Compositio Mathematica

B.S. TAVATHIA
 Certain theorems on unilateral and bilateral operational calculus

Compositio Mathematica, tome 22, $\mathrm{n}^{\mathrm{o}} 1$ (1970), p. 58-66
http://www.numdam.org/item?id=CM_1970__22_1_58_0
© Foundation Compositio Mathematica, 1970, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

Certain theorems on unilateral and bilateral operational calculus

by

B. S. Tavathia ${ }^{1}$

1. Introduction

A generalization of the Laplace-transform is given [5] as

$$
\begin{equation*}
F(p)=p \int_{0}^{\infty} e^{-\frac{1}{2} p t} W_{k+\frac{1}{2}, m}(p t)(p t)^{-k-\frac{1}{2}} f(t) d t \tag{1.1}
\end{equation*}
$$

where $W_{k, m}(t)$ is the confluent hypergeometric function. $F(p)$ is called the Meijer-transform of $f(t)$ and is symbolically denoted by

$$
\begin{equation*}
f(t) \xrightarrow[m]{\stackrel{k+\frac{1}{2}}{\longrightarrow}} F(p) \quad \text { or } \quad F(p) \stackrel{k+\frac{1}{2}}{\underset{m}{2}} f(t) . \tag{1.2}
\end{equation*}
$$

For $k=m$, it reduces to the Laplace-transform.
In two variables $f(t)$ and $F(p)$ will be replaced by $f\left(t_{1}, t_{2}\right)$ and $F\left(p_{1}, p_{2}\right)$, where $F\left(p_{1}, p_{2}\right)$ is defined by the double integral

$$
\begin{align*}
F\left(p_{1}, p_{2}\right)= & p_{1} p_{2} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{1}{2} p_{1} t_{1}-\frac{1}{2} p_{2} t_{2}} W_{k_{1}+\frac{1}{2}, m_{1}}\left(p_{1} t_{1}\right) W_{k_{2}+\frac{1}{2}, m_{2}}\left(p_{2} t_{2}\right) \tag{1.3}\\
& \times\left(p_{1} t_{1}\right)^{-k_{1}-\frac{1}{2}}\left(p_{2} t_{2}\right)^{-k_{2}-\frac{1}{2}} f\left(t_{1}, t_{2}\right) d t_{1} d t_{2}
\end{align*}
$$

and this relation will be symbolically denoted by

$$
\begin{equation*}
f\left(t_{1}, t_{2}\right) \xrightarrow[m_{i}]{k_{i}+\frac{1}{2}} F\left(p_{1}, p_{2}\right), \quad i=1,2 . \tag{1.4}
\end{equation*}
$$

Further, if the range of integration in (1.3) is $-\infty$ to ∞ in place of 0 to ∞, it will be denoted symbolically as

$$
\begin{equation*}
f\left(t_{1}, t_{2}\right) \xrightarrow[m_{i}]{\stackrel{k_{i}+\frac{1}{2}}{\longrightarrow}} F\left(p_{1}, p_{2}\right), \quad i=1,2 . \tag{1.5}
\end{equation*}
$$

For $k_{i}=m_{i}, i=1,2,(1.4)$ and (1.5) reduce to the Laplacetransform of two variables where the range of integration is 0 to ∞ and $-\infty$ to ∞ respectively. When the range of integration is 0 to ∞, we call either transform (Laplace or Meijer) unilateral two dimensional transform and when the range of integration is

[^0]$-\infty$ to ∞, it is called bilateral two dimensional transform. The right hand sides of (1.1) and (1.3) are defined by $L_{I}\{f\}$ and $L_{\Pi}^{2}\{f\}$. The integrals are taken in the sense of Lebesgue. The domain of convergence is the domain of absolute convergence as explained in Die Dimensionale Laplace-transformation by Doetsch and Voelker [6] and also in the paper of Gupta [3].

In this paper, we have proved certain theorems in unilateral and bilateral two dimensional Meijer-transform and a self-reciprocal property. Examples are given in one variable as an application.

2

Theorem 1. (a). Let

$$
\begin{equation*}
t_{1}^{n_{1}} t_{2}^{n_{2}} f\left(t_{1}, t_{2}\right) \xrightarrow[m_{i}]{k_{i}+\frac{1}{2}} F\left(p_{1}, p_{2}\right), \tag{i}
\end{equation*}
$$

where $L_{\Pi}^{2}\left\{t_{1}^{n_{1}} t_{2}^{n_{2}} f\left(t_{1}, t_{2}\right)\right\}$ is absolutely convergent in a pair of associated half-planes $H_{p_{1}}, H_{p_{2}}$ which may be defined by $\operatorname{Re}\left(p_{i}\right)>0$, ($i=1,2$).
(ii) $h_{i}\left(\lambda_{i}, t_{i}\right) \xrightarrow[m_{i}]{k_{i}+\frac{1}{2}} e^{-\frac{1}{2} \lambda_{i} \psi_{i}\left(p_{i}\right)} W_{k_{i}+\frac{1}{2}, m_{i}}\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]^{-k_{i}-\frac{1}{2}}$,
where $\psi_{i}\left(p_{i}\right)=\phi_{i}^{-1}\left(\log p_{i}\right), \lambda_{i}>0$ and $L_{\Pi}\left(h_{i}\right)$ is absolutely convergent in the half-planes $D_{p_{i}}$ (say) defined by $\operatorname{Re}\left(p_{i}\right)>0$ and

$$
\begin{equation*}
e^{-\frac{1}{2} \lambda_{i} \psi_{i}\left(p_{i}\right)} W_{k_{i}+\frac{1}{2}, m_{i}}\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]^{-k_{i}-\frac{1}{2}} \tag{iii}
\end{equation*}
$$

and $h_{i}\left(\lambda_{i}, t_{i}\right)$ are bounded and integrable in ($0, \infty$) in p_{i} and t_{i} respectively and $t_{1}^{n_{1}-1} t_{2}^{n_{2}-1} f\left(t_{1}, t_{2}\right)$ is absolutely integrable in t_{1}, t_{2} in ($0, \infty$).
(iv) $\phi_{i}\left(t_{i}\right)$ is monotonic, varying from $-\infty$ to ∞ at t_{i} varies from $-\infty$ to ∞.
(v) $\left(F\left(t_{1}, t_{2}\right)\right) / t_{1} t_{2}$ is absolutely integrable in t_{1}, t_{2} in ($\left.0, \infty\right)$. Then

$$
\begin{align*}
G\left(t_{1}, t_{2}\right) & \equiv f\left\{e^{\phi_{1}\left(t_{1}\right)}, e^{\phi_{2}\left(t_{2}\right)}\right\} e^{n_{1} \phi_{1}\left(t_{1}\right)+n_{2} \phi_{2}\left(t_{2}\right)} \phi_{1}^{\prime}\left(t_{1}\right) \phi_{2}^{\prime}\left(t_{2}\right) \xrightarrow[k_{i}+\frac{1}{2}]{m_{i}} T\left(p_{1}, p_{2}\right) \tag{2.1}\\
& \equiv p_{1} p_{2} \int_{0}^{\infty} \int_{0}^{\infty} h_{1}\left(p_{1}, t_{1}\right) h_{2}\left(p_{2}, t_{2}\right) \frac{F\left(t_{1}, t_{2}\right)}{t_{1} t_{2}} d t_{1} d t_{2}
\end{align*}
$$

provided that $L_{\Pi}^{2}\{G\}$ is absolutely convergent in a pair of associated convergent strips $S_{p_{1}}$ and $S_{p_{2}}$ which are common regions of $H_{p_{1}}$, $D_{p_{1}}$ and $H_{p_{2}}, D_{p_{2}}$ respectively.

Proof. Let us consider the image-integral

$$
\begin{aligned}
I \equiv & p_{1} p_{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2} p_{1} t_{1}-\frac{1}{2} p_{2} t_{2}} W_{k_{1}+\frac{1}{2}, m_{1}}\left(p_{1} t_{1}\right) W_{k_{2}+\frac{1}{2}, m_{2}}\left(p_{2} t_{2}\right) \\
& \times\left(p_{1} t_{1}\right)^{-k_{1}-\frac{1}{2}}\left(p_{2} t_{2}\right)^{-k_{2}-\frac{1}{2}}\left\{\left\{e^{\phi_{1}\left(t_{1}\right)}, e^{\phi_{2}\left(t_{2}\right)}\right\} e^{n_{1} \phi_{1}\left(t_{1}\right)+n_{2} \phi_{2}\left(t_{2}\right)}\right. \\
& \times \phi_{1}^{\prime}\left(t_{1}\right) \phi_{2}^{\prime}\left(t_{2}\right) d t_{1} d t_{2} .
\end{aligned}
$$

Suppose it to be absolutely convergent in a pair of associated convergence domains.

Let us put $y_{i}=e^{\phi_{i}\left(t_{i}\right)}$. Then, by virtue of (iv), y_{i} varies from 0 to ∞ and $t_{i}=\phi_{i}^{-1}\left(\log y_{i}\right)$.

But $\phi_{i}^{-1}\left(\log y_{i}\right)=\psi_{i}\left(y_{i}\right), \therefore t_{i}=\psi_{i}\left(y_{i}\right), i=1,2$. Therefore, we have

$$
\begin{align*}
I \equiv & p_{1} p_{2} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{1}{2} p_{1} \psi_{1}\left(y_{1}\right)-\frac{1}{2} p_{2} \psi_{2}\left(v_{2}\right)} W_{k_{1}+\frac{1}{2}, m_{1}}\left[p_{1} \psi_{1}\left(y_{1}\right)\right] \\
& \times W_{k_{2}+\frac{1}{2}, m_{2}}\left[p_{2} \psi_{2}\left(y_{2}\right)\right]\left[p_{1} \psi_{1}\left(y_{1}\right)\right]^{-k_{1}-\frac{1}{2}}\left[p_{2} \psi_{2}\left(y_{2}\right)\right]^{-k_{2}-\frac{1}{2}} \tag{2.2}\\
& \times f\left(y_{1}, y_{2}\right) y_{1}^{n_{1}-1} y_{2}^{n_{2}-1} d y_{1} d y_{2},
\end{align*}
$$

which remains absolutely convergent for $\operatorname{Re}\left(p_{1}\right)>0$ and $\boldsymbol{R e}\left(p_{2}\right)>0$.

Now using (ii) in (2.2), we have

$$
\begin{aligned}
I \equiv & p_{1} p_{2} \int_{0}^{\infty} \int_{0}^{\infty} f\left(y_{1}, y_{2}\right) y_{1}^{n_{1}-1} y_{2}^{n_{2}-1}\left[y_{1} y_{2} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{1}{2} v_{1} x_{1}-\frac{1}{2} v_{2} x_{2}}\right. \\
& \times W_{k_{1}+\frac{1}{2}, m_{1}}\left(y_{1} x_{1}\right) W_{k_{2}+\frac{1}{2}, m_{2}}\left(y_{2} x_{2}\right)\left(y_{1} x_{1}\right)^{-k_{1}-\frac{1}{2}}\left(y_{2} x_{2}\right)^{-k_{2}-\frac{1}{2}} \\
& \left.\times h_{1}\left(p_{1}, x_{1}\right) h_{2}\left(p_{2}, x_{2}\right) d x_{1} d x_{2}\right] d y_{1} d y_{2} .
\end{aligned}
$$

On changing the orders of integration in (2.3), which is permissible as y-and x-integrals are absolutely and uniformly convergent due to assumptions in (i) and (ii), we get

$$
\begin{aligned}
I \equiv & p_{1} p_{2} \int_{0}^{\infty} \int_{0}^{\infty} h_{1}\left(p_{1}, x_{1}\right) h_{2}\left(p_{2}, x_{2}\right)\left[\int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{1}{2} v_{1} x_{1}-\frac{1}{2} v_{2} x_{2}}\right. \\
& \times W_{k_{1}+\frac{1}{2}, m_{1}}\left(y_{1} x_{1}\right) W_{k_{2}+\frac{1}{2}, m_{2}}\left(y_{2} x_{2}\right)\left(y_{1} x_{1}\right)^{-k_{1}-\frac{1}{2}}\left(y_{2} x_{2}\right)^{-k_{2}-\frac{1}{2}} \\
& \left.\times y_{1}^{n_{1}} y_{2}^{2} f\left(y_{1}, y_{2}\right) d y_{1} d y_{2}\right] d x_{1} d x_{2},
\end{aligned}
$$

from which the result follows by using (i).
Theorem 1. (b). Let

$$
\begin{equation*}
f\left(t_{1}, t_{2}\right) \xrightarrow[m_{s}]{k_{i}+\frac{t}{\longrightarrow}} F\left(p_{1}, p_{2}\right), \tag{i}
\end{equation*}
$$

where $L_{\Pi}^{2}\{f\}$ is absolutely convergent in a pair of associated halfplanes $H_{p_{1}}, H_{p_{2}}$ which may be defined by $\operatorname{Re}\left(p_{i}\right)>0, i=1,2$.
(ii) $h_{i}\left(\lambda_{i}, t_{i}\right) \xrightarrow[k_{i}+\frac{1}{4}]{m_{i}} e^{-\frac{1}{2} \lambda_{i} \psi_{i}\left(p_{i}\right)} W_{k_{i}+\frac{1}{2}, m_{i}}\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]^{-k_{i}-\frac{1}{2}}$, where

$$
\psi_{i}\left(p_{i}\right)=\phi_{i}^{-1}\left\{\frac{\log p_{i}}{\log a_{i}}\right\}, \quad \lambda_{i}>0
$$

and $L_{H}\left\{h_{i}\right\}$ is absolutely convergent in the half-planes $D_{p_{i}}$ (say) defined by $\operatorname{Re}\left(p_{i}\right)>0$ and

$$
\begin{equation*}
e^{\left.-\frac{1}{2} \lambda_{i} \psi_{i} i p_{i}\right)} W_{k_{i}+\frac{1}{2}, m_{i}}\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]^{-k_{i}-\frac{1}{2}} \tag{iii}
\end{equation*}
$$

and $h_{i}\left(\lambda_{i}, t_{i}\right)$ are bounded and integrable in ($0, \infty$) in p_{i} and t_{i} respectively and $1 /\left(t_{1} t_{2}\right) f\left(t_{1}, t_{2}\right)$ is absolutely integrable in t_{1}, t_{2} in ($0, \infty$).
(iv) $\phi_{i}\left(t_{i}\right)$ is monotonic and $a_{i}^{\phi_{i}\left(t_{i}\right)}$ tends to zero as t_{i} tends to $-\infty$ and to ∞ as t_{i} tends to ∞.
(v) $\left(F\left(t_{1}, t_{2}\right)\right) / t_{1} t_{2}$ is absolutely integrable in t_{1}, t_{2} in $(0, \infty)$. Then
$G\left(t_{1}, t_{2}\right) \equiv f\left[a_{1}^{\phi_{1}\left(t_{1}\right)}, a_{2}^{\phi_{2}\left(t_{2}\right)}\right] \phi_{1}^{\prime}\left(t_{1}\right) \phi_{2}^{\prime}\left(t_{2}\right) \xrightarrow[i_{i}+\frac{t_{2}}{\longrightarrow}]{m_{i}}$
$T\left(p_{1}, p_{2}\right) \equiv \frac{p_{1} p_{2}}{\log \left(a_{1}\right) \log \left(a_{2}\right)} \int_{0}^{\infty} \int_{0}^{\infty} h_{1}\left(p_{1}, t_{1}\right) h_{2}\left(p_{2}, t_{2}\right) \frac{F\left(t_{1}, t_{2}\right)}{t_{1} t_{2}} d t_{1} d t_{2}$, $a_{i}>0$,
provided that $L_{I}^{2}\{G\}$ is absolutely convergent in a pair of associated convergence strips $S_{p_{1}}, S_{p_{2}}$ which are common region of $H_{p_{1}}, D_{p_{1}}$ and $H_{p_{2}}, D_{p_{2}}$ respectively.

The proof is on the same lines as in Theorem 1(a).
If we substitute $k_{i}=m_{i}, i=1,2$ and $a_{1}=a_{2}=a$ in the above theorem, we get Gupta's theorem [3, p. 197].

We now give a general theorem which can be used both in unilateral and bilateral transforms.

Theorem 2. Let

$$
\begin{equation*}
t_{1}^{1 / \mu_{1}} 1_{2}^{1 / \mu_{2}} f\left(t_{1}, t_{2}\right) \xrightarrow[i_{i}+\frac{1}{2}]{m_{i}} F\left(p_{1}, p_{2}\right), \tag{i}
\end{equation*}
$$

where $L_{I I}^{2}\left\{t_{1}^{1 / \mu_{1}} t_{2}^{1 / \mu_{2}} f\left(t_{1}, t_{2}\right)\right\}$ is absolutely convergent in a pair of associated half-planes $H_{p_{1}}, H_{p_{2}}$ which may be defined by $\operatorname{Re}\left(p_{i}\right)>\mathbf{0}, i=1,2$.
(ii) $h_{i}\left(\lambda_{i}, t_{i}\right) \xrightarrow[k_{i}+\frac{1}{2}]{m_{i}} e^{-\frac{1}{2} \lambda_{i} \psi_{i}\left(p_{i}\right)} W_{k_{i}+\frac{1}{2}, m_{i}}\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]^{-k_{i}-\frac{1}{2}}$, where $\psi_{i}\left(p_{i}\right)=\phi_{i}^{-1}\left(p_{i}^{1 / \mu_{i}}\right), \quad \lambda_{i}>0$ and $L_{\Pi}\left\{h_{i}\right\}$ is absolutely convergent in the half-planes $D_{p_{i}}, i=1,2$ (say) defined by $\operatorname{Re}\left(p_{i}\right)>0$ and

$$
\begin{equation*}
e^{-\frac{1}{2} \lambda_{i} \psi_{i}\left(p_{i}\right)} W_{k_{i}+\frac{1}{2}, m_{i}}\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]^{-k_{i}-\frac{1}{2}} \tag{iii}
\end{equation*}
$$

is bounded and integrable in p_{i} in ($0, \infty$) and $t_{1}^{\left(1 / \mu_{1}\right)-1} t_{2}^{\left(1 / \mu_{2}\right)-1} f\left(t_{1}, t_{2}\right)$ is absolutely integrable in t_{1}, t_{2} in ($0, \infty$).
(iv) $\phi_{i}\left(t_{i}\right)$ is monotonic in t_{i} and varies from 0 to ∞ as t_{i} varies from $-\infty$ to ∞ or from 0 to ∞ as the case may be. Then

$$
\begin{align*}
& G\left(t_{1}, t_{2}\right) \equiv f\left[\phi_{1}^{\mu_{1}}\left(t_{1}\right), \phi_{2}^{\mu_{2}}\left(t_{2}\right)\right] \phi_{1}^{\prime}\left(t_{1}\right) \phi_{2}^{\prime}\left(t_{2}\right) \begin{array}{l}
\stackrel{k_{i}+\frac{1}{2}}{m_{i}} \\
\text { or } \\
\frac{k_{i}+\frac{1}{2}}{m_{i}}
\end{array} \tag{2.5}\\
& T\left(t_{1}, t_{2}\right) \equiv \frac{p_{1} p_{2}}{\mu_{1} \mu_{2}} \int_{0}^{\infty} \int_{0}^{\infty} h_{1}\left(p_{1}, t_{1}\right) h_{2}\left(p_{2}, t_{2}\right) \frac{F\left(t_{1}, t_{2}\right)}{t_{1} t_{2}} d t_{1} d t_{2}, \\
& \mu_{1}>0, \mu_{2}>0,
\end{align*}
$$

provided that $L_{\Pi}^{2}\{G\}$ is absolutely convergent in a pair of associated strips $S_{p_{1}}, S_{p_{2}}$ which are common regions of $H_{p_{1}}, D_{p_{1}}$ and $H_{p_{2}}, D_{p_{2}}$ respectively and the integral on the right hand side is absolutely convergent in t_{1}, t_{2} in ($0, \infty$).

A self-reciprocal property:
Let us consider the above theorem in one variable. We also take the image integral in which t varies from 0 to ∞.

Let $y=\phi^{\mu}(t)=1 / t$, so that $t=\phi^{-1}\left(y^{1 / \mu}\right)=\psi(y)$.

$$
\therefore t=\frac{1}{y}=\psi(y)
$$

here $t \rightarrow 0, y \rightarrow \infty$ and when $t \rightarrow \infty, y \rightarrow 0$.
Now
$f\left[\phi^{\mu}(t)\right] \phi^{\prime}(t)=f\left(\frac{1}{t}\right)\left(-\frac{1}{\mu} t^{-1-(1 / \mu)}\right) \xrightarrow[m]{k+\frac{1}{2}} \frac{p}{\mu} \int_{0}^{\infty} h(p, t) \frac{F(t)}{t} d t$
or

$$
t^{-(1 / \mu)-1} f\left(\frac{1}{t}\right) \xrightarrow[m]{k+\frac{1}{2}}-p \int_{0}^{\infty} h(p, t) \frac{F(t)}{t} d t
$$

But

$$
t^{1 / \mu} f(t) \xrightarrow[m]{k+\frac{1}{2}} F(p) .
$$

So if we take

$$
t^{1 / \mu} f(t)=t^{-(1 / \mu)-1} f\left(\frac{1}{t}\right) \quad \text { i.e. } \quad f\left(\frac{1}{t}\right)=t^{(2 / \mu)+1} f(t)
$$

we get

$$
\begin{equation*}
\frac{F(p)}{p}=\int_{0}^{\infty} h(p, t) \frac{F(t)}{t} d t,^{2} \tag{2.6}
\end{equation*}
$$

i.e. $F(p) / p$ is self-reciprocal under the kernel $h(p, t)$, provided $F(p)$ and $\int_{0}^{\infty} h(p, t)(F(t) / t) d t$ are continuous functions of p in ($0, \infty$).
Now

$$
h(\lambda, t) \xrightarrow[m]{\stackrel{k+\frac{1}{2}}{\longrightarrow}} e^{-\frac{1}{2}(\lambda / p)} W_{k+\frac{1}{2}, m}\left(\frac{\lambda}{p}\right)\left(\frac{\lambda}{p}\right)^{-k-\frac{1}{2}}, \text { where } \psi(p)=\frac{1}{p} .
$$

$$
\therefore h(\lambda, t)=\left\{(\lambda t)^{m-k} \frac{\Gamma(-2 m) \Gamma(1-3 k+m)}{\Gamma(-m-k) \Gamma(1-2 k) \Gamma(1-2 k+2 m)}\right.
$$

$$
\begin{gather*}
{ }_{2} F_{3}\left[\begin{array}{l}
1+m-3 k, 1+m+k ; \\
1+2 m, 1-2 k, 1+2 m-2 k ;
\end{array}\right] \\
+(\lambda t)^{-m-k} \frac{\Gamma(2 m) \Gamma(1-3 k-m)}{\Gamma(m-k) \Gamma(1-2 k) \Gamma(1-2 k-2 m)} \tag{2.7}\\
\left.{ }_{2} F_{3}\left[\begin{array}{l}
1-m-3 k, 1-m+k ; \\
1-2 m, 1-2 k, 1-2 m-2 k ;-\lambda t
\end{array}\right]\right\}
\end{gather*}
$$

provided $2 m$ is not an integer and

$$
\operatorname{Re}(1-3 k+m)>0, \quad \operatorname{Re}(1-3 k-m)>0
$$

Application of the above:
Let $t^{1 / \mu} f(t)=t^{-2 k}(1+t)^{4 k-1}$, which has the property that

$$
t^{1 / \mu} f(t)=t^{-(1 / \mu)-1} f\left(\frac{1}{t}\right)
$$

But

$$
\boldsymbol{t}^{1 / \mu} f(t) \xrightarrow[m]{k+\frac{1}{2}} F(p) .
$$

Therefore, we have [2, p. 237]

$$
\frac{F(p)}{p}=\frac{\Gamma(1-3 k+m) \Gamma(1-3 k-m)}{\Gamma(1-4 k)} p^{-k-\frac{1}{2}} e^{p / 2} W_{3 k-\frac{1}{2}, m}(p)
$$

i.e. $p^{-k-\frac{1}{2}} e^{p / 2} W_{3 k-\frac{1}{2}, m}(p)$ is self-reciprocal under the kernel $h(\lambda, t)$ given by (2.7).

If we substitute $k=m$, we see that $p^{-m-\frac{1}{2}} e^{p / 2} W_{3 m-\frac{1}{2}, m}(p)$ is self-reciprocal under the kernel $J_{0}(2 \sqrt{ } \lambda t)$ which is a known result [2, p. 84].

[^1]
Example on Theorem 2

We take the range of integration from 0 to ∞ and consider the case in one variable only.

Let $y=\phi^{\mu}(t)=1 / t$ so that $\psi(y)=1 / y$.
Further let $t^{1 / \mu} f(t)=t^{4 m-\frac{3}{2}} e^{-(a / t)}$, then taking $k=m-\frac{1}{2}$, we have [1, p. 217]

$$
F(p)=\frac{2}{\sqrt{ } \pi} a^{2 m} p^{\frac{3}{2}-2 m}\left[K_{2 m}(\sqrt{a p})\right]^{2}
$$

From (2.7), we have

$$
\begin{aligned}
h(\lambda t)= & \left\{(\lambda t)^{\frac{1}{2}} \frac{\Gamma(-2 m) \Gamma\left(\frac{5}{2}-2 m\right)}{\Gamma\left(\frac{1}{2}-2 m\right) \Gamma(2-2 m)}{ }_{2} F_{3}\left[\begin{array}{l}
\frac{5}{2}-2 m, \frac{1}{2}+2 m ; \\
2,1+2 m, 2-2 m ;
\end{array}-\lambda t\right]\right. \\
& +(\lambda t)^{\frac{1}{2}-2 m} \frac{\Gamma(2 m) \Gamma\left(\frac{5}{2}-4 m\right)}{\sqrt{\pi} \Gamma(2-2 m) \Gamma(2-4 m)} \\
& \left.{ }_{2} F_{3}\left[\begin{array}{l}
\frac{1}{2}, \frac{5}{2}-4 m ; \\
1-2 m, 2-2 m, 2-4 m ;-\lambda t
\end{array}\right]\right\} .
\end{aligned}
$$

Then, according to Theorem 2, we have

$$
\begin{aligned}
& t^{\frac{1}{2}-4 m} e^{-a t} \xrightarrow[m]{m} \frac{2 a^{2 m}}{\sqrt{ } \pi} p \int_{0}^{\infty}\left\{(p t)^{\frac{1}{2}} \frac{\Gamma(-2 m) \Gamma\left(\frac{5}{2}-2 m\right)}{\Gamma\left(\frac{1}{2}-2 m\right) \Gamma(2-2 m)}\right. \\
&{ }_{2} F_{3}\left[\begin{array}{l}
{\left[\frac{5}{2}-2 m, \frac{1}{2}+2 m ;\right.} \\
2,1+2 m, 2-2 m ;-p t
\end{array}\right] \\
&+(p t)^{\frac{1}{2}-2 m} \frac{\Gamma(2 m) \Gamma\left(\frac{5}{2}-4 m\right)}{\sqrt{\pi} \Gamma(2-2 m) \Gamma(2-4 m)} \\
&{ }_{2} F_{3}\left[\begin{array}{l}
\frac{1}{2}, \frac{5}{2}-4 m ; \\
1-2 m, 2-2 m, 2-4 m ;-p t]\}\left[K_{2 m}(\sqrt{a t})\right]^{2} t^{\frac{1}{2}-2 m} d t \\
\\
\\
\operatorname{Re}(p)>0, \operatorname{Re}(a)>0, \operatorname{Re}(m)<\frac{1}{3}
\end{array} .\right.
\end{aligned}
$$

Evaluating the left hand side [4, p. 387], we get after arranging properly

$$
\begin{align*}
& \int_{0}^{\infty}\left\{(p t)^{\frac{1}{2}} \frac{\Gamma(-2 m) \Gamma\left(\frac{5}{2}-2 m\right)}{\Gamma\left(\frac{1}{2}-2 m\right) \Gamma(2-2 m)}{ }_{2} F_{3}\left[\begin{array}{l}
\frac{5}{2}-2 m, \frac{1}{2}+2 m ; \\
2,1+2 m, 2-2 m ;-p t
\end{array}\right]\right. \\
& \quad+(p t)^{\frac{1}{2}-2 m} \frac{\Gamma(2 m) \Gamma\left(\frac{5}{2}-4 m\right)}{\sqrt{\pi} \Gamma(2-2 m) \Gamma(2-4 m)} \\
& \left.(3.1) \quad{ }_{2} F_{3}\left[\begin{array}{l}
\frac{1}{2}, \frac{5}{2}-4 m ; \\
1-2 m, 2-2 m, 2-4 m ;-p t
\end{array}\right]\right\}\left[K_{2 m}(\sqrt{a t})\right]^{2} t^{\frac{1}{2}-2 m} d t \tag{3.1}
\end{align*}
$$

$$
\begin{align*}
& =\frac{\sqrt{ } \pi \Gamma(2-4 m) \Gamma(2-6 m)}{2 a^{2 m} \Gamma\left(\frac{5}{2}-6 m\right)} p^{4 m-\frac{3}{2}}{ }_{2} F_{1}\left[\begin{array}{l}
2-6 m, 2-4 m ; \\
\frac{5}{2}-6 m ;
\end{array}\right] \tag{3.1}\\
& \operatorname{Re}(p)>0, \operatorname{Re}(a)>0, \operatorname{Re}(m)<\frac{a}{3} .
\end{align*}
$$

If we substitute $m=\frac{1}{4}$ in (3.1), we get a known result [1, p. 182].

4

Theorem 3. Let

$$
\begin{equation*}
f\left(t_{1}, t_{2}\right) \xrightarrow[m_{i}]{k_{i}+\frac{1}{2}} F\left(p_{1}, p_{2}\right), \quad i=1,2 \tag{i}
\end{equation*}
$$

where $L_{I}^{2}\{f\}$ is absolutely convergent in a pair of associated domains $S_{p_{1}}$ and $S_{p_{q}}$.

$$
\begin{align*}
h_{i}\left(\lambda_{i}, t_{i}\right) \xrightarrow[m_{i}]{k_{i}+\frac{1}{2}} \phi_{i}\left(p_{i}\right) e^{-\frac{1}{2} \lambda_{i} \psi_{i}\left(p_{i}\right)} & W_{k_{i}+\frac{1}{2}, m_{i}}\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right] \tag{ii}\\
& \times\left[\lambda_{i} \psi_{i}\left(p_{i}\right)\right]^{-k_{i}-\frac{1}{2}}, \quad i=1,2,
\end{align*}
$$

where λ_{i} denotes a real parameter and $L_{I}\left\{h_{i}\right\}$ is absolutely convergent in t_{i} in the domain $\nu_{p_{i}}$ (say) and $\psi_{i}\left(p_{i}\right) \in S_{p_{i}}$ and $\phi_{i}\left(p_{i}\right) \in S_{p_{i}}$. (iii) $f\left(t_{1}, t_{2}\right)$ is absolutely convergent in ($0, \infty$) and $h_{1}\left(\lambda_{1}, t_{1}\right)$ and $h_{2}\left(\lambda_{2}, t_{2}\right)$ are bounded and integrable in λ_{1}, λ_{2} and t_{1}, t_{2} in $(0, \infty)$.

Then

$$
\begin{align*}
G\left(t_{1}, t_{2}\right) \equiv & \int_{0}^{\infty} \int_{0}^{\infty} h_{1}\left(\lambda_{1}, t_{1}\right) h_{2}\left(\lambda_{2}, t_{\lambda}\right) f\left(\lambda_{1}, \lambda_{2}\right) d \lambda_{1} d \lambda_{2} \tag{4.1}\\
& \xrightarrow[m_{i}]{k_{i}+\frac{1}{2}} \xrightarrow{\phi_{1}\left(p_{1}\right) \phi_{2}\left(p_{2}\right)} \psi_{1}\left(p_{1}\right) \psi_{2}\left(p_{2}\right) \\
& \left.\psi_{1}\left(p_{1}\right), \psi_{2}\left(p_{2}\right)\right],
\end{align*}
$$

provided that $L_{\Pi}^{2}\{G\}$ is absolutely convergent in a pair of associated domains $\Omega_{p_{1}}$ and $\Omega_{p_{2}}$ where $\Omega_{p_{1}}$ is the common part (suppose it exists) of $S_{p_{1}}$ and $D_{p_{1}}$ in the complex p_{1} plane and $\Omega_{p_{2}}$ is a similar common part of $S_{p_{2}}$ and $D_{p_{2}}$ in the complex p_{2} plane.

Proof: We replace p_{1} and p_{2} in (i) by $\psi_{1}\left(p_{1}\right)$ and $\psi_{2}\left(p_{2}\right)$ and rest of the proof is simple.

REFERENCES

A. Erdélyi and others
[1] Tables of Integral Transforms, Vol. 1 (1954) McGraw Hill.
A. Erdélyi and others
[2] Tables of Integral Transforms, Vol. 2 (1954) McGraw Hill.
R. K. Gupta
[3] Certain transformations on unilateral and bilateral operational calculus, Bull. Calcutta Math. Soc. (1959), p. 191-198.
J. P. Jaiswal
[4] On Meijer Transform, Mathematische Zeitschrift, Band 55, Heft 3 (1952), p. 385-398.
C. S. Meijer
[5] Eine neve Erweiterung der Laplace Transformation, Proc. Ned. Acad. v. Wetensch., Amsterdam 44, (1941a), p. 727-737.
D. Voelker and D. Doetsch
[6] Die Zweidiminsionale Laplace-transformation, Verlag Birkhäuser Basel, (1950).
B. van der Pol and H. Bremmer
[7] Operational calculus based on two sided Laplace Integral, Cambridge University Press, 1955.
(Oblatum 3-XII-68)
(Revised version 25-7-69)

Department of Mathematics
B.I.T.S. Pilami

Rajasthia, India

[^0]: 1 This research was supported by N.R.C. Grant.

[^1]: 2 The negative sign is omitted in view of the fact that when $t \rightarrow 0, y \rightarrow \infty$ and when $t \rightarrow \infty, y \rightarrow 0$.

