Representations of infinite weak product groups
Compositio Mathematica, Tome 22 (1970) no. 1, pp. 7-18.
@article{CM_1970__22_1_7_0,
     author = {Bures, Donald},
     title = {Representations of infinite weak product groups},
     journal = {Compositio Mathematica},
     pages = {7--18},
     publisher = {Wolters-Noordhoff Publishing},
     volume = {22},
     number = {1},
     year = {1970},
     mrnumber = {262838},
     zbl = {0234.20017},
     language = {en},
     url = {http://www.numdam.org/item/CM_1970__22_1_7_0/}
}
TY  - JOUR
AU  - Bures, Donald
TI  - Representations of infinite weak product groups
JO  - Compositio Mathematica
PY  - 1970
SP  - 7
EP  - 18
VL  - 22
IS  - 1
PB  - Wolters-Noordhoff Publishing
UR  - http://www.numdam.org/item/CM_1970__22_1_7_0/
LA  - en
ID  - CM_1970__22_1_7_0
ER  - 
%0 Journal Article
%A Bures, Donald
%T Representations of infinite weak product groups
%J Compositio Mathematica
%D 1970
%P 7-18
%V 22
%N 1
%I Wolters-Noordhoff Publishing
%U http://www.numdam.org/item/CM_1970__22_1_7_0/
%G en
%F CM_1970__22_1_7_0
Bures, Donald. Representations of infinite weak product groups. Compositio Mathematica, Tome 22 (1970) no. 1, pp. 7-18. http://www.numdam.org/item/CM_1970__22_1_7_0/

D. Bures [1] Certain factors constructed as infinite tensor products, Comp. Math. 15 (1963), 169-191. | EuDML | Numdam | Zbl

D. Bures [2] An extension of Kakutani's theorem on infinite product measures to the tensor product of semi-finite W*-algebras - to appear, Trans. Amer. Math. Soc. | MR | Zbl

D. Bures [3] Tensor products of W*-algebras (submitted for publication). | Zbl

J. Dixmier [4] Les algèbres d'opérateurs dans l'espace hilbertien, Paris, 1957. | Zbl

L. Carding and A.S. Wightman [5] Representations of the anticommutation relations, Proc. Nat. Acad. Sci. 40 (1954), 617-621. | Zbl

J.R. Klauder, J. Mckenna and E.J. Woods [6] Direct-product representations of the canonical commutation relations, J. Math. Phys. 7 (1966), 822-828. | MR | Zbl

J. Von Neumann [7] On infinite direct products, Comp. Math. 6 (1938), 1-77. | EuDML | JFM | Numdam | Zbl