Compositio Mathematica

A. J. Stam

Renewal theory in r dimensions II

Compositio Mathematica, tome 23, $\mathrm{n}^{\mathrm{o}} 1$ (1971), p. 1-13
http://www.numdam.org/item?id=CM_1971__23_1_1_0
© Foundation Compositio Mathematica, 1971, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

RENEWAL THEORY IN \boldsymbol{r} DIMENSIONS II

by
A. J. Stam

1. Introduction

This paper is a direct continuation of Stam [6], which will be cited as I. The notation and definitions of I will be taken over without reference. The same holds for the assumptions of I, section 1: strict d-dimensionality, finite second moments and nonzero flrst moment vector.

We now assume

$$
\begin{equation*}
\mu_{1}>0 \tag{1.1}
\end{equation*}
$$

The restriction of U_{F} to the strip $\{\bar{x}: t \leqq x \leqq t+a\}$ is a finite measure with variation tending to $\mu_{1}^{-1} a$ as $t \rightarrow \infty$ if X_{11} is nonarithmetic. It will be shown that this measure satisfies a local central limit theorem for $t \rightarrow \infty$, if $E\left|X_{11}\right|^{\rho}<\infty$ and F is nonarithmetic. The limit theorem (theorem 3.1) has the usual form applying to the n-fold convolution of a probability measure, with n replaced by $\mu_{1}^{-1} t$. See e.g. Spitzer [4], Ch. II. 7 and Stone [8]. For arithmetic F a similar result holds (theorem 3.2).

We might have considered any strip $\{\bar{x}: t \leqq(\bar{c}, \bar{x}) \leqq t+a\}$ with the unit vector \bar{c} such that $(\bar{\mu}, \bar{c})>0$. What is done here is choosing a coordinate system with positive x_{1}-axis in the direction of \bar{c}.

The global version of the limit theorem, with $\mu_{2}=\cdots=\mu_{d}=0$, was proved in Stam [5]. Theorems 5.3 and 5.4 of I are special cases of the local theorems, viz. $\mu_{2}=\cdots=\mu_{d}=0, x_{2}=\cdots=x_{d}=0$.

Proofs follow the same lines as in I, with the complication that limits for $x_{1} \rightarrow \infty$ have to be uniform with respect to x_{2}, \cdots, x_{d}.

Section 4 contains some results on the order of decrease of $U_{F}(A+\bar{x})$ as $|\bar{x}| \rightarrow \infty$ if certain moments of F exist.

The following notation is used throughout this paper. Let E be the covariance matrix of the random variables $X_{1 j}-\mu_{1}^{-1} \mu_{j} X_{11}, j=2, \cdots, d$, and $\varepsilon_{i h}$ the (i, h)-element of E^{-1}. We put

$$
\begin{gather*}
Z(\bar{x})=\exp \left[-\frac{1}{2} \mu_{1} x_{1}^{-1} \sum_{i=2}^{d} \sum_{j=2}^{d} \varepsilon_{i j}\left(x_{i}-\mu_{1}^{-1} \mu_{i} x_{1}\right)\left(x_{j}-\mu_{1}^{-1} \mu_{j} x_{1}\right)\right], \tag{1.2}\\
L(\bar{x})=\mu_{1}^{-1}(2 \pi)^{-\rho}(\operatorname{Det} E)^{-\frac{1}{2}} Z(\bar{x}), \tag{1.3}
\end{gather*}
$$

so that $\mu_{1}^{\rho+1} x_{1}^{-\rho} L(\bar{x})$ for fixed $x_{1}>0$ is a gaussian probability density on R_{d-1}.

By \mathscr{C}_{d} we denote the class of continuous functions on R_{d} with compact support.

2. Preliminary lemmas

Lemma 2.1. If for every $g \in K_{d}$

$$
\begin{equation*}
\lim _{|\bar{x}| \rightarrow \infty} \int g(\bar{y}-\bar{x})\left\{W_{G}(d \bar{y})-W_{H}(d \bar{y})\right\}=0, \tag{2.1}
\end{equation*}
$$

uniformly in the direction of \bar{x}, then the same is true for every $g \in \mathscr{C}_{d}$. The class K_{d} is defined in I, definition 2.3.

Proof. It is sufficient to show that to any $g \in \mathscr{C}_{d}$ and any $\varepsilon>0$ there is $g_{\varepsilon} \in K_{d}$ with

$$
\begin{equation*}
\int\left|g(\bar{y}-\bar{x})-g_{\varepsilon}(\bar{y}-\bar{x})\right| W(d \bar{y})<\frac{1}{2} \varepsilon, \tag{2.2}
\end{equation*}
$$

uniformly in \bar{x}, where $W=W_{G}+W_{H}$. The relation (2.1) then follows by the inequality

$$
\begin{aligned}
& \left|\int g(\bar{y}-\bar{x})\left\{W_{G}(d \bar{y})-W_{H}(d \bar{y})\right\}\right| \leqq \\
& \left|\int g_{\varepsilon}(\bar{y}-\bar{x})\left\{W_{G}(d \bar{y})-W_{H}(d \bar{y})\right\}\right|+\int\left|g(\bar{y}-\bar{x})-g_{\varepsilon}(\bar{y}-\bar{x})\right| W(d \bar{y}) .
\end{aligned}
$$

To prove (2.2) we take a probability density $h \in K_{d}$ and put

$$
\begin{align*}
& h_{a}(\bar{z})=a h(a \bar{z}), \quad a>0 \tag{2.3}\\
& g_{a}(\bar{z})=\int g(\bar{z}-\bar{x}) h_{a}(\bar{x}) d \bar{x} \tag{2.4}
\end{align*}
$$

Then $h_{a} \in K_{d}$ and $g_{a} \in K_{d}$. We have

$$
\int\left|g(\bar{y}-\bar{x})-g_{a}(\bar{y}-\bar{x})\right| W(d \bar{y}) \leqq \iint|g(\bar{y}-\bar{x})-g(\bar{y}-\bar{x}-\bar{t})| W(d \bar{y}) h_{a}(\bar{t}) d \bar{t}
$$

Since $g \in \mathscr{C}_{d}$, we have by I, lemma 2.4

$$
\begin{align*}
& \int\left|g(\bar{y}-\bar{x})-g_{a}(\bar{y}-\bar{x})\right| W(d \bar{y}) \leqq C_{1} \int_{|\bar{t}| \geqq \delta} h_{a}(\bar{t}) d \bar{t} \tag{2.5}\\
& \quad+\int_{|\underline{t}| \leqq \delta} \int_{D+\underline{x}}|g(\bar{y}-\bar{x})-g(\bar{y}-\bar{x}-\bar{t})| W(d \bar{y}) h_{a}(\bar{t}) d \bar{t}
\end{align*}
$$

where $0<\delta<1$ and the bounded set D is taken so that $g(\bar{z})=0$, $g(\bar{z}-\bar{t})=0$ for $\bar{z} \notin D$ and all \bar{t} with $|\bar{t}| \leqq 1$. Since g is uniformly con-
tinuous, we first may take δ so small that the second term on the right in (2.5) is smaller than $\frac{1}{4} \varepsilon$, and then a so large that by (2.3) the first term is smaller than $\frac{1}{4} \varepsilon$.

Lemma 2.2. If F is gaussian, the density w_{F} of W_{F} satisfies

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty}\left|w_{F}(\bar{x})-L(\bar{x})\right|=0 \tag{2.6}
\end{equation*}
$$

uniformly in x_{2}, \cdots, x_{d}.
Corollary. Under the conditions of lemma 2.2

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty}\left\{\int g(\bar{z}-\bar{x}) W_{F}(d \bar{z})-L(\bar{x}) \int g(\bar{z}) d \bar{z}\right\}=0 \tag{2.7}
\end{equation*}
$$

uniformly in x_{2}, \cdots, x_{d}, if $g \in \mathscr{C}_{d}$.
Proof. By I, lemma 2.2, it is sufficient that (2.6) holds uniformly in a cone $C_{\theta}=\left\{\bar{x}: x_{1} \geqq 0,\left|x_{j}-\mu_{1}^{-1} \mu_{j} x_{1}\right| \leqq \theta x_{1}, j \geqq 2\right\}$. Let

$$
Y_{m 1}=S_{m 1}, Y_{m k}=S_{m k}-\mu_{1}^{-1} \mu_{k} S_{m 1}, k=2, \cdots, d
$$

with $\bar{S}_{m}=\bar{X}_{1}+\cdots+\bar{X}_{m}$. Then the density f_{m} of F^{m} and the joint density q_{m} of $Y_{m 1}, \cdots, Y_{m d}$ are connected by

$$
\begin{equation*}
f_{m}(\bar{x})=q_{m}\left(x_{1}, x_{2}-\mu_{1}^{-1} \mu_{2} x_{1}, \cdots, x_{d}-\mu_{1}^{-1} \mu_{d} x_{1}\right) \tag{2.8}
\end{equation*}
$$

Let P be the covariance matrix of $Y_{11}, \cdots, Y_{1 d}$, and $\pi_{i j}$ be the (i, j) element of P^{-1}. Put

$$
\begin{equation*}
\eta=\pi_{11}^{-1} \sum_{j=2}^{d} \pi_{i j}\left(x_{j}-\mu_{1}^{-1} \mu_{j} x_{1}\right) \tag{2.9}
\end{equation*}
$$

Since $E\left\{Y_{m 1}\right\}=m \mu_{1}, E\left\{Y_{m k}\right\}=0, k \geqq 2$, the relation (2.8) gives

$$
\begin{aligned}
f_{m}(\bar{x})= & (2 \pi m)^{-\frac{1}{2} d}(\operatorname{Det} P)^{-\frac{1}{2}} \exp \left[-\frac{\pi_{11}}{2 m}\left(x_{1}-m \mu_{1}+\eta\right)^{2}\right] \\
& \cdot \exp \left[\frac{\pi_{11}}{2 m} \eta^{2}-\frac{1}{2 m} \sum_{i=2}^{d} \sum_{j=2}^{d} \pi_{i j}\left(x_{i}-\mu_{1}^{-1} \mu_{i} x_{1}\right)\left(x_{j}-\mu_{1}^{-1} \mu_{j} x_{1}\right)\right] \\
& f_{m}(\bar{x})=(2 \pi m)^{-\frac{1}{2} d}(\operatorname{Det} P)^{-\frac{1}{2}} Z_{m}(\bar{x}) \exp \left[-\frac{\pi_{11}}{2 m}\left(x_{1}-m \mu_{1}+\eta\right)^{2}\right]
\end{aligned}
$$

where

$$
\begin{equation*}
Z_{m}(\bar{x})=\exp \left[-\frac{1}{2 m} \sum_{i=2}^{d} \sum_{j=2}^{d} \varepsilon_{i j}\left(x_{i}-\mu_{1}^{-1} \mu_{i} x_{1}\right)\left(x_{j}-\mu_{1}^{-1} \mu_{j} x_{1}\right)\right] \tag{2.10}
\end{equation*}
$$

Since π_{11} Det $P=\operatorname{Det} E$,

$$
f_{m}(\bar{x})=(2 \pi m)^{-\rho}(\operatorname{Det} E)^{-\frac{1}{2}} p^{(m)}\left(x_{1}+\eta\right) Z_{m}(\bar{x})
$$

where $p^{(m)}$ is the m-fold convolution of the normal density with mean μ_{1} and variance π_{11}^{-1}. It is noted that $\pi_{11}>0$ since P is nonsingular. So

$$
\begin{equation*}
w_{F}(\bar{x})=(2 \pi)^{-\rho}(\operatorname{Det} E)^{-\frac{1}{2}} \sum_{m=1}^{\infty} p^{(m)}\left(x_{1}+\eta\right) Z_{m}(\bar{x}) \tag{2.11}
\end{equation*}
$$

In defining the cone C_{θ} we take θ so small that

$$
\begin{equation*}
|\eta| \leqq \frac{1}{2} x_{1}, \quad \bar{x} \in C_{\theta} . \tag{2.12}
\end{equation*}
$$

We divide C_{θ} into $C_{\theta} R_{A}$ and $C_{\theta} R_{A}^{c}$ with

$$
\begin{equation*}
R_{A}=\left\{\bar{x}: A^{2}\left|x_{1}\right| \leqq \sum_{j=2}^{d}\left(x_{j}-\mu_{1}^{-1} \mu_{j} x_{1}\right)^{2}\right\} \tag{2.12a}
\end{equation*}
$$

Put $\lambda=(2 \pi)^{-\rho}(\operatorname{Det} E)^{-\frac{1}{2}}$. Since E is nonsingular we have for $\bar{x} \in C_{\theta} R_{A}$

$$
\begin{align*}
w_{F}(\bar{x}) & \leqq \lambda \sum_{m=1}^{\infty} p^{(m)}\left(x_{1}+\eta\right) \exp \left(-c_{1} A^{2} x_{1} m^{-1}\right) \\
& \leqq \lambda \sum_{m=1}^{\infty} p^{(m)}\left(x_{1}+\eta\right) \exp \left\{-\frac{2}{3} c_{1} A^{2} m^{-1}\left(x_{1}+\eta\right)\right\} \tag{2.13}\\
L(x) & \leqq \mu_{1}^{-1} \lambda \exp \left(-c_{1} \mu_{1} A^{2}\right) \tag{2.14}
\end{align*}
$$

with $c_{1}>0$. Moreover, by the inequality $|\exp (-\alpha)-\exp (-\beta)| \leqq|\alpha-\beta|$ $\alpha \geqq 0, \beta \geqq 0$, we have for $\bar{x} \in C_{\theta} R_{A}^{c}$

$$
\begin{align*}
\left|w_{F}(\bar{x})-L(\bar{x})\right| & \leqq \lambda \sum_{m=1}^{\infty} p^{(m)}\left(x_{1}+\eta\right)\left|Z_{m}(\bar{x})-Z(\bar{x})\right|+\lambda\left|h\left(x_{1}+\eta\right)-\mu_{1}^{-1}\right| Z(\bar{x}) \\
& \leqq c A^{2} \sum_{m=1}^{\infty} p^{(m)}\left(x_{1}+\eta\right)\left|\frac{x_{1}}{m}-\mu_{1}\right|+\lambda\left|h\left(x_{1}+\eta\right)-\mu_{1}^{-1}\right| \tag{2.15}
\end{align*}
$$

where

$$
h(x)=\sum_{m=1}^{\infty} p^{(m)}(x) .
$$

For given $\varepsilon>0$ by (2.12), (2.13), (2.14) we may take A so large that $\left|w_{F}(\bar{x})-L(\bar{x})\right|<\varepsilon$ for $x_{1} \geqq c_{3}$ and $\bar{x} \in C_{\theta} R_{A}$, since

$$
\lim _{A \rightarrow \infty} \sum_{m=1}^{\infty} p^{(m)}(z) \exp \left(-\frac{2}{3} c_{1} A^{2} m^{-1} z\right)=0
$$

uniformly in z for $z \geqq c_{3}>0$. For this A the right-hand side of (2.15) then tends to zero as $x_{1} \rightarrow \infty$, uniformly in $C_{\theta} R_{A}^{c}$. For the second term we apply the renewal theorem for densities. The first term is more complicated. It is noted that $|\eta| \leqq c_{4}\left|x_{1}\right|^{\frac{1}{2}}$, where c_{4} depends on A. We may define the family of random variables $M_{z}, z>0$, with

$$
P\left\{M_{z}=m\right\}=p^{(m)}(z) / h(z), \quad m=1,2, \cdots
$$

Then $z^{-1} M_{z} \rightarrow \mu^{-1}$ in quadratic mean as $z \rightarrow \infty$. We refer to Kalma [1], [2]. A similar technique is used in the proof of theorem 5.3 in I. A direct proof proceeds by dividing the sum over m into three parts:

$$
\left|\frac{x_{1}}{m}-\mu_{1}\right|<\varepsilon, \quad \frac{x_{1}}{m}-\mu_{1} \leqq-\varepsilon \quad \text { and } \quad \frac{x_{1}}{m}-\mu_{1} \geqq \varepsilon
$$

The corollary follows from (2.6) and the fact that

$$
\lim _{x_{1} \rightarrow \infty}\{L(\bar{x}+\bar{z})-L(\bar{x})\}=0
$$

uniformly in x_{2}, \cdots, x_{d} and uniformly with respect to \bar{z} in bounded sets.
Lemma 2.3. Let $\left\{x(t, \bar{\tau}),(t, \bar{\tau}) \in E \subset R_{k}\right\}$ be a family of positive random variables such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} E\left[\{x(t, \bar{\tau})-c\}^{2}\right]=0 \tag{2.16}
\end{equation*}
$$

uniformly in $\bar{\tau}$, where c is a positive constant. Then for any θ and any $\varepsilon>0$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} P\left\{\left|x^{\theta}(t, \bar{\tau})-c^{\theta}\right| \geqq \varepsilon\right\}=0 \tag{2.17}
\end{equation*}
$$

uniformly in $\bar{\tau}$. If moreover to any $\delta>0$ there are $K(\delta)$ and $T(\delta)$ with

$$
\begin{equation*}
E\left[x^{\theta}(t, \bar{\tau}) I\left\{x^{\theta}(t, \bar{\tau}) \geqq K(\delta)\right\}\right]<\delta \tag{2.18}
\end{equation*}
$$

for $t \geqq T(\delta)$ and every $\bar{\tau}$, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} E\left\{x^{\theta}(t, \bar{\tau})\right\}=c^{\theta} \tag{2.19}
\end{equation*}
$$

uniformly in $\bar{\tau}$.
Remark. A sufficient condition for (2.18) is the existence of $s>1$ with

$$
E\left\{x^{s \theta}(t, \bar{\tau})\right\} \leqq M<\infty,(t, \bar{\tau}) \in E
$$

See Loève [3], § 11.4.
Proof. The relation (2.17) follows from (2.16) for $\theta=1$ by Chebychev's inequality and then for any real θ since

$$
\left\{\left|x^{\theta}(t, \bar{\tau})-c^{\theta}\right| \geqq \varepsilon\right\} \subset\{|x(t, \bar{\tau})-c| \geqq \eta\}
$$

for some positive η independent of t and $\bar{\tau}$.
Now let B be the distribution function of $x^{\theta}(t, \bar{\tau})$. Then

$$
\begin{aligned}
E\left|x^{\theta}(t, \bar{\tau})-c^{\theta}\right| & \leqq \int_{c^{\theta}-\eta}^{c^{\theta}+\eta}\left|x-c^{\theta}\right| B(d x) \\
& +\left\{\int_{0}^{c^{\theta}-\eta}+\int_{c^{\theta}+\eta}^{K}+\int_{K}^{\infty}\right\}(x B(d x))+c^{\theta} P\left\{\left|x^{\theta}(t, \bar{\tau})-c^{\theta}\right| \geqq \eta\right\} \\
& \leqq \eta+\left(K+2 c^{\theta}\right) P\left\{\left|x^{\theta}(t, \bar{\tau})-c^{\theta}\right| \geqq \eta\right\}+\int_{K}^{\infty} x B(d x)
\end{aligned}
$$

We now prove (2.19) by first taking $\eta=\varepsilon / 3$, then $K=K\left(\frac{1}{3} \varepsilon\right)$ as in (2.18) and finally applying (2.17).

Lemma 2.4. If F is nonarithmetic and $g \in \mathscr{C}_{d}$,

$$
\lim _{x_{1} \rightarrow \infty}\left|\int g(\bar{z}-\bar{x}) W_{F}(d \bar{z})-L(\bar{x}) \int g(\bar{z}) d \bar{z}\right|=0
$$

uniformly in x_{2}, \cdots, x_{d}.
Proof. From lemma 2.2 (corollary), lemma 2.1 and I, theorem 3.2.
Lemma 2.5. Let a Cartesian coordinate system exist, such that the components Z_{1}, \cdots, Z_{d} of \bar{X}_{1} in this system have joint characteristic function ζ with $\zeta(\bar{u})=1$ if u_{1}, \cdots, u_{d} are integer multiples of 2π and $|\zeta(\bar{u})|<1$ elsewhere. Then

$$
\lim _{x_{1} \rightarrow \infty}\left\{W_{F}(\{\bar{x}\})-L(\bar{x})\right\}=0
$$

uniformly in x_{2}, \cdots, x_{d} if \bar{x} is restricted to lattice points of F.
Proof. From lemma 2.2 and I, theorem 3.4. The rotation of the F lattice is a consequence of our choice of coordinates.

Lemma 2.6. For fixed nonnegative integer k with $E\left|X_{11}\right|^{k}<\infty$, let

$$
\begin{equation*}
V_{F}(A)=\sum_{m=1}^{\infty} m^{\rho-k} F^{m}(A) \tag{2.20}
\end{equation*}
$$

Then, if F is nonarithmetic, we have for $g \in \mathscr{C}{ }_{d}$,

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty}\left\{x_{1}^{k} \int g(\bar{z}-\bar{x}) V_{F}(d \bar{z})-\mu_{1}^{k} L(\bar{x}) \int g(\bar{z}) d \bar{z}\right\}=0 \tag{2.21}
\end{equation*}
$$

uniformly in x_{2}, \cdots, x_{d}.
Proof. We will show that

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty}\left\{\int z_{1}^{k} g(\bar{z}-\bar{x}) V_{F}(d \bar{z})-\mu_{1} L(x) \int g(\bar{z}) d \bar{z}\right\}=0 \tag{2.22}
\end{equation*}
$$

uniformly in x_{2}, \cdots, x_{d}. The relation (2.21) then follows by the inequality

$$
\left|\int\left(z_{1}^{k}-x_{1}^{k}\right) g(\bar{z}-\bar{x}) V_{F}(d \bar{z})\right| \leqq C_{1} x_{1}^{-1} \int z_{1}^{k}|g(\bar{z}-\bar{x})| V_{F}(d \bar{z})
$$

which is a consequence of the fact that $g \in \mathscr{C} \mathscr{C}_{d}$.
In the same way as in the proof of I, theorem 5.3.

$$
\begin{equation*}
\int z_{1}^{k} g(\bar{z}-\bar{x}) V_{F}(d \bar{z})=\Phi(\bar{x})+\int g(\bar{z}-\bar{x}) W_{F} Q^{k}(d \bar{z}) \tag{2.23}
\end{equation*}
$$

with $\lim _{|\bar{x}| \rightarrow \infty} \Phi(\bar{x})=0$, uniformly in the direction of \bar{x}, and

$$
\begin{equation*}
Q(E)=\int_{E} x_{1} F(d \bar{x}) \tag{2.24}
\end{equation*}
$$

Since Q is a finite signed measure, we may write $Q^{k}=K^{\prime}+K^{\prime \prime}$, where K^{\prime} is restricted to a bounded set and the variation of $K^{\prime \prime}$ is so small that in

$$
\begin{aligned}
\int g(\bar{z}-\bar{x}) W_{F} & Q^{k}(d \bar{z})-\mu_{1}^{k} L(\bar{x}) \int g(\bar{z}) d \bar{z} \\
& =\left\{\int g(\bar{z}-\bar{x}) W_{F} Q^{k}(d \bar{z})-\int g(\bar{z}-\bar{x}) W_{F} K^{\prime}(d \bar{z})\right\} \\
+ & \left\{\int g(\bar{z}-\bar{x}) W_{F} K^{\prime}(d \bar{z})-L(\bar{x}) K^{\prime}\left(R_{d}\right) \int g(\bar{z}) d \bar{z}\right\} \\
+ & L(\bar{x}) \int g(\bar{z}) d \bar{z}\left\{K^{\prime}\left(R_{d}\right)-\mu_{1}^{k}\right\}
\end{aligned}
$$

the first and third term on the right are smaller than $\frac{1}{3} \varepsilon$. For the first term we apply I, lemma 2.4. The second term is written

$$
\begin{aligned}
& \int\left\{\int g(\bar{z}+\bar{\zeta}-\bar{x}) W_{F}(d \bar{z})-L(\bar{x}-\bar{\zeta}) \int g(\bar{y}) d \bar{y}\right\} K^{\prime}(d \bar{\zeta}) \\
&+\int\{L(\bar{x}-\bar{\zeta})-L(\bar{x})\} K^{\prime}(d \zeta) \cdot \int g(\bar{y}) d \bar{y}
\end{aligned}
$$

Here the first term tends to zero as $x_{1} \rightarrow \infty$, uniformly in x_{2}, \cdots, x_{d}, by lemma 2.4, since K^{\prime} is restricted to a bounded set. The same holds for the second term by (1.3). One should distinguish the sets R_{A} and R_{A}^{c} defined by (2.12a).

3. Local limit theorems for $\boldsymbol{U}_{\boldsymbol{F}}$

Theorem 3.1. If F is nonarithmetic and $E\left|X_{11}\right|^{\rho}<\infty$,

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty}\left\{x_{1}^{\rho} \int g(\bar{z}-\bar{x}) U_{F}(d \bar{z})-\mu_{1}^{\rho} L(\bar{x}) \int g(\bar{z}) d \bar{z}\right\}=0 \tag{3.1}
\end{equation*}
$$

for $g \in \mathscr{C}_{d}$, uniformly in x_{2}, \cdots, x_{d}.

Proof. When d is odd, the theorem coincides with lemma 2.6 for $k=\rho$.

Now assume that d is even, $d \geqq 6$. It is no restriction to assume that $g \geqq 0$. First we intend to show
(I) The relation (3.1) holds uniformly in the set R_{A}^{c}, with R_{A}^{c} defined by (2.12a).

Putting

$$
\begin{align*}
\alpha & =\int g(\bar{z}) d \bar{z} \tag{3.2}\\
q(m, \bar{x}) & =\int g(\bar{z}-\bar{x}) F^{m}(d \bar{z}), \quad m=1,2, \cdots \tag{3.3}
\end{align*}
$$

we have by lemma 2.6 with $k=0,1,2$,

$$
\begin{gather*}
\sum_{m=1}^{\infty} m^{\rho} q(m, \bar{x})=\alpha L(\bar{x})+\varepsilon_{0}(\bar{x}), \tag{3.4}\\
x_{x_{1}} \sum_{m=1}^{\infty} m^{\rho-1} q(m, \bar{x})=\mu_{1} \alpha L(\bar{x})+\varepsilon_{1}(\bar{x}), \tag{3.5}\\
x_{1}^{2} \sum_{m=1}^{\infty} m^{\rho-2} q(m, \bar{x})=\mu_{1}^{2} \alpha L(\bar{x})+\varepsilon_{2}(\bar{x}), \tag{3.6}
\end{gather*}
$$

with

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty} \varepsilon_{i}(\bar{x})=0, \quad i=0,1,2 \tag{3.7}
\end{equation*}
$$

uniformly in x_{2}, \cdots, x_{d}. Consider the family of positive integer valued random variables $\left\{M(\bar{x}), \bar{x} \in R_{A}^{c}, x_{1}>0\right\}$:

$$
\begin{equation*}
P\{M(\bar{x})=m\}=\frac{x_{1}^{2} m^{\rho-2} q(m, \bar{x})}{\mu_{1}^{2} \alpha L(\bar{x})+\varepsilon_{2}(\bar{x})}, \quad m=1,2, \cdots \tag{3.8}
\end{equation*}
$$

Expectation with respect to the distribution (3.8) will be denoted by E_{1}. From (3.4)-(3.7) and the inequality

$$
\begin{equation*}
L(\bar{x}) \geqq C_{1}(A)>0, \quad \bar{x} \in R_{A}^{c} \tag{3.9}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty} E_{1}\left[x_{1}^{-1} M(\bar{x})-\mu_{1}^{-1}\right]^{2}=0 \tag{3.10}
\end{equation*}
$$

uniformly in x_{2}, \cdots, x_{d}. By lemma 2.3 and (3.9) this implies

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty} E_{1}\left\{x_{1}^{\rho-2} M^{2-\rho}(\bar{x})\right\}=\mu_{1}^{\rho-2} \tag{3.11}
\end{equation*}
$$

uniformly in R_{A}^{c} - and hence the desired result (I) - if to every $\delta>0$ there are $J(\delta)$ and $T(\delta)$ with

$$
\begin{equation*}
x_{1}^{\rho} \sum_{m=1}^{\left[x_{1} / J(\delta)\right]} q(m, \bar{x})<\delta \tag{3.12}
\end{equation*}
$$

for all $\bar{x} \in R_{A}^{c}$ with $x_{1} \geqq T(\delta)$. In the same way as I, (5.8), we derive

$$
\begin{equation*}
\int\left|z_{1}\right|^{\rho} h(\bar{z}) F^{m}(d \bar{z}) \leqq m^{\rho} \int h(\bar{z}) F^{m-1} R(d \bar{z}) \tag{3.13}
\end{equation*}
$$

for $h \geqq 0$, where

$$
\begin{equation*}
R(E)=\int_{E}\left|x_{1}\right|^{\rho} F(d \bar{x}) \tag{3.14}
\end{equation*}
$$

So, since $g \in \mathscr{C}_{d}$, it is sufficient for (3.12) that

$$
\begin{equation*}
\sum_{m=1}^{\left[x_{1} / J(\delta)\right]} m^{\rho} \int g(\bar{z}-\bar{x}) F^{m-1} R(d \bar{z})<\delta . \tag{3.15}
\end{equation*}
$$

The first term in (3.15) tends to zero as $x_{1} \rightarrow \infty$, uniformly in R_{A}^{c}, since R is a finite measure. From (3.10), (2.17), (3.8) and (3.9) we have for $J>\mu_{1}$,

$$
\begin{align*}
& \lim _{x_{1} \rightarrow \infty} E\left[x_{1}^{-2} M^{2}(\bar{x}) I\left\{x_{1}^{-1} M(\bar{x})<J^{-1}\right\}\right]=0 \\
& \lim _{x_{1} \rightarrow \infty} \sum_{m=1}^{\left[x_{1} / J\right]} m^{\rho} \int g(\bar{z}-\bar{x}) F^{m}(d \bar{z})=0 \tag{3.16}
\end{align*}
$$

both uniformly in R_{A}^{c}. For $J>\mu_{1}$, and $\bar{x} \in R_{A}^{c}$

$$
\begin{aligned}
& \sum_{m=2}^{\left[x_{1} / J\right]} m^{\rho} \int g(\bar{z}-\bar{x}) F^{m-1} R(d \bar{z}) \\
& \quad \leqq 2^{\rho} \int\left\{\sum_{m=1}^{\left[x_{1} / J\right]} m^{\rho} \int g(\bar{z}+\bar{\zeta}-\bar{x}) F^{\cdot n}(d \bar{z})\right\} R(d \bar{\zeta}) \leqq 2^{\rho} \int \eta\left(\zeta_{1}-x_{1}\right) R(d \bar{\zeta})
\end{aligned}
$$

where η is a bounded funtcion by I, lemma 2.4, and $\lim _{t \rightarrow \infty} \eta(t)=0$ by (3.16). This proves (3.15) and therefore (I).

Now we will prove
(II). To any $\varepsilon>0$ and $A>0$ there is $\xi(\varepsilon, A)$ with

$$
\begin{equation*}
x_{1}^{\rho} \int g(\bar{z}-\bar{x}) U_{F}(d \bar{z})<\varepsilon+c_{1} \exp \left(-c_{0} A^{2}\right) \tag{3.17}
\end{equation*}
$$

for all $\bar{x} \in R_{A}$ with $x_{1} \geqq \xi(\varepsilon, A)$, where R_{A} is given by (2.12a) and c_{0}, c_{1} do not depend on A or ε.

By (3.13), since $g \in \mathscr{C}_{d}$,

$$
\begin{align*}
x_{1}^{\rho} \int g(\bar{z}-\bar{x}) & U_{F}(d \bar{z}) \leqq C_{2} \sum_{m=1}^{\infty} m^{\rho} \int\left(g(\bar{z}-\bar{x}) F^{m-1} R(d \bar{z})\right. \tag{3.18}\\
\leqq & C_{2} \int g(\bar{z}-\bar{x}) R(d \bar{z})+2^{\rho} C_{2} \int g(\bar{z}-\bar{x}) W_{F} R(d \bar{z}) .
\end{align*}
$$

Here the first term tends to zero as $x_{1} \rightarrow \infty$, uniformly in x_{2}, \cdots, x_{d} and by lemma 2.4 the second term is majorized by

$$
\begin{equation*}
2^{\rho} C_{2} \alpha \int L(\bar{x}-\bar{\zeta}) R(d \bar{\zeta})+2^{\rho} C_{2} \int \theta\left(x_{1}-\zeta_{1}\right) R(d \bar{\zeta}) \tag{3.19}
\end{equation*}
$$

where θ is a bounded function by I , lemma 2.4 , and $\lim _{t \rightarrow \infty} \theta(t)=0$. So the second term in (3.19) tends to zero as $x_{1} \rightarrow \infty$. The inequality (3.17) now follows by considering the first term of (3.19), using the definition of $L(\bar{x})$ and writing $R=R^{\prime}+R^{\prime \prime}$ where the measure R^{\prime} has total variation smaller than $\frac{1}{2} \varepsilon$ and $R^{\prime \prime}$ is restricted to a bounded set.

The theorem now follows from (I), (II) and the definition of $L(\bar{x})$.
For $d=2$ and $d=4$ the proof of (I) remains unchanged up to and including (3.10). The relation (3.11) now follows from the remark to lemma 2.3, since $0<2-\rho<2$. The proof of (II) holds for $d=4$ but not for $d=2$ since (3.13) is derived by Minkowski's inequality with exponent ρ.

For $d=2$ we have

$$
\begin{aligned}
& x_{1}^{\frac{1}{2}} \sum_{m=1}^{\left[x_{1}\right]} \int g(\bar{z}-\bar{x}) F^{m}(d \bar{z}) \leqq x_{1} \sum_{m=1}^{\left[x_{1}\right]} m^{-\frac{1}{2}} \int g(\bar{z}-\bar{x}) F^{m}(d \bar{z}), \\
& x_{1}^{\frac{1}{2}} \sum_{m=\left[x_{1}\right]+1}^{\infty} \int g(\bar{z}-\bar{x}) F^{m}(d \bar{z}) \leqq \sum_{m=\left[x_{1}\right]+1}^{\infty} m^{\frac{1}{2}} \int g(\bar{z}-\bar{x}) F^{m}(d \bar{z}),
\end{aligned}
$$

so

$$
x_{1}^{\frac{1}{1}} \int g(\bar{z}-\bar{x}) U_{F}(d \bar{z}) \leqq \int g(\bar{z}-\bar{x}) W_{F}(d z)+x_{1} \sum_{m=1}^{\infty} m^{-\frac{1}{2}} \int g(\bar{z}-\bar{x}) F^{m}(d \bar{z})
$$

and (II) now follows by lemma 2.4 and lemma 2.6 with $k=1$.
Theorem 3.2. Under the lattice conditions of lemma 2.5, if $E\left|X_{11}\right|^{\rho}<\infty$,

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty}\left\{x_{1}^{\rho} U_{F}(\{\bar{x}\})-\mu_{1}^{\rho} L(\bar{x})\right\}=0 \tag{3.20}
\end{equation*}
$$

uniformly in x_{2}, \cdots, x_{d}, if \bar{x} is restricted to lattice points of F.
Proof. From lemma 2.5, by methods similar to those used in the proof of theorem 3.1. We need the following version of (2.21):

$$
\lim _{x_{1} \rightarrow \infty}\left\{x_{1}^{k} V_{F}(\{\bar{x}\})-\mu_{1}^{k} L(\bar{x})\right\}=0
$$

uniformly in x_{2}, \cdots, x_{d}, if \bar{x} is restricted to lattice points of F.
It is noted that a corresponding theorem for densities may be derived by similar techniques, if $\varphi \in L_{1}$. A similar remark hold for the results of I.

4. Existence of moments of order unequal to ρ

Theorems 5.1 and 5.2 of I give some information about the order of decrease of $U_{F}(A+\bar{x})$ if $\bar{x} \rightarrow \infty$ in a direction different from $\bar{\mu}$. The following supplementary result will be derived by direct appeal to onedimensional renewal theory. Second moments need not be finite.

Theorem 4.1. Let $S=\{\bar{x}:(\bar{x}, \mu) \leqq \theta|\bar{x}||\bar{\mu}|\}$, with $-1 \leqq \theta<1$. Then, if $E\left|X_{11}\right|^{p}<\infty$, where $p>1$, we have

$$
\begin{equation*}
\int_{S}(1+|\bar{x}|)^{p-2} U_{F}(d \bar{x})<\propto \tag{4.1}
\end{equation*}
$$

Proof. It is sufficient to show that (1) holds with S replaced by

$$
C=\{\bar{x}:(\bar{x}, \bar{\alpha}) \geqq \gamma|\bar{x}|\}
$$

where $\gamma \in(0,1)$ and the unit vector $\bar{\alpha}$ are such that $\bar{\mu} \notin C$. We may choose our coordinate system in such a way that $\mu_{1}>0$ and

$$
C \subset K=\left\{\bar{x}: x_{1} \leqq 0, x_{2}^{2}+\cdots+x_{d}^{2} \leqq \beta x_{1}^{2}\right\}
$$

where β is a positive constant. By applying the inequality $|\bar{x}| \geqq\left|x_{1}\right|$ if $p<2$ and $|\bar{x}| \leqq\left|x_{1}\right| \sqrt{1+\beta}$ for $\bar{x} \in K$ if $p \geqq 2$, we find

$$
\int_{K}(1+|\bar{x}|)^{p-2} U_{F}(d \bar{x}) \leqq \int_{x_{1} \leqq 0}\left(1+c\left|x_{1}\right|\right)^{p-2} U_{F}(d \bar{x})
$$

with $c=1$ or $c=\sqrt{1+\beta}$. Let $U_{1}=\sum_{1}^{\infty} F_{1}^{m}$ be the one-dimensional renewal measure belonging to the probability distribution F_{1} of X_{11}. Then

$$
\int_{x_{1} \leqq 0}\left(1+c\left|x_{1}\right|\right)^{p-2} U_{F}(d x)=\int_{x_{1} \leqq 0}\left(1+c\left|x_{1}\right|\right)^{p-2} U_{1}\left(d x_{1}\right)<\infty .
$$

(See Stone and Wainger [9], Stam [7].)
Let u_{F} denote the density of U_{F}, if present. The density version of theorem 3.1 says that if $E\left|X_{11}\right|^{\rho}<\infty$,

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty} x_{1}^{\rho}\left\{\mu_{F}(\bar{x})-\mu_{1}^{-1} q(\bar{x})\right\}=0, \tag{4.2}
\end{equation*}
$$

uniformly in x_{2}, \cdots, x_{d}. Here $q(\bar{x})$ for fixed x_{1} is a gaussian probability density in x_{2}, \cdots, x_{d} with covariance matrix proportional to x_{1}. The form of (4.2) suggests that ρ may be replaced by p if $E\left|X_{11}\right|^{p}<\infty$, and that a similar remark might apply to (3.1).

For $p>\rho$ this is not true. As an example take $X_{11}, \cdots, X_{1 d}$ independent, X_{11} negative exponential with parameter 1 and $X_{1 j}$ gaussian with zero expectation and unit variance, $j=2, \cdots, d$. For $x_{2}=\cdots=x_{d}=0$ we then should have

$$
\lim _{x \rightarrow \infty} x^{p}\left[\sum_{m=1}^{\infty} \frac{x^{m-1}}{(m-1)!} e^{-x} m^{-\rho}-x^{-\rho}\right]=0
$$

for any $p>0$. Take $d=5$. We have

$$
\sum_{m=1}^{\infty} \frac{x^{m-1}}{(m-1)!} e^{-x} m^{-2}=\sum_{n=0}^{\infty}\left[\frac{x^{n}}{(n+2)!}+\frac{x^{n}}{n!(n+1)^{2}(n+2)}\right] e^{-x}
$$

Here the first term between brackets gives rise to x^{-2} plus exponential terms and the second term to a contribution of order x^{-3} by the law of large numbers for the Poisson distribution with parameter tending to ∞.

For $p<\rho$ we would obtain $x_{1}^{p} \mu_{F}(\bar{x}) \rightarrow 0$ and this is correct for $2<p<\rho$.

Theorem 4.2. If $E\left|X_{11}\right|^{p}<\infty$, where $2<p<\rho$, and F has finite second moments, we have for bounded A, uniformly in x_{2}, \cdots, x_{d},

$$
\begin{equation*}
\lim _{x_{1} \rightarrow \infty} x_{1}^{p} U_{F}(A+\bar{x})=0 \tag{4.3}
\end{equation*}
$$

Proof. By the boundedness of A and by (3.13) with ρ replaced by p we have

$$
x_{1}^{p} F^{m}(A+\bar{x}) \leqq c \int_{A+\bar{x}} z_{1}^{p} F^{m}(d \bar{z}) \leqq c m^{p} F^{m-1} R(A+\bar{x})
$$

where R is defined by (3.14) with ρ replaced by p. So

$$
\begin{equation*}
x_{1}^{p} U_{F}(A+\bar{x}) \leqq c R(A+\bar{x})+c H R(A+\bar{x}) \tag{4.4}
\end{equation*}
$$

where $H=\sum_{1}^{\infty}(m+1)^{p} F^{m}$. Since $p<\rho$ we have

$$
\lim _{|\bar{y}| \rightarrow \infty} H(A+\bar{y})=0 .
$$

(See the proof of (3.8) in I.) Since R is a finite measure, (4.3) follows from (4.4).

Summary

Let $\bar{X}_{1}, \bar{X}_{2}, \cdots$ be strictly d-dimensional random vectors with common distribution F, with finite second moments and with $\mu_{1}=E X_{11}>0$. Let $U(A)=\sum_{1}^{\infty} F^{m}(A)$, where F^{m} is the m-fold convolution of F. The restriction of U to the strip $\left\{\bar{x}: t \leqq x_{1} \leqq t+a\right\}$ is a finite measure with variation tending to $\mu_{1}^{-1} a$ if F is nonarithmetic. For $t \rightarrow \infty$ this measure satisfies a central limit theorem. The paper derives the local form of this limit theorem. A version of it for purely arithmetic F also is given. The global form was proved by the author in Zeitschrift für Wahrsch. th. u. verw. Geb., 10 (1968), 81-86. The paper is a continuation of Comp. Math. 21 (1969), 383-399.

REFERENCES

J. N. Kalma
[1] On the asymptotic behaviour of certain sums related with the renewal function. Report TW-68, Mathematisch Instituut, University of Groningen (1969).
J. N. Kalma
[2] Thesis, Groningen. To be published.
M. Loève
[3] Probability Theory, $3^{\text {rd }}$ ed. Van Nostrand.
F. Spitzer
[4] Principles of Random Walk. Van Nostrand, 1964.
A. J. Stam
[5] Two theorems in r-dimensional renewal theory. Zeitschr. Wahrsch. Th. u. verw. Geb. 10. (1968), 81-86.
A. J. Stam
[6] Renewal theory in r dimensions I. Comp. Math. 21 (1969), 383-399.
A. J. Stam
[7] On large deviations. Report TW-83, Mathematisch Instituut, University of Groningen (1970).
Ch. Stone
[8] A local limit theorem for non-lattice multidimensional distribution functions. Ann. Math. Stat. 36 (1965), 546-551.
Ch. Stone and S. Wainger
[9] One-sided error estimates in renewal theory. J. Anal. Math. XX (1967), 325-352.

(Oblatum 2-X-69,	Mathematisch Instituut der Rijksuniversiteit,
27-XI-69,	Hoogbouw WSN,
23-XI-70)	Universiteitscomplex Paddepoel,
	Postbus 800,
	Groningen

