.18)
$$E[x^{\theta}(t,\bar{\tau})I\{x^{\theta}(t,\bar{\tau}) \ge K(\delta)\}] < \delta$$

for $t \geq T(\delta)$ and every $\overline{\tau}$, we have

(2.19)
$$\lim_{t\to\infty} E\{x^{\theta}(t,\bar{\tau})\} = c^{\theta},$$

uniformly in $\bar{\tau}$.

REMARK. A sufficient condition for (2.18) is the existence of s > 1 with

$$E\{x^{s\theta}(t,\bar{\tau})\} \leq M < \infty, (t,\bar{\tau}) \in E.$$

See Loève [3], § 11.4.

PROOF. The relation (2.17) follows from (2.16) for $\theta = 1$ by Chebychev's inequality and then for any real θ since

$$\{|x^{\theta}(t,\bar{\tau})-c^{\theta}| \geq \varepsilon\} \subset \{|x(t,\bar{\tau})-c| \geq \eta\},\$$

for some positive η independent of t and $\overline{\tau}$.

Now let B be the distribution function of $x^{\theta}(t, \bar{\tau})$. Then

$$\begin{split} E|x^{\theta}(t,\bar{\tau})-c^{\theta}| &\leq \int_{c^{\theta}-\eta}^{c^{\theta}+\eta} |x-c^{\theta}|B(dx) \\ &+ \left\{ \int_{0}^{c^{\theta}-\eta} + \int_{c^{\theta}+\eta}^{K} + \int_{K}^{\infty} \right\} (xB(dx)) + c^{\theta}P\{|x^{\theta}(t,\bar{\tau})-c^{\theta}| \geq \eta\} \\ &\leq \eta + (K+2c^{\theta})P\{|x^{\theta}(t,\bar{\tau})-c^{\theta}| \geq \eta\} + \int_{K}^{\infty} xB(dx). \end{split}$$

We now prove (2.19) by first taking $\eta = \varepsilon/3$, then $K = K(\frac{1}{3}\varepsilon)$ as in (2.18) and finally applying (2.17).

LEMMA 2.4. If F is nonarithmetic and $g \in \mathcal{C}_d$,

$$\lim_{x_1\to\infty}\left|\int g(\bar{z}-\bar{x})W_F(d\bar{z})-L(\bar{x})\int g(\bar{z})d\bar{z}\right|=0,$$

uniformly in x_2, \dots, x_d .

PROOF. From lemma 2.2 (corollary), lemma 2.1 and I, theorem 3.2.

LEMMA 2.5. Let a Cartesian coordinate system exist, such that the components Z_1, \dots, Z_d of \overline{X}_1 in this system have joint characteristic function ζ with $\zeta(\overline{u}) = 1$ if u_1, \dots, u_d are integer multiples of 2π and $|\zeta(\overline{u})| < 1$ elsewhere. Then

$$\lim_{x_1\to\infty} \{W_F(\{\bar{x}\}) - L(\bar{x})\} = 0,$$

uniformly in x_2, \dots, x_d if \bar{x} is restricted to lattice points of F.

PROOF. From lemma 2.2 and I, theorem 3.4. The rotation of the *F*-lattice is a consequence of our choice of coordinates.

LEMMA 2.6. For fixed nonnegative integer k with $E|X_{11}|^k < \infty$, let

(2.20)
$$V_F(A) = \sum_{m=1}^{\infty} m^{\rho-k} F^m(A).$$

Then, if F is nonarithmetic, we have for $g \in \mathcal{C}_d$,

(2.21)
$$\lim_{x_1\to\infty} \left\{ x_1^k \int g(\bar{z}-\bar{x}) V_F(d\bar{z}) - \mu_1^k L(\bar{x}) \int g(\bar{z}) d\bar{z} \right\} = 0,$$

uniformly in x_2, \dots, x_d .

PROOF. We will show that

(2.22)
$$\lim_{x_1\to\infty}\left\{\int z_1^k g(\bar{z}-\bar{x})V_F(d\bar{z})-\mu_1 L(x)\int g(\bar{z})d\bar{z}\right\}=0,$$

uniformly in x_2, \dots, x_d . The relation (2.21) then follows by the inequality

Renewal theory in r dimensions II

$$\left| \int (z_1^k - x_1^k) g(\bar{z} - \bar{x}) V_F(d\bar{z}) \right| \leq C_1 x_1^{-1} \int z_1^k |g(\bar{z} - \bar{x})| V_F(d\bar{z}),$$

which is a consequence of the fact that $g \in \mathscr{C}_d$.

In the same way as in the proof of I, theorem 5.3.

(2.23)
$$\int z_1^k g(\bar{z}-\bar{x}) V_F(d\bar{z}) = \Phi(\bar{x}) + \int g(\bar{z}-\bar{x}) W_F Q^k(d\bar{z}),$$

with $\lim_{|\bar{x}|\to\infty} \Phi(\bar{x}) = 0$, uniformly in the direction of \bar{x} , and

(2.24)
$$Q(E) = \int_E x_1 F(d\bar{x}).$$

Since Q is a finite signed measure, we may write $Q^k = K' + K''$, where K' is restricted to a bounded set and the variation of K'' is so small that in

$$\begin{split} \int g(\bar{z}-\bar{x})W_F Q^k(d\bar{z}) &- \mu_1^k L(\bar{x}) \int g(\bar{z})d\bar{z} \\ &= \left\{ \int g(\bar{z}-\bar{x})W_F Q^k(d\bar{z}) - \int g(\bar{z}-\bar{x})W_F K'(d\bar{z}) \right\} \\ &+ \left\{ \int g(\bar{z}-\bar{x})W_F K'(d\bar{z}) - L(\bar{x})K'(R_d) \int g(\bar{z})d\bar{z} \right\} \\ &+ L(\bar{x}) \int g(\bar{z})d\bar{z} \{K'(R_d) - \mu_1^k\} \end{split}$$

the first and third term on the right are smaller than $\frac{1}{3}\varepsilon$. For the first term we apply I, lemma 2.4. The second term is written

$$\begin{split} \int \left\{ \int g(\bar{z} + \bar{\zeta} - \bar{x}) W_F(d\bar{z}) - L(\bar{x} - \bar{\zeta}) \int g(\bar{y}) d\bar{y} \right\} K'(d\bar{\zeta}) \\ &+ \int \left\{ L(\bar{x} - \bar{\zeta}) - L(\bar{x}) \right\} K'(d\zeta) \cdot \int g(\bar{y}) d\bar{y}. \end{split}$$

Here the first term tends to zero as $x_1 \to \infty$, uniformly in x_2, \dots, x_d , by lemma 2.4, since K' is restricted to a bounded set. The same holds for the second term by (1.3). One should distinguish the sets R_A and R_A^c defined by (2.12a).

3. Local limit theorems for U_F

THEOREM 3.1. If F is nonarithmetic and $E|X_{11}|^{\rho} < \infty$,

(3.1)
$$\lim_{x_1\to\infty} \left\{ x_1^{\rho} \int g(\bar{z}-\bar{x}) U_F(d\bar{z}) - \mu_1^{\rho} L(\bar{x}) \int g(\bar{z}) d\bar{z} \right\} = 0,$$

for $g \in \mathcal{C}_d$, uniformly in x_2, \dots, x_d .

[7]

A. J. Stam

PROOF. When d is odd, the theorem coincides with lemma 2.6 for $k = \rho$.

Now assume that d is even, $d \ge 6$. It is no restriction to assume that $g \ge 0$. First we intend to show

(I) The relation (3.1) holds uniformly in the set R_A^c , with R_A^c defined by (2.12a).

Putting

(3.2)
$$\alpha = \int g(\bar{z}) d\bar{z}$$

(3.3)
$$q(m, \bar{x}) = \int g(\bar{z} - \bar{x}) F^m(d\bar{z}), \quad m = 1, 2, \cdots,$$

we have by lemma 2.6 with k = 0, 1, 2,

(3.4)
$$\sum_{m=1}^{\infty} m^{\rho} q(m, \bar{x}) = \alpha L(\bar{x}) + \varepsilon_0(\bar{x}),$$

(3.5)
$$x_1 \sum_{m=1}^{\infty} m^{\rho-1} q(m, \bar{x}) = \mu_1 \alpha L(\bar{x}) + \varepsilon_1(\bar{x}),$$

(3.6)
$$x_1^2 \sum_{m=1}^{\infty} m^{\rho^{-2}} q(m, \bar{x}) = \mu_1^2 \alpha L(\bar{x}) + \varepsilon_2(\bar{x}),$$

with

(3.7)
$$\lim_{x_1\to\infty}\varepsilon_i(\bar{x}) = 0, \quad i = 0, 1, 2,$$

uniformly in x_2, \dots, x_d . Consider the family of positive integer valued random variables $\{M(\bar{x}), \bar{x} \in R_A^c, x_1 > 0\}$:

(3.8)
$$P\{M(\bar{x}) = m\} = \frac{x_1^2 m^{\rho-2} q(m, \bar{x})}{\mu_1^2 \alpha L(\bar{x}) + \varepsilon_2(\bar{x})}, \qquad m = 1, 2, \cdots.$$

Expectation with respect to the distribution (3.8) will be denoted by E_1 . From (3.4)–(3.7) and the inequality

(3.9)
$$L(\bar{x}) \ge C_1(A) > 0, \quad \bar{x} \in R_A^c,$$

it follows that

(3.10)
$$\lim_{x_1 \to \infty} E_1 [x_1^{-1} M(\bar{x}) - \mu_1^{-1}]^2 = 0,$$

uniformly in x_2, \dots, x_d . By lemma 2.3 and (3.9) this implies

(3.11)
$$\lim_{x_1 \to \infty} E_1\{x_1^{\rho-2}M^{2-\rho}(\bar{x})\} = \mu_1^{\rho-2},$$

uniformly in R_A^c – and hence the desired result (I) – if to every $\delta > 0$ there are $J(\delta)$ and $T(\delta)$ with

Renewal theory in r dimensions II

(3.12)
$$x_{1}^{\rho}\sum_{m=1}^{[x_{1}/J(\delta)]}q(m,\bar{x}) < \delta$$

for all $\bar{x} \in R_A^c$ with $x_1 \ge T(\delta)$. In the same way as I, (5.8), we derive

(3.13)
$$\int |z_1|^{\rho} h(\bar{z}) F^m(d\bar{z}) \leq m^{\rho} \int h(\bar{z}) F^{m-1} R(d\bar{z})$$

for $h \ge 0$, where

(3.14)
$$R(E) = \int_{E} |x_1|^{\rho} F(d\bar{x}).$$

So, since $g \in \mathscr{C}_d$, it is sufficient for (3.12) that

(3.15)
$$\sum_{m=1}^{[x_1/J(\delta)]} m^{\rho} \int g(\bar{z}-\bar{x}) F^{m-1} R(d\bar{z}) < \delta.$$

The first term in (3.15) tends to zero as $x_1 \to \infty$, uniformly in R_A^c , since R is a finite measure. From (3.10), (2.17), (3.8) and (3.9) we have for $J > \mu_1$,

(3.16)
$$\lim_{\substack{x_1 \to \infty \\ x_1 \to \infty}} E[x_1^{-2}M^2(\bar{x})I\{x_1^{-1}M(\bar{x}) < J^{-1}\}] = 0,$$
$$\lim_{x_1 \to \infty} \sum_{m=1}^{[x_1/J]} m^{\rho} \int g(\bar{z} - \bar{x})F^m(d\bar{z}) = 0,$$

both uniformly in R_A^c . For $J > \mu_1$, and $\bar{x} \in R_A^c$

$$\sum_{m=2}^{[x_1/J]} m^{\rho} \int g(\bar{z}-\bar{x}) F^{m-1} R(d\bar{z})$$

$$\leq 2^{\rho} \int \left\{ \sum_{m=1}^{[x_1/J]} m^{\rho} \int g(\bar{z}+\bar{\zeta}-\bar{x}) F^{n}(d\bar{z}) \right\} R(d\bar{\zeta}) \leq 2^{\rho} \int \eta(\zeta_1-x_1) R(d\bar{\zeta}),$$

where η is a bounded function by I, lemma 2.4, and $\lim_{t\to\infty} \eta(t) = 0$ by (3.16). This proves (3.15) and therefore (I).

Now we will prove

(II). To any $\varepsilon > 0$ and A > 0 there is $\xi(\varepsilon, A)$ with

(3.17)
$$x_1^{\rho} \int g(\bar{z} - \bar{x}) U_F(d\bar{z}) < \varepsilon + c_1 \exp(-c_0 A^2),$$

for all $\bar{x} \in R_A$ with $x_1 \ge \xi(\varepsilon, A)$, where R_A is given by (2.12a) and c_0, c_1 do not depend on A or ε .

By (3.13), since $g \in \mathscr{C}_d$,

(3.18)
$$x_{1}^{\rho} \int g(\bar{z} - \bar{x}) U_{F}(d\bar{z}) \leq C_{2} \sum_{m=1}^{\infty} m^{\rho} \int (g(\bar{z} - \bar{x}) F^{m-1} R(d\bar{z})) \\ \leq C_{2} \int g(\bar{z} - \bar{x}) R(d\bar{z}) + 2^{\rho} C_{2} \int g(\bar{z} - \bar{x}) W_{F} R(d\bar{z})$$

[9]

Here the first term tends to zero as $x_1 \rightarrow \infty$, uniformly in x_2, \dots, x_d and by lemma 2.4 the second term is majorized by

(3.19)
$$2^{\rho}C_{2} \alpha \int L(\bar{x}-\bar{\zeta})R(d\bar{\zeta}) + 2^{\rho}C_{2} \int \theta(x_{1}-\zeta_{1})R(d\bar{\zeta})$$

where θ is a bounded function by I, lemma 2.4, and $\lim_{t\to\infty} \theta(t) = 0$. So the second term in (3.19) tends to zero as $x_1 \to \infty$. The inequality (3.17) now follows by considering the first term of (3.19), using the definition of $L(\bar{x})$ and writing R = R' + R'' where the measure R' has total variation smaller than $\frac{1}{2}\varepsilon$ and R'' is restricted to a bounded set.

The theorem now follows from (I), (II) and the definition of $L(\bar{x})$. For d = 2 and d = 4 the proof of (I) remains unchanged up to and including (3.10). The relation (3.11) now follows from the remark to lemma 2.3, since $0 < 2-\rho < 2$. The proof of (II) holds for d = 4 but not for d = 2 since (3.13) is derived by Minkowski's inequality with exponent ρ .

For d = 2 we have

$$x_{1}^{\frac{1}{2}}\sum_{m=1}^{[x_{1}]}\int g(\bar{z}-\bar{x})F^{m}(d\bar{z}) \leq x_{1}\sum_{m=1}^{[x_{1}]}m^{-\frac{1}{2}}\int g(\bar{z}-\bar{x})F^{m}(d\bar{z}),$$

$$x_{1}^{\frac{1}{2}}\sum_{m=[x_{1}]+1}^{\infty}\int g(\bar{z}-\bar{x})F^{m}(d\bar{z}) \leq \sum_{m=[x_{1}]+1}^{\infty}m^{\frac{1}{2}}\int g(\bar{z}-\bar{x})F^{m}(d\bar{z}),$$

so

$$x_{1}^{\frac{1}{2}} \int g(\bar{z}-\bar{x}) U_{F}(d\bar{z}) \leq \int g(\bar{z}-\bar{x}) W_{F}(dz) + x_{1} \sum_{m=1}^{\infty} m^{-\frac{1}{2}} \int g(\bar{z}-\bar{x}) F^{m}(d\bar{z}),$$

and (II) now follows by lemma 2.4 and lemma 2.6 with k = 1.

THEOREM 3.2. Under the lattice conditions of lemma 2.5, if $E|X_{11}|^{\rho} < \infty$,

(3.20)
$$\lim_{x_1 \to \infty} \{ x_1^{\rho} U_F(\{\bar{x}\}) - \mu_1^{\rho} L(\bar{x}) \} = 0,$$

uniformly in x_2, \dots, x_d , if \bar{x} is restricted to lattice points of F.

PROOF. From lemma 2.5, by methods similar to those used in the proof of theorem 3.1. We need the following version of (2.21):

$$\lim_{x_1 \to \infty} \{ x_1^k V_F(\{\bar{x}\}) - \mu_1^k L(\bar{x}) \} = 0,$$

uniformly in x_2, \dots, x_d , if \bar{x} is restricted to lattice points of F.

It is noted that a corresponding theorem for densities may be derived by similar techniques, if $\varphi \in L_1$. A similar remark hold for the results of I.

4. Existence of moments of order unequal to ρ

Theorems 5.1 and 5.2 of I give some information about the order of decrease of $U_F(A+\bar{x})$ if $\bar{x} \to \infty$ in a direction different from $\bar{\mu}$. The following supplementary result will be derived by direct appeal to one-dimensional renewal theory. Second moments need not be finite.

THEOREM 4.1. Let $S = \{\bar{x} : (\bar{x}, \mu) \leq \theta | \bar{x} | | \bar{\mu} | \}$, with $-1 \leq \theta < 1$. Then, if $E|X_{11}|^p < \infty$, where p > 1, we have

(4.1)
$$\int_{S} (1+|\bar{x}|)^{p-2} U_{F}(d\bar{x}) < \infty.$$

PROOF. It is sufficient to show that (1) holds with S replaced by

$$C = \{ \bar{x} : (\bar{x}, \bar{\alpha}) \ge \gamma |\bar{x}| \},\$$

where $\gamma \in (0, 1)$ and the unit vector $\bar{\alpha}$ are such that $\bar{\mu} \notin C$. We may choose our coordinate system in such a way that $\mu_1 > 0$ and

$$C \subset K = \{\overline{x} : x_1 \leq 0, \ x_2^2 + \cdots + x_d^2 \leq \beta x_1^2\},\$$

where β is a positive constant. By applying the inequality $|\bar{x}| \ge |x_1|$ if p < 2 and $|\bar{x}| \le |x_1|\sqrt{1+\beta}$ for $\bar{x} \in K$ if $p \ge 2$, we find

$$\int_{K} (1+|\bar{x}|)^{p-2} U_{F}(d\bar{x}) \leq \int_{x_{1} \leq 0} (1+c|x_{1}|)^{p-2} U_{F}(d\bar{x}),$$

with c = 1 or $c = \sqrt{1+\beta}$. Let $U_1 = \sum_{1}^{\infty} F_1^m$ be the one-dimensional renewal measure belonging to the probability distribution F_1 of X_{11} . Then

$$\int_{x_1\leq 0} (1+c|x_1|)^{p-2} U_F(dx) = \int_{x_1\leq 0} (1+c|x_1|)^{p-2} U_1(dx_1) < \infty.$$

(See Stone and Wainger [9], Stam [7].)

Let u_F denote the density of U_F , if present. The density version of theorem 3.1 says that if $E|X_{11}|^{\rho} < \infty$,

(4.2)
$$\lim_{x_1\to\infty} x_1^{\rho}\{\mu_F(\bar{x})-\mu_1^{-1}q(\bar{x})\}=0,$$

uniformly in x_2, \dots, x_d . Here $q(\bar{x})$ for fixed x_1 is a gaussian probability density in x_2, \dots, x_d with covariance matrix proportional to x_1 . The form of (4.2) suggests that ρ may be replaced by p if $E|X_{11}|^p < \infty$, and that a similar remark might apply to (3.1).

For $p > \rho$ this is not true. As an example take X_{11}, \dots, X_{1d} independent, X_{11} negative exponential with parameter 1 and X_{1j} gaussian with zero expectation and unit variance, $j = 2, \dots, d$. For $x_2 = \dots = x_d = 0$ we then should have

11

A. J. Stam

$$\lim_{x \to \infty} x^{p} \left[\sum_{m=1}^{\infty} \frac{x^{m-1}}{(m-1)!} e^{-x} m^{-\rho} - x^{-\rho} \right] = 0$$

for any p > 0. Take d = 5. We have

$$\sum_{m=1}^{\infty} \frac{x^{m-1}}{(m-1)!} e^{-x} m^{-2} = \sum_{n=0}^{\infty} \left[\frac{x^n}{(n+2)!} + \frac{x^n}{n!(n+1)^2(n+2)} \right] e^{-x}.$$

Here the first term between brackets gives rise to x^{-2} plus exponential terms and the second term to a contribution of order x^{-3} by the law of large numbers for the Poisson distribution with parameter tending to ∞ .

For $p < \rho$ we would obtain $x_1^p \mu_F(\bar{x}) \to 0$ and this is correct for 2 .

THEOREM 4.2. If $E|X_{11}|^p < \infty$, where $2 , and F has finite second moments, we have for bounded A, uniformly in <math>x_2, \dots, x_d$,

(4.3)
$$\lim_{x_1\to\infty} x_1^p U_F(A+\overline{x}) = 0.$$

PROOF. By the boundedness of A and by (3.13) with ρ replaced by p we have

$$x_1^p F^m(A+\bar{x}) \leq c \int_{A+\bar{x}} z_1^p F^m(d\bar{z}) \leq c m^p F^{m-1} R(A+\bar{x}),$$

where R is defined by (3.14) with ρ replaced by p. So

(4.4)
$$x_1^p U_F(A+\bar{x}) \leq cR(A+\bar{x}) + cHR(A+\bar{x}),$$

where $H = \sum_{1}^{\infty} (m+1)^{p} F^{m}$. Since $p < \rho$ we have

$$\lim_{|\bar{y}|\to\infty} H(A+\bar{y}) = 0.$$

(See the proof of (3.8) in I.) Since R is a finite measure, (4.3) follows from (4.4).

Summary

Let $\overline{X}_1, \overline{X}_2, \cdots$ be strictly *d*-dimensional random vectors with common distribution *F*, with finite second moments and with $\mu_1 = EX_{11} > 0$. Let $U(A) = \sum_{1}^{\infty} F^m(A)$, where F^m is the *m*-fold convolution of *F*. The restriction of *U* to the strip $\{\overline{x} : t \leq x_1 \leq t+a\}$ is a finite measure with variation tending to $\mu_1^{-1}a$ if *F* is nonarithmetic. For $t \to \infty$ this measure satisfies a central limit theorem. The paper derives the local form of this limit theorem. A version of it for purely arithmetic *F* also is given. The global form was proved by the author in Zeitschrift für Wahrsch. th. u. verw. Geb., 10 (1968), 81–86. The paper is a continuation of Comp. Math. 21 (1969), 383–399.

12

REFERENCES

- J. N. KALMA
- [1] On the asymptotic behaviour of certain sums related with the renewal function. Report TW-68, Mathematisch Instituut, University of Groningen (1969).
- J. N. KALMA
- [2] Thesis, Groningen. To be published.
- M. LOÈVE
- [3] Probability Theory, 3rd ed. Van Nostrand.
- F. Spitzer
- [4] Principles of Random Walk. Van Nostrand, 1964.

A. J. STAM

[5] Two theorems in r-dimensional renewal theory. Zeitschr. Wahrsch. Th. u. verw. Geb. 10. (1968), 81-86.

A. J. STAM

[6] Renewal theory in r dimensions I. Comp. Math. 21 (1969), 383-399.

A. J. STAM

[7] On large deviations. Report TW-83, Mathematisch Instituut, University of Groningen (1970).

CH. STONE

- [8] A local limit theorem for non-lattice multidimensional distribution functions. Ann. Math. Stat. 36 (1965), 546-551.
- CH. STONE and S. WAINGER
- [9] One-sided error estimates in renewal theory. J. Anal. Math. XX (1967), 325-352.

(Oblatum 2-X-69,

27-XI-69, 23-XI-70) Mathematisch Instituut der Rijksuniversiteit, Hoogbouw WSN, Universiteitscomplex Paddepoel, Postbus 800, Groningen