COMPOSITIO MATHEMATICA

R. J. WARNE Some properties of simple *I*-regular semigroups

Compositio Mathematica, tome 22, nº 2 (1970), p. 181-195 <http://www.numdam.org/item?id=CM 1970 22 2 181 0>

© Foundation Compositio Mathematica, 1970, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SOME PROPERTIES OF SIMPLE I-REGULAR SEMIGROUPS

by

R. J. Warne

Let S be a regular semigroup and let E_S denote its set of idempotents. As usual, E_S is partially ordered in the following manner: if $e, f \in E_S$, $e \leq f$ if and only if ef = fe = e. We then say that E_S is under or assumes its natural order. Let I denote the integers. If E_S , under the natural order, is order isomorphic to I under the reverse of the usual order, we call S an I-regular semigroup. We determined the structure of I-regular semigroups mod groups in [10].

In section 1, we develop the ideal extension theory of simple *I*-regular semigroups. In section 2, we obtain the maximal group homomorphic image of a simple *I*-regular semigroup including the defining homomorphism. In section 3, we determine the nature of the congruences admitted by a simple *I*-regular semigroup, and we describe the idempotents separating congruences.

In the special case S is bisimple, the results of this paper reduce to the corresponding results for *I*-bisimple semigroups (bisimple semigroups S such that E_S is order isomorphic to I under the reverse of the usual order) [6, 7].

Unless otherwise specified, we utilize the definitions, terminology, and notation of [1].

1. Ideal extension theory

In this section, we determine the translational hull \overline{S} of a simple *I*-regular semigroup *S*. All ideal extensions of *S* by a semigroup *T* with zero, *o*, can then be described if one knows the structure of *T* and the partial homomorphisms θ of $T^* = T \setminus 0$ into \overline{S} such that AB = 0 in *T* implies that $A\theta B\theta \in S$ [1]. This determination is carried out if *T* is a completely 0-simple (Brandt) semigroup. We also completely determine the extensions of a Brandt semigroup with finite index set by a simple *I*-regular semigroup (with zero appended) by specializing our general determination of the extensions of a Brandt semigroup by an arbitrary semigroup [5, theorem 1].

Before commencing, let us state the structure theorem for simple *I*-regular semigroups.

Let $C_1^* = IxI$ under the multiplication $(a, b)(c, d) = (a+c-\min(b, c), b+d-\min(b, c))$. We called C_1^* the extended bicyclic semigroup in [6].

THEOREM 1.1 (Warne, [10]). S is a simple I-regular semigroup if and only if $S = (U(G_j : j = 0, 1, \dots, d-1)) \times C_1^*$, where d is a positive integer, $\{G_j : 0 \leq j \leq d-1\}$ is a collection of pairwise disjoint groups, and C_1^* is the extended bicyclic semigroup, under the multiplication

$$(g_s, (m, n))(h_r, (p, q)) = (t, (m, n)(p, q))$$
(*)

where

$$g_{s} \in G_{s}, g_{r} \in G_{r} \quad (0 \leq r, s \leq d-1) \quad and \quad t = g_{s}(f_{n-p,p}^{-1} \prod_{j=0}^{s-1} \gamma_{j})(h_{r} \prod_{j=pd+r}^{nd+s-1} \gamma_{j})(f_{n-p,q} \prod_{j=0}^{s-1} \gamma_{j}),$$

$$(f_{p-n,m}^{-1} \prod_{j=0}^{r-1} \gamma_{j})(g_{s} \prod_{j=nd+s}^{pd+r-1} \gamma_{j})(f_{p-n,n} \prod_{j=0}^{r-1} \gamma_{j})h_{r}, \quad or$$

$$(g_{s} \prod_{j=s}^{\nu-1} \gamma_{j})(h_{r} \prod_{j=r}^{\nu-1} \gamma_{j}) \quad (v = \max(r, s))$$

according to whether n > p, p > n, or p = n where $\gamma_j = \gamma_{j \pmod{d}} (j \in I, j \ge 0)$ is a homomorphism of $G_{j \pmod{d}}$ into $G_{(j+1) \mod d}$. Juxtaposition denotes multiplication in C_1^* and in the appropriate G_j . For $m \in I^0$, the non-negative integers, $n \in I, f_{0,n} = k_0$, the identity of G_0 , while, for m > 0,

$$f_{m,n} = u_{(n+1)d} \left(\prod_{j=0}^{d-1} \gamma_j\right)^{m-1} u_{(n+2)d} \left(\prod_{j=0}^{d-1} \gamma_j\right)^{m-2} \cdots u_{(n+(m-1))d} \left(\prod_{j=0}^{d-1} \gamma_j\right) u_{(n+m)d}$$

where $\{u_{kd} : k \in I\}$ is a collection of elements of G_0 with $u_{kd} = k_0$ for k > 0. In $(*) \prod_{j=a}^{a-1} \gamma_j$ will denote the identity automorphism of $G_{a(\text{mod } d)}$. Let S be a simple I-regular semigroup. In connection with theorem

1.1, we write $S = (d, G_0, G_1, \dots, G_{d-1}, C_1^*, \gamma_0, \gamma_1, \dots, \gamma_{d-1}, u_{id})$. For convenience, we write $\alpha_{m,n} = \gamma_m \gamma_{m+1} \cdots \gamma_{n-1}$ if m < n and let

 $\alpha_{n,n}$ denote the identity automorphism of $G_{n(\text{mod } d)}$.

LEMMA 1.1. A simple I-regular semigroup is left and right reductive.

PROOF. This lemma is an immediate consequence of theorem 1.1. We will utilize the multiplication of theorem 1.1 without explicit mention.

THEOREM 1.2 Let $S = (d, G_0, G_1, \dots, G_{d-1}, C_1^*, \gamma_0, \gamma_1, \dots, \gamma_{d-1}, m_{id})$ be a simple I-regular semigroup. Let $W = \{(\theta, p) : \theta : I \to G_0, p \in I, and (i+1)\theta = m_{(i+1)d}^{-1}(i\theta \prod_{j=0}^{d-1} \gamma_j) m_{(i+p+1)d} \text{ for all } i \in I\}$. Let ρ_i $(i \in I)$ denote the inner right translation of (I, +) determined by $i \cdot W$, under the multiplication

$$^{*}(\theta, w)(\eta, p) = (\theta \circ \rho_{w}\eta, w+p),$$

where \circ denotes pointwise multiplication of mappings and juxtaposition denotes iteration of mappings is a group. Let \overline{S} be the translational hull of S. Then, $\overline{S} = W \cup S$ ($W \cap S = \Box$), under the multiplication

$$(\theta, a) \cdot (\eta, p) = (\theta, a)(\eta, p)$$
$$(g_s, a, b) \cdot (h_r, c, d) = (g_s, a, b)(h_r, c, d)$$

where juxtaposition denotes multiplication in W and S and

$$(\theta, p) \cdot (g_r, a, b) = ((a-p)\theta \prod_{j=0}^{r-1} \gamma_j g_r, a-p, b)$$
$$(g_r, a, b) \cdot (\theta, p) = (g_r(b\theta \prod_{j=0}^{r-1} \gamma_j), a, b+p).$$

PROOF. Let λ be a left translation of S. Then, if e_0 is the identity of G_0 ,

$$(e_0, i, i)\lambda = (i\delta, i\delta_1, i+i\rho_1)$$

where $\delta: I \to U(G_j: 0 \leq j \leq d-1); \delta_1: I \to I;$ and $\rho_1: I \to I^0$ the non-negative integers. Since $(e_0, i, i)(e_0, i+1, i+1) = (e_0, i+1, i+1)$, we have the following two possibilities: If $i\rho_1 = 0$,

$$(i+1)\delta = m_{(i\delta_1+1)d}^{-1}(i\delta\alpha_{r,d})m_{(i+1)d} \text{ where } i\delta \in G_r,$$

$$(i+1)\rho_1 = 0, \text{ and } (1.1)$$

$$(i+1)\delta_1 = i\delta_1 + 1$$

while, if $i\rho_1 \ge 1$,

$$(i+1)\delta = i\delta$$

$$(i+1)\rho_1 = i\rho_1 - 1$$

$$(i+1)\delta_1 = i\delta_1.$$

(1.2)

Let us first consider the case $i\rho_1 = 0$ for all $i \in I$. In this case it is easily seen that $\lambda | D_0$, where $D_0 = \{(g_0, m, n) : g_0 \in G_0, m, n \in I\}$, is a left translation of D_0 . Hence, since D_0 is the *I*-bisimple semigroup $(G_0, C_1^*, \alpha_{0,d}, m_{id})$ [6, theorem 1.2] (notation of [6]),

$$(e_0, i, i)\lambda = (i\delta, i+p, i)$$

where $p \in I$ and δ is a mapping of I into G_0 such that

$$(i+1)\delta = m_{(i+p+1)d}^{-1} i\delta\alpha_{0,d} m_{(i+1)d}$$
(1.3)

by virtue of [7, 8] or by [9, proof of theorem 1]. Hence, since $(g_r, i, j) = (e_0, i, i)(g_r, i, j)$,

$$(g_r, i, j)\lambda_{(\delta, p)} = ((i\delta)\alpha_{0, r}g_r, i+p, j)$$

$$(1.4)$$

where $\lambda = \lambda_{(\delta, p)}$, $p \in I$ and δ is a mapping of I into G_0 satisfying (1.3).

Conversely, (1.3) and (1.4) define a left translation of D_0 by [7] or by [9, proof of theorem 1]. By (1.3),

$$(g_r, a, b)\lambda_{(\delta, p)} = (e_0, a, a)\lambda_{(\delta, p)}(g_r, a, b).$$

Thus,

$$\begin{aligned} ((g_r, a, b)(h_s, c, d))\lambda_{(\delta, p)} \\ &= (e_0, a + c - \min(b, c), a + c - \min(b, c))\lambda_{(\delta, p)}(g_r, a, b)(h_s, c, d) \\ &= (e_0, a, a)\lambda_{(\delta, p)}(g_r, a, b)(h_s, c, d) = (g_r, a, b)\lambda_{(\delta, p)}(h_s, c, d). \end{aligned}$$

Hence, $\lambda_{(\delta, p)}$ is a left translation of S.

Next, suppose that there exists $u \in I$ such that $u\rho_1 \neq 0$. Utilizing (1.1) and (1.2), we obtain: $(t+i)\rho_1 = 0$, where t is a unique element in I, for $i \ge 0$, and $(t+i)\rho_1 = -i$ for i < 0; $(t+i)\delta_1 = a+i$, where $a \in I$, for $i \ge 0$, and $(t+i)\delta_1 = a$ for i < 0; and $(t+i)\delta = f_{i,a}^{-1}g_s\alpha_{s,d}\alpha_{0,d}^{i-1}f_{i,t}$ for i > 0, and $(t+i)\delta = g_s \in G_s$ for $i \le 0$. Since $(e_0, i, i)(e_0, i+n, i) = (e_0, i, i)(e_0, i+n, i)(e_0, i+n, i) = (e_0, i+n, i)(e_0, i+n, i)(e_0, i+n, i)(e_0, i+n, i) = (e_0, i+n, i)(e_0, i+n, i)(e_0,$ i+n, i) for all $n \ge 0$, we are able to determine $(e_0, i+n, i)\lambda$. Next, since $(g_r, i+n, i+m) = (e_0, i+n, i)(g_r, i, i+m)$ for $i \in I, m, n \in I^0$, we are able to determine $(g_r, i+n, i+m)\lambda$. By [3] and theorem 1.1, every element of S may be written in the form $(g_r, i+n, i+m)$ where $g_r \in G_r$, $i \in I$, and $m, n \in I^0$. We let i = t + q and determine $(g_r, t + q + n, t + q + m)\lambda$ in terms of the values of δ , ρ_1 , and δ_1 given above. In this calculation, we utilize the identity $f_{m+c,n}f_{c,m+n}^{-1} = f_{m,n}\alpha_{0,d}^c$ for $m, c \in I^0$ and $n \in I$ [10]. (This identity may be developed by a routine calculation.) Finally, if $a_1 = t + q + n$ and $b_1 = t + q + m$, we show that $(g_r, a_1, b_1)\lambda = d_1 = d_1 + q + n$ $(g_s, a, t)(g_r, a_1, b_1)$, i.e. λ is an inner left translation. (We omit the details of these calculations as they parallel calculations given in [7] and [9]).

In a similar manner, it may be shown that the semigroup of right translations of S consists of the inner right translations of S and the transformations of S defined by

$$(g_r, i, j)\rho_{(\theta, w)} = (g_r(j\theta\alpha_{0, r}), i, j+w)$$
(1.5)

where $w \in I$ and θ is a mapping of I into G_0 such that

$$(i+1)\theta = m_{(i+1)d}^{-1}(i\theta\alpha_{0,d})m_{(i+w+1)d} \text{ for all } i \in I.$$
(1.6)

It is easily seen that $\rho_{(\theta, w)}$ as defined by (1.5) and (1.6) is not an inner right translation of S, and $\lambda_{(\delta, p)}$ as defined by (1.4) and (1.3) is not an inner left translation of S. Hence, by lemma 1.1 and [7, lemma 1], $\lambda_{(\delta, p)}$ and $\rho_{(g_r, a, b)}$ are not linked and $\lambda_{(g_r, a, b)}$ and $\rho_{(\theta, w)}$ are not linked. Similarly, $\lambda_{(h_r, c, d)}$ and $\rho_{(g_s, a, b)}$ are linked if and only if $(h_r, c, d) = (g_s, a, b)$. Next, suppose that $\rho_{(\theta, w)}$ and $\lambda_{(\delta, p)}$ are linked. Then $\rho_{(\theta, w)}|D_0$ and $\lambda_{(\delta, p)}|D_0$ are linked. Thus, by the proof of [9, theorem 1] or [7], w = -p and $\delta = \rho_{-w}\theta$. By the proof of [9, theorem 1] or [7], $\rho_{(\theta, w)}|D_0$ and $\lambda_{(p_{-w}\theta, -w)}|D_0$ are linked. Thus, $(g_s, a, b)\rho_{(\theta, w)}(h_r, c, d) = ((g_s, a, b)(e_0, b, b))$ $\rho_{(\theta, w)}(h_r, c, d) = (g_s, a, b)((e_0, b, b)\rho_{(\theta, w)}(e_0, c, c))(h_r, c, d) = (g_s, a, b)$ $((e_0, c, c)\lambda_{(\rho_{-w}\theta, -w)}(h_r, c, d)) = (g_s, a, b)((h_r, c, d)\lambda_{(\rho_{-w}\theta, -w)})$. Thus, $\rho_{(\theta, w)}$ and $\lambda_{(\rho_{-w}\theta, -w)}$ are linked. The mapping $\rho \to (\lambda, \rho)$, where ρ is a right translation of S and λ is the left translation of S linked with ρ , is an isomorphism of the semigroup of right translations of S onto \overline{S} . If $\rho_{(\theta, q)}, \rho_{(\eta, p)} \in \overline{S} \setminus S$, $\rho_{(\theta, q)}\rho_{(\eta, p)} = \rho_{(\theta \circ p_q \eta, q+p)}$ by (1.5) and (1.6). Hence $\overline{S} \setminus S$ is a semigroup. The mapping $(\theta, p) \to \rho_{(\theta, p)}$ is an isomorphism of the theorem is a consequence of [1, p. 12, lemma 1.2], (1.4), and (1.5).

REMARK 1.1. In the case d = 1, we obtain [7, theorem 1] (see also [8]).

COROLLARY 1.1. Let S be a weakly reductive semigroup and let \overline{S} be its translational hull. Let T be a 0-simple semigroup having proper divisors of zero. If $S = \overline{S}$ or $\overline{S \setminus S}$ is a subsemigroup of S, then every extension of S by T is given by a partial homomorphism [4].

PROOF. Replace \mathfrak{D} by \mathfrak{F} in the proof of [7, theorem 3].

REMARK 1.2. Let $S = (d, G_0, G_1, \dots, G_{d-1}, \gamma_0, \gamma_1, \dots, \gamma_{d-1}, m_{id})$ be a simple *I*-regular semigroup. S has d D-classes, D_0, D_1, \dots, D_{d-1} . $D_r = \{(g_r, a, b) : g_r \in G_r : a, b \in I\}$ is the *I*-bisimple semigroup $(G_r, C_1^*, \alpha_{r, r+d}, m_{id}\alpha_{0, r})$. (Notation of [6]). Let T be a 0-bisimple semigroup. To determine the partial homomorphisms of $T \setminus 0$ into S one must just determine the partial homomorphisms of $T \setminus 0$ into D_r for each $r \in \{0, 1, 2, \dots, d-1\}$. In the case T is a completely 0-simple semigroup, (a Brandt semigroup), these determinations are given mod groups by [7, theorem 2] ([7, corollary 1]). By lemma 1.1, theorem 1.2, and Corollary 1.1, if T is a 0-simple semigroup with proper divisors of zero, every extension of S by T is given by a partial homomorphism. In particular, this is valid if T is a completely 0-simple semigroup (Brandt Semigroup) with proper divisors of zero.

COROLLARY 1.2. Let $S = (d, G_0, G_1, \dots, G_{d-1}, C_1^*, \delta_0, \dots, \delta_{d-1}, m_{id})$ be a simple I-regular semigroup and let $T = M^0(R; K; \Lambda; P)$ be a completely 0-simple semigroup (with zero, 0') without proper divisors of zero. Let V be an extension of S by T. Then, either V is given by a partial homomorphism and an explicit multiplication is thus given by employing remark 1.2. (Conversely, every partial homomorphism of $T \setminus 0'$ into S determines an extension of S by T), or $V = (T \setminus 0') \cup S$ under the multiplication

R. J. Warne

A)
$$(a; s, \lambda)^*(g_r, m, n)$$

= $((m - k_s - i_a - t_\lambda)(\beta_s \circ \rho_{k_s} \theta_a \circ \rho_{k_s + i_a} \gamma_\lambda) \prod_{j=0}^{r-1} \delta_j g_r, m - k_s - i_a - t_\lambda, n)$
B) $(g_r, m, n)^*(a; s, \lambda)$

$$= (g_r((n\beta_s \circ \rho_{k_s}\theta_a \circ \rho_{k_s+i_a}\gamma_{\lambda})\prod_{j=0}^{r-1}\delta_j), m, k_s+i_a+t_{\lambda}+n)$$

where $(g_s, m, n) \in S$ and $(a; s, \lambda) \in T \setminus 0'$, \circ denotes pointwise multiplication of mappings, $a \to i_a$ is a homomorphism of R into (I, +), $a \to \theta_a$ is a mapping of R into $H = \{\beta : (\beta, a) \in W$ for some $a \in I\}$ (see statement of theorem 1.2) such that $\theta_{ab} = \theta_a \circ \rho_{ia} \theta_b$ for all $a, b \in R, s \to \beta_s$ is a mapping of K into H, $s \to k_s$ is a mapping of K into I, $\lambda \to \gamma_\lambda$ is a mapping of Λ into H, and $\lambda \to t_\lambda$ is a mapping of Λ into I such that $i_{p\lambda s} = t_\lambda + k_s$ and $\theta_{p\lambda s} = \gamma_\lambda \circ \rho_{t\lambda}\beta_s$. Conversely, (A) and (B) define an extension of S by T.

PROOF. The proof utilizes theorem 1.1, theorem 1.2, corollary 1.1, and [1, theorem 4.20 and theorem 4.22]. It is similar in nature to the proof of [7, theorem 4] (see also [8]) and [9, theorem 4] and it will be omitted.

REMARK 1.3. In the case d = 1, we obtain [7, theorem 4][see also [8]).

REMARK 1.4. In the special case that $T \ 0'$ is a group R, V is either given by a partial homomorphism or (A) and (B) become

$$a^{*}(g_{r}, m, n) = ((m - i_{a})\theta_{a}\prod_{j=0}^{r-1}\gamma_{j}g_{r}, m - i_{a}, n)$$
$$(g_{r}, m, n)^{*}a = (g_{r}((n\theta_{a})\prod_{j=0}^{r-1}\gamma_{j}), m, n + i_{a}).$$

REMARK 1.5. If T is a 0-simple semigroup without proper divisors of zero, an extension of S by T is either given by a partial homomorphism or by the equations in the above remark with $a \rightarrow \theta_a$ a mapping of $T \ 0'$ into H and with $a \rightarrow i_a$ a homomorphism of $T \ 0'$ into (I, +).

We close this section by giving a specialization of [5, theorem 1]. The theorem is obtained by combining theorem 3.1 (below), [5, theorem 1], and [5, lemma 1]. The theorem is quite similar to [9, theorem 7].

In the theorem below, capital roman letters will denote elements of T^* .

THEOREM 1.3. Let $S = M^0(G; J; J; \Delta)$, where J is a finite set, be a Brandt semigroup; let $T^* = (d, U_0, U_1, \dots, U_{d-1}, C_1^*, \gamma_0, \gamma_1, \dots, \gamma_{d-1}, m_{id})$ be a simple I-regular semigroup; and let V be an extension of S by T. Then, there exists a homomorphism $w : A \to w_A$ of T^* into H_r , the full symmetric group on some r element subset Q of J. This homomorphism is explicitly given by theorem 2.4. For each $A \in T^*$, there exists a mapping ψ_A of Q into the group G such that

186

$$(i\psi_A)(iw_A\psi_B) = i\psi_{AB}$$
 for all $i \in Q$.

The products in V are given by

 $0' \circ A = 0'$

$$A \circ B = AB \tag{1.7}$$

$$(a; i, j) \circ A = (a(j\psi_A), i, jw_A) \quad if \quad j \in Q$$

= 0', the zero of S, if $j \in Q$ (1.8)

$$A \circ (a; i, j) = ((iw_A^{-1}\psi_A)a, iw_A^{-1}, j) \text{ if } i \in Q$$

= 0' if $i \in Q$ (1.9)
 $A \circ 0' = 0'.$

Conversely, let S be a Brandt semigroup and let T^* be a simple I-regular semigroup. If we are given the mappings w and ψ_A described above and define product \circ in the class sum of S and T^* by (1.7)-(1.9), then V is an extension of S by T.

2. The maximal group homomorphic image

The major purpose of this section is to determine the maximal group homomorphic image of a simple *I*-regular semigroup including the defining homomorphism.

To do this, we first determine the homomorphisms of a simple regular ω -semigroup (a simple regular semigroup S such that E_S is order isomorphic to I^0 , the non-negative integers, under the reverse of the usual order) into a group (theorem 2.1). Utilizing this result and our determination of the maximal group homomorphic image of an ω -bisimple semigroup (a bisimple semigroup S such that E_S is order isomorphic to I^0 under the reverse of the usual order) [6, theorem 3.4], we determine the maximal group homomorphic image a simple regular ω -semigroup including the defining homomorphism (theorem 2.2). Finally, utilizing theorem 2.1, theorem 2.2, and 'an inverse limit process' and 'an inductive process' (introduced in [6]), we determine the maximal group homomorphic image of a simple *I*-regular semigroup. We also completely determine the homomorphisms of a simple *I*-regular semigroup into a group. This result was used in section 1.

The multiplication for a simple regular ω -semigroup S (due to Munn [2]) may be obtained from theorem 1.1 by considering the triples $\{(g_r, m, n) : g_r \in G_r \ (0 \le r \le d-1), m, n \in I^0\}$. Thus, we may write $S = (d, G_0, G_1, \dots, G_{d-1}, C_1, \gamma_0, \gamma_1, \dots, \gamma_{d-1})$ where C_1 is the bicyclic semigroup.

R. J. Warne

THEOREM 2.1. Let $S = (d, G_0, G_1, \dots, G_{d-1}, C_1, \gamma_0, \gamma_1, \dots, \gamma_{d-1})$ be a simple regular ω -semigroup and let H be a group. For each $i \in \{0, 1, \dots, d-1\}$, let f_i be a homomorphism of G_i into H and let $z \in H$ such that

$$f_{d-1} C_z = \gamma_{d-1} f_0$$
, where $x C_z = z x z^{-1}$ for $x \in H$, (2.1)

and

$$f_r = \gamma_r f_{r+1} \quad for \quad 0 \le r \le d-2. \tag{2.2}$$

Then,

$$(g_r, m, n)\phi = z^{-m}(g_r f_r)z^n$$
 (2.3)

is a homomorphism of S into H and, conversely every such homomorphism is obtained in this fashion.

PROOF. Let ϕ be a homomorphism of S into H. Define $(g_r, 0, 0)\phi = g_r f_r$. Clearly, f_r is a homomorphism of G_r into H. Let $(e_0, 0, 1)\phi = z$, where e_0 is the identity of G_0 . Hence $(g_r, m, n)\phi = z^{-m}g_r f_r z^n$ and (2.3) is valid. Since $(g_{d-1}\gamma_{d-1}, 0, 0)(e_0, 0, 1) = (e_0, 0, 1)(g_{d-1}, 0, 0)$, (2.1) is valid. Since, for $0 \leq r \leq d-2$, $(g_r, 0, 0)(e_{r+1}, 0, 0) = (g_r \gamma_r, 0, 0)(e_{r+1}, 0, 0)$, (2.2) is valid.

Conversely, let us show that (2.3) subject to the conditions (2.1) and (2.2) defines a homomorphism of S into H. Clearly, ϕ is a well defined mapping of S into H. Form (2.1) and (2.2), we obtain

$$\alpha_{j,\,d}f_0 = f_j C_z \tag{2.4}$$

By induction, we obtain

$$t^{\mathbf{r}}b_{j}f_{j} = b_{j}\alpha_{j,rd}f_{0}z^{\mathbf{r}}$$

$$(2.5)$$

for each positive integer r and each $b_i \in G_i$ $(0 \le j \le d-1)$.

Utilizing (2.5) and (2.2), it is easy to show that (2.3) defines a homomorphism of S into H.

REMARK 2.1 In the case d = 1, we obtain [6, theorem 3.5].

THEOREM 2.2. Let $S = (d, G_0, G_1, \dots, G_{d-1}, C_1, \gamma_0, \gamma_1, \dots, \gamma_{d-1})$ be a simple regular ω -semigroup. Let $N = \{g \in G_0 | g(\gamma_0 \gamma_1 \cdots \gamma_{d-1})^n = k_0, the identity of <math>G_0$, for some $n \in I^0\}$. Then, N is a normal subgroup of G_0 . Let $g \to \overline{g}$ be the natural homomorphism of G_0 onto G_0/N . Define $\overline{x}\theta = \overline{x\gamma_0\gamma_1\cdots\gamma_{d-1}}$ for $x \in G_0$. Then, θ is an endomorphism of G_0/N . Define a relation σ on $G_0/N \times (I^0)^2$ by the rule $((\overline{g}_0, a, b), (\overline{h}_0, c, d)) \in \sigma$ if and only if there exist $x, y \in I^0$ such that x + a = y + c, x + b = y + d and $\overline{g}_0 \theta^x = \overline{h}_0 \theta^y$. Define a binary operation on $V = G_0/N \times (I^0)^2/\sigma$ by the rule

$$(\bar{g}_0, a, b)_{\sigma}(\bar{h}_0, c, d)_{\sigma} = (\bar{g}_0 \,\theta^c \bar{h}_0 \,\theta^b, a+c, b+d)_{\sigma}.$$

188

Then, V is a group which is the maximal group homomorphic image of S. The canonical homomorphism of S onto V is given by

$$(g_r, m, n)\zeta = (\overline{g_r \prod_{j=r}^{d-1}} \gamma_j, m+1, n+1)_\sigma \text{ where } g_r \in G_r$$

PROOF. For simplicity, let $\alpha_{n,m} = \prod_{j=n}^{m-1} \gamma_j$ if m > n and let $\alpha_{n,n}$ denote the identity automorphism of $G_{n(mod d)}$. Let $T = \{(g_0, a, b) : g_0 \in G_0; a, b \in I^0\}$. Then, T is the ω -bisimple semigroup $(G_0, C_1, \alpha_{0,d})$ by theorem 1.1 and [6, theorem 1.1] (notation of [6]). Thus, by [6, theorem 3.4], σ is an equivalence relation and V is a group. By a routine calculation $(k_0, 0, 0)_{\sigma}$ is the identity of V and $(\bar{g}_0^{-1}, b, a)_{\sigma}$ is the inverse of $(\bar{g}_0, a, b)_{\sigma}$. We first employ theorem 2.1 to show that ξ is a homomorphism of S into V. Let $z = (k_0, 0, 1)_{\sigma}$ and $g_r f_r = (\overline{g_r \alpha_{r,d}}, 1, 1)_{\sigma}$ for $0 \leq r \leq d-1$. By a straight forward calculation, (2.1) and (2.2) of theorem 2.1 are valid, and $(g_r, m, n)\xi = z^{-m}g_r f_r z^n$.

Since

$$(g_0, m, n)\zeta = (\overline{g_0 \alpha_{0,d}}, m+1, n+1)_{\sigma}$$
$$= (\overline{g_0 \theta}, m+1, n+1)_{\sigma}$$
$$= (\overline{g_0}, m, n)_{\sigma},$$

 ξ maps S onto V.

Let δ be a homomorphism of S onto a group X. We show that $\delta | T$ is a homomorphism of T onto X. By theorem 2.1, for each $r \in \{0, \dots, d-1\}$, there exists a homomorphism δ_r of G_r into X and $ap \in X$ such that (2.1) and (2.2) of theorem 2.1 are valid and

$$(g_r, m, n)\delta = p^{-m}g_r\delta_r p^n$$

where $g_r \in G_r$. Thus, if $x \in X$, there exists $g_r \in G_r$, $a, b \in I^0$, such that

 $x = p^{-a}g_r \delta_r p^b.$

Hence, utilizing (2.1) and (2.2) of theorem 2.1,

$$x = p^{-a}g_r \gamma_r \delta_{r+1} p^{b}$$
$$= p^{-a}g_r \gamma_r \cdots \gamma_{d-2} \delta_{d-1} p^{b}$$
$$= p^{-(a+1)}g_r \alpha_{r,d} \delta_0 p^{(b+1)}$$
$$= (g_r \alpha_{r,d}, a+1, b+1)\delta.$$

By [6, theorem 3.4], V is the maximal group homomorphic image of T under the homomorphism

$$(g_0, a, b)\phi = (g_0, a, b)_{\sigma}.$$

Hence, there exists a homomorphism η of V onto X such that $\phi \eta = \delta | T$.

We will show that V is the maximal group homomorphic image of S under the homomorphism ξ . We note that

$$(\bar{g}_0, m, n)_{\sigma} \eta = (g_0, m, n) \phi \eta = (g_0, m, n) \delta.$$
 (2.6)

Hence, by (2.6), (2.2), and (2.1),

$$(g_r, m, n)\zeta\eta = (\overline{g_r \alpha_{r,d}}, m+1, n+1)_{\sigma} \eta$$

= $p^{-(m+1)}(g_r \alpha_{r,d})\delta_0 p^{n+1}$
= $p^{-m}g_r \delta_r p^n$
= $(g_r, m, n)\delta$.

REMARK 2.2. In the case d = 1, we obtain [6, theorem 3.4].

The following remarks will be utilized in giving the canonical homomorphism in theorem 2.3 (below) a convenient form.

Let $S = (d, G_0, G_1, \dots, G_{d-1}, C_1^*, \gamma_0, \gamma_1, \dots, \gamma_{d-1}, u_{id})$ be a simple *I*-regular semigroup. Let $\alpha_{m,n} = \gamma_m \gamma_{m+1} \cdots \gamma_{n-1}$ for m < n let $\alpha_{m,m}$ denote the identity automorphism of $G_{m(\text{mod } d)}$. Let a_1 denote a non-negative integer. Define

$$t_{id,a_1} = \begin{cases} f_{a_1-1,i+1}^{-1} u_{(i+1)d} \alpha_{0,d}^{a_1-2} \cdots u_{(i+1)d} \alpha_{0,d} u_{(i+1)d} & \text{if } a_1 \ge 2\\ k_0, \text{ the identity of } G_0, \text{ otherwise.} \end{cases}$$
(2.7)

By the proof of [10, theorem 1]*, $S \cong (U(S_{id} : i \in I, i \leq 0))\lambda$ where S_{id} is the simple regular ω -semigroup $S_{id} = (d, G_0, \dots, G_{d-1}, C_1, \gamma_{id, 0}, \gamma_{id, 1}, \dots, \gamma_{id, d-1})_{id}$ the congruence λ defined in [10],

$$\gamma_{id,\,d-1} = \gamma_{d-1} \, C_{u_{(i+1)d}^{-1}},\tag{2.8}$$

and

$$\gamma_{id,s} = \gamma_s \quad \text{for} \quad 0 \le s \le d-2$$
 (2.9)

under an isomorphism Ψ (defined in [10]).

For $g_r \in G_r$ for $0 \leq r \leq d-1$,

$$(g_r, m, n)_{(i+1)d} \lambda = ((s_{id}^{-1} \alpha_{id, 0, d}^{m-1} \cdots s_{id}^{-1} \alpha_{id, 0, d} s_{id}^{-1}) \alpha_{id, 0, r} g_r ((s_{id} \cdot s_{id} \alpha_{id, 0, d} \cdots s_{id} \alpha_{id, 0, d}^{n-1}) \alpha_{id, 0, r}), m+1, n+1)_{id} \lambda$$

$$(2.10)$$

where if m = 0 (n = 0) the right (left) multiplier of g_r is k_r , the identity of G_r and

$$s_{id} = u_{(i+2)d}^{-1} u_{(i+1)d}, \qquad (2.11)$$

$$g_{d-1}\gamma_{id,\,d-1} = s_{id}^{-1}(g_{d-1}\gamma_{(i+1)d,\,d-1})s_{id}$$
(2.12)

By the proof of [10, theorem 1], if Ψ_{id} is as in [10],

* In [10], S_{id} is denoted by X_{id} .

Some properties of simple *I*-regular semigroups

$$(g_r, a_1, b_1)_{id} = ((t_{id, a_1} \alpha_{0, r})g_r(t_{id, b_1}^{-1} \alpha_{0, r}), a_1 + i, b_1 + i)\Psi_{id}$$
(2.13)

and

[11]

$$(g_r, a_1+i, b_1+i)\Psi_{id} = ((t_{id,a_1}^{-1}\alpha_{0,r})g_r t_{id,b_1}\alpha_{0,r}, a_1, b_1)_{id}. \quad (2.14)$$

THEOREM 2.3. Let $S = (d, G_0, G_1, \dots, G_{d-1}, C_1^*, \gamma_0, \gamma_1, \dots, \gamma_{d-1}, u_{id})$ be a simple I-regular semigroup. Let $N = \{g \in G_0 | g(\gamma_0 \gamma_1 \dots \gamma_{d-1})^n = k_0, the identity of <math>G_0$, for some $n \in I^0\}$. Then, N is a normal subgroup of G_0 . Let $g \to \overline{g}$ be the natural homomorphism of G_0 onto G_0/N . Define $\overline{x}\theta = \overline{x\gamma_0\gamma_1 \cdots \gamma_{d-1}}$ for $x \in G_0$. Then, θ is an endomorphism of G_0/N . Define a relation σ on $G_0/N x(I^0)^2$ by the rule $((\overline{g}_0, a, b), (\overline{h}_0, c, d)) \in \sigma$ if and only if there exist $x, y \in I^0$ such that x + a = y + c, x + b = y + d, and $\overline{g}_0\theta^x = \overline{h}_0\theta^y$. Define a binary operation on $H = G_0/N x(I^0)^2/\sigma$ by the rule $((\overline{g}_0, a, b)_{\sigma}(\overline{h}_0, c, d)_{\sigma} = (\overline{g}_0\theta^c\overline{h}_0\theta^b, a+c, b+d)_{\sigma}$. Then, H is a group which is the maximal group homorphic image of S. The canonical homorphism of S onto V is given by

$$(g_{r}, a, b)\overline{\phi} = \begin{cases} (x_{id}^{-1}\theta^{a_{1}-i-1}\cdots x_{id}^{-1}\theta x_{id}^{-1}((t_{id,a-i}^{-1}\alpha_{0,r})g_{r}(t_{id,b-i}\alpha_{0,r}))\delta_{id} \\ \cdot x_{id}\cdot x_{id}\theta\cdots x_{id}\theta^{b_{1}-i-1}, a_{1}-i, b_{1}-i)_{\sigma} \text{ for } i \leq -1. \\ \text{If } a = i \ (b = i), \ the \ corresponding \ factor \ is \ k_{0}; \\ (\overline{g_{r}\alpha_{r,d}}, a-i+1, b-i+1)_{\sigma} \ for \ i = 0, \end{cases}$$
(2.15)

where
$$(g_r, a, b) \in (k_0, i, i)S(k_0, i, i)$$
 and where
 $x_0 = \bar{k}_0,$
 $x_{-d} = \bar{u}_0^{-1}$ while for $i \leq -2,$
 $x_{id} = \bar{u}_0^{-1}(\bar{u}_{-d}^{-1}\theta)\cdots \bar{u}_{(i+1)d}^{-(i+1)}\bar{u}_{(i+2)d}\theta^{-(i+1)}\bar{u}_{(i+3)d}\theta^{-(i+2)}\cdots \bar{u}_0\theta$
 $g_r\delta_0 = \overline{g_r}\alpha_{r,d}$ while for $i \leq -1$
 $g_r\delta_{id} = \bar{u}_0^{-1}\bar{u}_{-d}^{-1}\theta\cdots \bar{u}_{(i+1)d}^{-(i+1)}\overline{g_r}\alpha_{r,d}\theta^{-i-1}\bar{u}_{(i+1)d}\theta^{-(i+1)}\cdots \bar{u}_{-d}\theta\bar{u}_0$

PROOF. As our proof parallels that of [6, theorem 3.6], we will just give a sketch of the proof. We first use theorem 2.1 to determine a homomorphism ϕ_{id} of S_{id} into H for each $i \in I$ with $i \leq 0$. Let x_{id} and δ_{id} be defined as in the statement of the theorem. In the notation of theorem 2.1, let $z_{id} = (x_{id}, 0, 1)_{\sigma}$, $g_r f_{r,0} = (g_r \delta_0, 1, 1)_{\sigma}$ and $g_r f_{r,id} = (g_r \delta_{id}, 0, 0)_{\sigma}$ for $i \leq -1$ where $g_r \in G_r$ ($0 \leq r \leq d-1$). Utilizing (2.8), we show that (2.1) and (2.2) are valid.

Hence, by (2.3),

$$\begin{cases} (g_r, m, n)_{id} \phi_{id} = \\ \begin{pmatrix} (x_{id}^{-1} \theta^{m-1} \cdots x_{id}^{-1} \theta x_{id}^{-1})(g_r \delta_{id})(x_{id} \cdot x_{id} \theta \cdots x_{id} \theta^{n-1}), m, n)_{\sigma} \text{ if } i \leq -1. \\ \text{If } m = 0 \ (n = 0) \text{ the corresponding factor is } k_0; \\ (\overline{g_r \alpha_{r,d}}, m+1, n+1)_{\sigma} \text{ if } i = 0, \end{cases}$$

$$(2.16)$$

191

defines a homomorphism of S_{id} into H.

We note that $(g_r, m, n)_0 \phi_0 = (\overline{g_r \alpha_{r,d}}, m+1, n+1)_{\sigma}$. Hence, by theorem 2.2, ϕ_0 is a homomorphism of S_0 onto H.

Let us define $x\lambda\phi = x\phi_{id}$ if $x \in S_{id}$. We will show that ϕ is a homomorphism of $S\Psi$ onto H. We note that $(g_r, 1, 1)_{id}\phi_{id} = (g_r, 0, 0)_{(i+1)d}\phi_{(i+1)d}$. Utilizing (2.11), we obtain $(s_{id}, 1, 2)_{id}\phi_{id} = (k_0, 0, 1)_{(i+1)d}\phi_{(i+1)d}$. The desired result is then a consequence of (2.10).

Let G^* be an arbitrary group and let ρ be a homomorphism of $S\Psi$ onto G^* . We denote $\lambda \rho | S_{id}$ by ρ_{id} . Thus, ρ_{id} is a homomorphism of S_{id} into G^* . Since H is the maximal group homomorphic image of S_0 under the homomorphism ϕ_0 by virtue of theorem 2.2, there exists a homomorphism γ of H onto the subgroup $S_0\rho_0$ of G^* such that $(g_r, m, n)_0\phi_0\gamma = (g_r, m, n)_0\rho_0$ for all $(g_r, m, n)_0 \in S_0$.

Next suppose that $(g_r, m, n)_{(i+1)d} \phi_{(i+1)d} \gamma = (g_r, m, n)_{(i+1)d} \rho_{(i+1)d}$ where γ is a homomorphism of H onto $S_{(i+1)d} \rho_{(i+1)d}$.

By virtue of theorem 2.1, there exists v_{id} in G^* and a homomorphism $\eta_{r,id}$ of G_r into G^* for each $r \in \{0, 1, 2, \dots, d-1\}$ such that $v_{id}(g_{d-1})$ $(\eta_{d-1,id})v_{id}^{-1} = g_{d-1}\gamma_{id,d-1}\eta_{0,id}$ and $g_r\eta_{r,id} = g_r\gamma_{id,r}\eta_{r+1,id}$ for $0 \leq r \leq r$ d-2. Furthermore $(g_r, m, n)_{id}\rho_{id} = v_{id}^{-m}(g_r\eta_{r,id})v_{id}^n$ for $(g_r, m, n)_{id} \in S_{id}$. Since $(g_r, 0, 0)_{(i+1)d} \lambda = (g_r, 1, 1)_{id} \lambda$, when $g_r \in G_r$, by (2.10), $(g_r, 0, 0)_{(i+1)d}$ $\rho_{(i+1)d} = (g_r, 1, 1)_{id} \rho_{id}$. Thus, $g_r \eta_{r, id} = v_{id} (g_r \eta_{r, (i+1)d}) v_{id}^{-1}$. Hence, since $(k_0, 0, 1)_{(i+1)d} \rho_{(i+1)d} = (s_{id}, 1, 2)_{id} \rho_{id}$ by (2.10), $v_{id} = (s_{id}^{-1})^{-1}$ $\eta_{0,(i+1)d} v_{(i+1)d}$. Thus, $g_r \eta_{r,id} = (s_{id}^{-1}(g_r \alpha_{(i+1)d,r,d})s_{id})\eta_{0,(i+1)d}$. Utilizing (2.8), (2.9), and (2.2), we obtain $\overline{s_{id}^{-1}(g_r \alpha_{(i+1)d,r,d})s_{id}} = \overline{u}_{(i+1)d}^{-1}$ $(\overline{g_r}\alpha_{r,d})\overline{u}_{(i+1)d}$. Hence, $(s_{id}^{-1}(g_r\alpha_{(i+1)d,r,d}) s_{id}, 0, 0)_{(i+1)d}\phi_{(i+1)d} =$ $(g_r, 0, 0)_{id}\phi_{id}$ and $(g_r, 0, 0)_{id}\rho_{id} = (g_r, 0, 0)_{id}\phi_{id}\gamma$. We also note that $(s_{id}^{-1}, 0, 1)_{(i+1)d}\phi_{(i+1)d} = (k_0, 0, 1)_{id}\phi_{id}$ by (2.16). Hence, $(k_0, 0, 1)_{id}\rho_{id} =$ $(k_0, 0, 1)_{id}\phi_{id}\gamma$. Thus, $(g_r, m, n)_{id}\phi_{id}\gamma = (g_r, m, n)_{id}\rho_{id}$ for all (g_r, m, n) $\in S_{id}$. Hence, H is the maximal group homomorphic image of $S\Psi$ under the homomorphism ϕ . We put ϕ in the form (2.15) by combining (2.16) and (2.14).

REMARK 2.3. In the case d = 1, we obtain [6, theorem 3.6].

The following result is needed to give an explicit determination of the extensions of a Brandt semigroup by a simple I-regular semigroup (theorem 1.3).

THEOREM 2.4. Let $S = (d, G_0, G_1, \dots, G_{d-1}, C_1^*, \gamma_0, \gamma_1, \dots, \gamma_{d-1}, u_{id})$ be a simple I-regular semigroup and let X be a group. Let $\{z_{id}: i \in I, i \leq 0\}$ be a sequence of elements of X and for each $r \in \{0, 1, \dots, d-1\}$ let $\{f_{id,r}: i \in I, i \leq 0\}$ be a sequence of homomorphisms of G_r into X such that

$$f_{id, d-1} C_{z_{id}} = \gamma_{d-1} C_{u_{(i+1)d}} f_{id, 0},$$

$$f_{id, r} = \gamma_r f_{id, r+1} \text{ for } 0 \leq r \leq d-2,$$

$$z_{(i+1)d} = z_{id}^{-1} ((u_{(i+2)d}^{-1} u_{(i+1)d}) f_{0, id}) z_{id}^2, \text{ and}$$

$$f_{r, (i+1)d} = f_{r, id} C z_{id}$$

For each $(g_r, a, b) \in (k_0, i, i) S(k_0, i, i)$, define $(g_r, a, b)\phi = z_{id}^{-(a-i)}$ $((t_{id,a-i}^{-1}\alpha_{0,r})g_r(t_{id,b-i}\alpha_{0,r}))f_{r,id}z_{id}^{b-i}$. Then, ϕ defines a homomorphism of S into X and conversely every such homomorphism is defined in this fashion.

PROOF. We utilize theorem 2.1, (2.14), and the 'inverse limit' process (see [10]).

3. The congruences

In this section, we show that each congruence ρ on a simple *I*-regular semigroup S is a group congruence $(S/\rho \text{ is a group})$, an idempotent separating congruence (each ρ -class contains at most one idempotent) or that S/ρ is a simple *I*-regular semigroup with fewer \mathfrak{D} -classes than S. We determine the idempotent separating congruences in terms of certain normal subgroups of the structure groups of S. The group congruences of S are in a 1-1 correspondence with the normal subgroups of the maximal group homomorphic image of S.

THEOREM 3.1. Let S be a simple I-regular semigroup. Let ρ be a congruence on S. Then ρ is a group congruence, ρ is an idempotent separating congruence, or S/ρ is a simple I-regular semigroup with t \mathfrak{D} -classes where t < d, the number of \mathfrak{D} -classes of S.

PROOF. Let $\{(f_i, n, n) : 0 \leq i \leq d-1, n \in I\}$ denote the set of idempotents of S. Each $D_i = \{(g_i, m, n); g_i \in G_i, m, n \in I\}$ is an I-bisimple semigroup for $0 \leq i \leq d-1$. Thus, by [6, theorem 4.2], $\rho | D_i$ is a group congruence or an idempotent separating congruence for $0 \leq i \leq d-1$. Suppose that ρ is not an idempotent separating congruence. First suppose that $\rho | D_i$ is a group congruence for some *i*. Hence, $(f_i, 0, 0)\rho = (f_i, k, k)\rho$ for all $k \in I$. Let $(f_j, n, n) \in E_{D_j}$ and $(f_k, p, p) \in E_{D_k}$ and suppose that $(f_j, n, n) < (f_k, p, p)$. Thus, $(f_i, n+1, n+1) < (f_j, n, n) < (f_k, p, p) < (f_i, p-1, p-1)$. Hence, $(f_i, n, n)\rho = (f_k, p, p)\rho$ and ρ is a group congruence for each $0 \leq i \leq d-1$. Then, there exist $(f_i, n, n), (f_r, q, q) \in E_S$ such that $(f_i, n, n) \rho = (f_k, q, q)\rho$. Thus, $D_i\rho$ and $D_k\rho$ lie in the same \mathfrak{D} -class of S/ρ . Hence, S/ρ is a simple *I*-regular semigroup with $t \mathfrak{D}$ -classes with t < d.

REMARK 3.1. In the case d = 1, we obtain [6, theorem 4.2].

REMARK 3.2. We may replace 'simple *I*-regular' by 'simple ω -regular' in theorem 3.1. The proof is analogous.

We next determine the idempotent separating congruences of a simple *I*-regular semigroup.

Let G_0, G_1, \dots, G_{d-1} be a collection of disjoint groups and let γ_i be a homomorphism of G_i into G_{i+1} for $0 \leq i \leq d-2$ and let γ_{d-1} be a homomorphism of G_{d-1} into G_0 . Let V_i be a normal subgroup of G_i for $0 \leq i \leq d-1$ such that $V_i\gamma_i \subseteq V_{i+1}$ for $c \leq i \leq d-2$ and $V_{d-1}\gamma_{d-1}$ $\subseteq V_0$. Then, $(V_0, V_1, \dots, V_{d-1})$ will be called a $\gamma_0 - \gamma_1 \dots - \gamma_{d-1}$ invariant d-tuple of $(G_0, G_1, \dots, G_{d-1})$. Let $(V_0, V_1, \dots, V_{d-1})$ and $(U_0, U_1, \dots, U_{d-1})$ be $\gamma_0 - \gamma_1 - \dots - \gamma_{d-1}$ invariant d-tuples of $(G_0, G_1, \dots, V_{d-1})$ invariant d-tuples of $(G_0, G_1, \dots, V_{d-1})$ invariant d-tuples of $(G_0, G_1, \dots, V_{d-1})$ if and only if $V_i \subseteq U_i$ for $0 \leq i \leq d-1$.

In the proof of the following theorem, we will utilize a theorem of Preston [6, theorem 4.3]. We also utilize the notation of this theorem. We will sketch the following proof where it parallels the proof of [6, theorem 4.4].

THEOREM 3.2. Let $S = (d, G_0, G_1, \dots, G_{d-1}, C_1^*, \gamma_0, \gamma_1, \dots, \gamma_{d-1}, m_{id})$ be a simple I-regular semigroup. There exists a 1-1 correspondence between the idempotent separating congruences on S and the $\gamma_0 - \gamma_1 - \dots - \gamma_{d-1}$ invariant d-tuples of $(G_0, G_1, \dots, G_{d-1})$. If $\rho^{(V_0, V_1, \dots, V_{d-1})}$ is the idempotent separating congruence corresponding to the $\gamma_0 - \gamma_1 - \dots - \gamma_{d-1}$ invariant d-tuple $(V_0, V_1, \dots, V_{d-1})$, $(g_r, a, b)\rho^{(V_0, \dots, V_{d-1})}$ (h_s, c, d) if and only if r = s, a = c, b = d and $V_r g_r = V_r h_r$. If $(V_0, V_1, \dots, V_{d-1})$ and $(U_0, U_1, \dots, U_{d-1})$ are two $\gamma_0 - \gamma_1 - \dots - \gamma_{d-1}$ invariant d-tuples $(V_0, V_1, \dots, V_{d-1}) \subseteq (U_0, U_1, \dots, U_{d-1})$ if and only if $\rho^{(V_0, V_1, \dots, V_{d-1})} \subseteq \rho^{(U_0, U_1, \dots, U_{d-1})}$.

PROOF. Let $(V_0, V_1, \dots, V_{d-1})$ be a $\gamma_0 - \gamma_1 - \dots - \gamma_{d-1}$ invariant *d*-tuple of $(G_0, G_1, \dots, G_{d-1})$. Let $N_{(k_r, a, a)} = \{(v_r, a, a) : v_r \in V_r\}$ and let $N = U(N_{(k_r, a, a)} : 0 \le r \le d-1, a \in I)$. By a routine calculation, $N_{(k_r, a, a)}$ is a subgroup of *S* isomorphic to V_r . By [6, theorem 4.3] ρ_N is an idempotent separating congruences of *S*. We denote ρ_N by $\rho^{(V_0, V_1, \dots, V_{d-1})}$.

Let ρ be an idempotent separating congruence of S. Then, by [6, theorem 4.3] $\rho = \rho_N$ where N is given in the statement of [6, theorem 4.3]. $N_{(e_r, a, a)} = \{(v_r, a, a) : v_r \in V_r\}$ where V_r is an invariant subgroup of G_r . Since $(e_{r+1}, 0, 0)(e_r, 0, 0) = (e_{r+1}, 0, 0), (e_{r+1}, 0, 0)(v_r, 0, 0) \in N_{(e_{r+1}, 0, 0)}$. Thus $v_r \gamma_r \subseteq V_{r+1}$ for $0 \leq r \leq d-2$. Since $(e_0, 0, 1)$ $(e_{d-1}, 0, 0)(e_0, 1, 0) = (e_0, 0, 0), (e_0, 0, 1)(v_{d-1}, 0, 0)(e_0, 1, 0) \in N_{(e_0, 0, 0)}$. Thus, $v_{d-1}\gamma_{d-1} \in V_0$. Hence, $\rho = \rho^{(V_0, V_1, \dots, V_{d-1})}$ and we have the desired correspondence.

REMARK. In the case d = 1, we obtain [6, theorem 4.4].

REMARK. We may replace 'simple *I*-regular semigroup' by 'simple regular ω -semigroup' in theorem 3.2. The proof is analogous.

REFERENCES

- A. H. CLIFFORD AND G. B. PRESTON
- [1] The algebraic theory of semigroups, Math. Surveys of the American Math. Soc. 7 (Vol 1), Providence, R.I., 1961.
- W. D. MUNN,
- [2] Regular ω-semigroups, Glasgow Math. J., J., 9 (1968), 44-66.
- R. J. WARNE
- [3] Regular d-classes whose idempotents obey certain conditions, Duke Math. J. 33 (1966), 187-195.
- R. J. WARNE
- [4] Extensions of Completely 0-simple semigroups by completely 0-simple semigroups, Proc. Amer. Math. Soc. 17 (1966), 524-526.
- R. J. WARNE
- [5] Extensions of Brandt semigroups and applications, Illinois J. Math., 10 (1966), 652-660.
- R. J. WARNE
- [6] I-bisimple semigroups, Trans. Amer. Math. Soc., 130 (1968), 367-386.
- R. J. WARNE
- [7] Extensions of I-bisimple semigroups, Can. J. Math., 19 (1967), 419-426.
- R. J. WARNE
- [8] Errata to [7].
- R. J. WARNE
- [9] Extensions of $\omega^{n}I$ -bisimple semigroups, Mathematica Japanicae, 13 (1968), 105-121.
- R. J. WARNE
- [10] I-regular semigroups, to appear.

(Oblatum 24-XII-68)

West-Virginian University Dept. of Mathematics Morgantown, W.-Virginia U.S.A.