@article{CM_1971__23_1_101_0, author = {Thomas, C. B. and Wall, C. T. C.}, title = {The topological spherical space form problem {I}}, journal = {Compositio Mathematica}, pages = {101--114}, publisher = {Wolters-Noordhoff Publishing}, volume = {23}, number = {1}, year = {1971}, mrnumber = {372894}, zbl = {0206.52403}, language = {en}, url = {http://www.numdam.org/item/CM_1971__23_1_101_0/} }
Thomas, C. B.; Wall, C. T. C. The topological spherical space form problem I. Compositio Mathematica, Tome 23 (1971) no. 1, pp. 101-114. http://www.numdam.org/item/CM_1971__23_1_101_0/
Algebraic K-theory and its geometric applications. Lecture notes 108, Springer Verlag (1969). | MR | Zbl
et al. [1]Homological algebra. Princeton U.P. (1956). | MR | Zbl
AND [2]Linear Groups. Teubner (Leipzig, 1901). | JFM
[3]On the triangulation of manifolds and the Hauptvermutung. Preprint I.A.S. Princeton (1968). | MR | Zbl
AND [4]Artin exponents for finite groups. J. of Algebra 9 (1968), 94-119. | Zbl
[5]Groups which operate on Sn without fixed points. Amer. J. Math. 79 (1957), 612-623. | MR | Zbl
[6]Remarks on topological manifolds. Notices A.M.S. 16 (1969), 698.
[7]Spaces satisfying Poincaré duality. Topology 6 (1967), 77-101. | MR | Zbl
[8]Geometric topology. Preprint, Princeton (1967).
[9]A new method in fixed point theory. Comm. Math. Hel. 34 (1960), 1-16. | MR | Zbl
[10]Periodic resolutions for finite groups. Annals of Math. 72 (1960), 267-291. | MR | Zbl
[11]The p-period of a finite group. Ill. J. Math. 4 (1960), 341-346. | MR | Zbl
[12]The oriented homotopy type of compact 3-manifolds. Proc. London Math. Soc. (3), 19 (1969), 31-44. | MR | Zbl
[13]Finiteness conditions for CW complexes II. Proc. Royal Society A 295 (1966), 129-139. | MR | Zbl
[14]Poincaré complexes I. Annals of Math. 86 (1967), 213-245. | MR | Zbl
[15]Free piecewise linear involutions on spheres. Bull. AM.S. 74 (1968), 554-558. | MR | Zbl
[16]Surgery of compact manifolds. Preprint, Liverpool University (1967). | MR
[17]Free actions on spheres by cyclic groups of odd order. Preprint, Liverpool University (1969).
[18]Spaces of constant curvature. McGraw Hill (New York, 1967). | MR | Zbl
[19]