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1. Introduction and basic definitions

It has become an adopted technique in general topology to
introduce more and more types of spaces of less and less interest.
In this paper we submit ourselves precisely to this kind of criticism.
We claim that-historically-the development of the notion of a
topological space and its ramifications, e.g. Hausdorff spaces, has
been -to some extent -arbitrary and we shall begin an investiga-
tion of this phenomenon. Let us make this clear by means of an
example.
The union of an expanding sequence of finite discrete spaces can

be topologized in several ways; firstly, by taking the open subsets
of members of the sequence as an open base, secondly by taking
the closed subsets of its members as a closed base. In the first case

we obtain a discrete space, in the second case the so-called co-

finite topology (proper closed subsets are finite; all subsets are
compact). The discrete space is the strongest possible topology on
a set; the cofinite topology is the weakest possible Tl-topology
on this set. There seems to be no reason to favor one topology over
the other, although from a "constructive point of view" the second
approach seems to be the better one.
More generally, to practically every space of importance there

corresponds -roughly speaking by interchanging compact and
closed sets-an "antispace" which, conversely, determines the
given space. This phenomenon of antispaces has been briefly dis-
cussed (without proofs) in [3]. In doing so it turns out to be neces-
sary-and we think worthwhile for its own sake-to investigate
again more closely than before, the notion of compactness and
then-force majeure-the notion of a topological space. Indeed
for the formalism we need to develop, it is essential to introduce
these notions in a context slightly more general than usual.

Definition of a compact set and the operators pt?,.
Let X be a set and 8 a family of subsets of X. If A C X, then



350

A will be said to be compact relative to s, or equivalently A E p ij,
provided that for every Y C 9, for which £f u {A} has the finite
intersection property - (f.i.p ) -the intersection of the collection
L u {A} is non-empty. Observe that if 9 is considered to be a
subbase for the closed sets of a space (or in particular the family
of all closed subsets of a space) then the collection of sets which
are compact relative to s coincides with the family of compact
subsets of the space. p 3 denotes the family of compact sets of X,
relative to ae5. For n &#x3E; 1, the family 03C1n J is defined inductively

Thus p is an operator - called the compactness operator -

The elements of p2 s and 03C13 S are called squarecompact and cube-
compact respectively. One should not forget that-although the
family of squarecompact sets has remarkable properties-the
notion "squarecompact" is a "relative" one (just as is closed, for
example ) whereas compactness is an "absolute" notion.

Definition o f a minusspace
The fact that we deal primarily with closed rather than open

sets will be reflected in our notation. For example, if B is the

family of all closed subsets of a topological space on X, then the
topological space will be denoted by (X, B). In fact, we find it
useful to use the notation (X, B) to designate something slightly
more general, namely that 0 C 2X, B covers X, and S is closed
under the formation of finite unions and arbitrary intersectionsl.
Under these conditions we cal] (X, 58) a minusspace. Thus a minus-
space (X, B) is a topological space if and only if X E 33. Throughout
the paper "space" will mean minusspace in contradistinction to
topological space. Definitions of usual topological notions can be
extended to (minus )spaees; e.g. B is closed in (X, B) provided
that B E 58, whereas U is open iff X - U E 58, and A is dense iff
U n A ~ Ø for each nonempty open set U. Note that most spaces
usually studied -e.g. non-degenerate Hausdorff spaces-contain
at least one pair of disjoint non-empty open sets and so are auto-
matically topological. The class of (minus )spaees which are not

1 In this connection, the intersection of the empty collection has no meaning;
specifically we do not use the convention that il 0 = X.
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topological is characterized by the property that for them every
open set is connected. For this reason, they are called supercon-
nected. They appear to be "as important" as topological spaces and
are briefly discussed in section 5.

Definition of the operator y
If J is a collection of subsets of X, we let 03B3 J denote all arbitrary

intersections of finite unions of members ouf 9. Thus y is also an

operator

Since the statement that (X, B) is a (minus )space is precisely the
statement that 58 covers X and 33 = y58, y is called the space-
generating operator.
We can multiply operators like y and pn by taking the composites

of the corresponding functions. E.g. the relation py8 = p3 or
briefly py = p is just a brief notation for Alexander’s subbase
theorem, as the reader should make clear to himself.
The first fact to be learned about p2 has been the relation

yp2 - p2, that is: arbitrary intersections of finite unions of square
compact sets are again squarecompact (cf. [3], [4] and section 2).
So the squarecompact subsets of any space determine the closed
subsets of a (minus)space. The second fact (discovered by the
third author) establishes the formula p4 = p2 (cf [4]), so at most
the operators p, p2 (squarecompact), and p3 (cubecompact) can be
different. Moreover, if one starts with a topological space in which
compact sets are closed (e.g. a Hausdorff space), then already
03C1 = 03C13.

In general, the second and third sections are devoted to the
systematic study of the relations between the elements of the
semigroup generated by y and p, and their topological realizations.
In order to do this, we first derive other formulas, like p C p3
(that is p l C p3 s, for all J). This leads to a lattice which is studied
in section 4 together with its topological realizations.
Much effort has been spent on these sections and the correspond-

ing existence problems treated in section 6. (The more sophisticated
examples in this section have been found by the second author.)
The techniques involved represent a main justification for this

paper. We mention another paper [10], in which these techniques
are applied in order to prove the relation
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that is: if X is compact relative to 9 it is also compact relative
to 03B3(S ~ 03C12S), thus strengthening Alexander’s subbase theorem
substantially. Unsolved and hardly seriously attacked remains
the question as to whether the notion of compactness might be
axiomatized by these methods (see section 7).
We now return to the topic which first motivated our research

concerning compactness.
Two minusspaces are said to be antispaces (of each other) and

thus constitute an antipair, provided that either can be obtained
by interchanging the collections of closed subsets and compact
subsets of the other.

So each antispace of an antipair determines the other uniquely.
Antispaces abound in topology: metrizable and locally compact
Hausdorff spaces are antispaces. Each Hausdorff space (X, Q3)
is such that (X, 03C1B) is an antispace; moreover, if (X,B) is an

arbitrary space, (X, 03C12B) is an antispace. In particular a topological
space is an antispace iff the closed sets coincide with the square-
compact sets. (For further details, see the first part of section 5.)
Moreover, we observe that the importance of the category of
topological antispaces is supported by a paper of Steenrod [9],
in which he looks for a convenient category of spaces in algebraic
topology. He shows that the class K of compactly generated
spaces, i.e. Hausdorff k-spaces, is such a category. However, one
has to redefine the notions of topological product and of subspace
(actually these appear as the k-expansions of the ordinary product
and subspace, cf. Arhangel’skil [1]). In the context of this paper
these new definitions become natural. Indeed Jf is a family of
topological antispaces and Steenrod’s definitions of product and
subspace correspond 2013 by means of a categorical isomorphism-
to the usual definitions if taken in the anticlass K*. More funda-

mentally, one might wonder why topological spaces-in this
context-are introduced at allr Indeed, start with a set X, and a
family of subsets 3. Now define the space (X, p2 S), in which the
closed sets are defined as the squarecompact sets relative to 9.

(X, 03C12 S) is an antispace and the additional Hausdorff axiom (or
even some weaker axiom) gives us Steenrod’s category which is a
convenient class of topological antispaces, defined in a simple and
natural way.

Section 7 contains some unsolved problems and we also mention
here an elegant formula derived by P. Bacon. A forthcoming thesis
by the fourth author contains more results on antispaces and the
compactness operator (published University of Amsterdam, 1968).
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2. Fundamental relations

In this section several fundamental relations concerning the
operators p and y are established. Among them are the following
theorems:

THEOREM I. The square compact subsets of any space form a minus
topology, i.e., arbitrary intersections of finite unions of square com-
pact sets are square compact.

THEOREM II. A subset of a space is square compact i f and only if
it is square compact with respect to the space generated by the square
compact sets. Thus any set X together with the square compact
subsets of any topology on X forms an antispace (cf. Theorem V).

These theorems are restated below as relations (8) and (10).
Note that the relations (1) and (2) are immediate consequences

of the definitions of y and p. Also, (3) is merely a restatement of the
well-known Alexander’s subbase theorem; i.e., the sets which are

compact relative to any subbase for a space are precisely the sets
which are compact relative to the space itself. A strengthening of
this relation and related results appear in [10].

Throughout the paper we will assume that 9Î, B, OE, T, D, and 3
are subsets of 2x. Furthermore we define the "cap" operator ̂  as

follows
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PROOF OF (4). Let C ~ D; by (3), C ~ 03C1(03B3S). Thus since D ~ 03B3S
and D u {C} has f.i.p., n D = (n D) n C =1= 0.

PROOF oF (5). If n --1, this is merely a restatement of the well-
known fact that the intersection of a closed set and a compact set
is again compact. To complete the proof by induction, assume that
03B3S A 03C1nS C p" i5 and that F E 03B3S, C E 03C1n+1 S and Ø ~ D C 03C1nS such
that OE w {F n C} has f.i.p. Clearly @’ = {F} &#x26; D ~ 03B3 S &#x26; 03C1n S ~ 03C1n S
and OE’ u {C} has f.i.p. Thus by the definition of compactness,
(~ D) n (F ~ C) = (~ D’) n C ~ Ø; and so 03B3S A 03C1n+1 S C pn+l s.

PROOF oF (6). By the inductive definition of pn, we need only
prove (6) for n = 1. Clearly p §1§ n p2 s C p §1§ A 03C12S, and by apply-
ing the statement of (5) with n = 1 to p3 we have

Thus it remains to be shown that 03C1 S A p2 s C p §1§. Let C ~ 03C1 S,
D e 03C12 S and 0 :A 9t C S be such that U u {C n D} has f.i.p. Now
U’ = 3t A {C} C 03B3 S A 03C1S; so that by (5), U’ ~ 03C1S. Also %’ u {D}
has f.i.p. so that by the definition of p,

Therefore C m D e p Ù.

PROOF OF (7). Suppose that F E i5 and Ø ~ D C pi5 such that
D ~ {F} has f.i.p. By hypothesis {F} ^ D ~ S, and by (5)
{F} A OE C p s. Thus {F} A OE C i5 n 03C1S, so that by (4)

Hence 3 C 03C12S. Clearly p §1§ C yp 9. To prove the reverse inclusion
we need only show that p §1§ is closed under the formation of arbi-
trary intersections. Suppose that Ø ~ D C 03C1S and Ø ~ S) C 3 such
that Z u (n D) has f.i.p. By hypothesis and (5),

Thus by
Consequently 
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PROOF oF (8). By (6), for any i5, 03C1D &#x26; 03C12S = 03C1S ~ 03C12S ~ 03C1D.
Substituting p3 for 3 in (7), we obtain yp2 s = p2 s.

PROOF OF (9). All the inclusions except the last two are obvious
from the definitions, and the last inclusion is an immediate conse-

quence of (5). To show that yp Ù C pi5 A 03C13S assume that C E 03B303C4S
then C = Cl n (~ D), where Cl E p 9 and Ø ~ D E C 03C1S. If

Ø ~ :1J C 03C12S such that T u {n D} has f.i.p., then by (6),

REMARK. None of the inclusions of (9) is reversible. Examples
5 and 8 show that the first and the last two inclusions may be
strict. The example in [5] shows that ail the others may simultane-
ously be strict.

PROOF oF (10). By (9), 03C1 S ~ 03C13 S for all S ~ 2X. Thus by (2)
03C14 S ~ 03C12 S. Also applying (9) to 03C1 S, we have p (p Ù) C p3(p S), or
03C12 S C p4 s. Hence p2 = p4.

3. The semigroup generated by p and y

The relations (1), (3), (8) and (10) of § 2 when taken by them-
selves determine a five element non-commutative semigroup with
the following multiplication table:

Table 1

One may wonder whether or not this semigroup might lead to
an axiomatic characterization of the notion of compactness; e.g.,
if p : 22X - 22X is an operator such that the semigroup generated
by p and the space generating operator y (with binary operation
functional composition) is a semigroup of five disti.nct2 elements

2 Example 8 shows that for the compactness operator the five elements are
distinct.
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having the multiplication of table 1, then what additional condi-
tions must be imposed to guarantee that p be the compactness
operator?

§ 7 contains other questions concerning the characterization of p.
Next, in order to obtain a classification of all topological spaces,

we determine all of the possible congruences of the semigroup with
the multiplication of Table 1. In each case, the equalities listed
are the only non-trivial equalities existing among the semigroup
elements.

If we return to the concrete semigroup where p and y are the
compactness and space generating operators, then we can show
that the congruences Es, E9, and Elo do not occur. First we
establish two more propositions.

Our notational convention will be such that (11) means that for
every S ~ 2X, 03C1 S n 03C12 S = p2 s n 03C13 S; and (12) means that if

8 C 2x and 03C13 S ~ 03C12 S U p s, then 03C1 S = 03C13 S.

PROOF oF (11). Clearly since by (9 ), p C p3, we have

Now if C e p3 s n p2 s for some s C 2x and if 0 =1= D C s such that
S u {C} has f.i.p., then by (5) D A {C} C p2 Ù n 03C13 S and i) A {C}
has f.i.p. Thus by (4) (n Z) n C ~ 0. Hence 03C13 n p2 C p; so that
(11) is established.
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PROOF oF (12). Suppose that 03C13 S ~ 03C12 S U 03C1 S. If A e 03C13 S, then
A e p3 or A e 03C12 S. If A e 03C12 S, then A e 03C12 S n 03C13 S which by (11)
is 03C1 S n 03C12 S. Hence in either case A e 03C1 S, so that 03C13 S C p 3. This
combined with (9) completes the proof.
The above analysis leads to the following classification of all

topological spaces according to compactness criteria.

THEOREM 3. Every space belongs to precisely one o f the classes
E1-E7. (The class E6 may be empty.)

PROOF. It is clear that the classes E12013E10 are disjoint and that
each space must belong to one of them since they exhaust the
possibilities for congruences. By (12) it is evident that the classes
Es, E9, and Elo are empty since if 03C13 = p2, then p = p3 = p2.
Thus any space for which p3 = p2 holds is an E1 space or an E2
space.

Regarding the relative "strengths" of the E-type classifications,
we have the following lattice

Fig. 1.

Dotted lines are shown from E. since we doubt that spaces
satisfying this condition exist.

Following Smythe and Wilkins [7] we call the E1 spaces
"maximal compact". These are precisely those spaces for which
the operator p is the identity. Clearly every compact Hausdorff
space belongs to this class. Conversely each such space is compact
T1 but is not necessarily Hausdorff; cf. example 4. A space belongs
to the class E2 provided that it is not maximal compact, but one
application of the operator p yields a maximal compact space.
Thus these spaces may be called El-generative. Example 10 is
such a space. The E3 spaces are precisely the antispaces which are
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not maximal compact. Examples 1 and 2 or indeed all Hausdorff
k-spaces (cf. § 5) are members of this class. E4 spaces are those
which are not E3 but which are E3-generative in the above sense.
Example 6 is an E4 space. A space is E5 if an application of p does
not give a space, but an application of y p yields an E3 antispace.
Example 5 is such a space. A space is E7 if an application of p does
not yield a space and an application of yp does not yield an anti-
space. Example 8 is an E? space. Thus we have the following:

PROPOSITION 1. There exist spaces for which no two o f the semi-
group elements: y, p, p2, p , and yp are the same.

4. The smallest lattice containing p
and closed under the p operator

We have seen in § 3 that for the concrete semigroup under
investigation, the relations among set-theoretically induced inter-
sections and containments of the semigroup elements is of impor-
tance (since for one thing they determine the non-existence of
certain congruence classes of the abstract semigroup). In this
section we determine the smallest lattice (with order induced by
containment) that contains the element p and is closed under the
application of the p operator. To do this we need three more rela-
tions.

PROOF oF (13). Since by (9) p3 D p, it follows immediately from
(2) that

Therefore it remains to be shown that p2 n p3 is contained in

03C1(03C12 ~ 03C13). Let S ~ 2X, A ~ 03C12 S n 03C13 S, and Ø ~ T C p2 %§ U 03C13 S
such that i) u {A} has f.i.p. By (8) 2/ = {A} A T is a subfamily
of p2 s A p3 1@ which by (6) is the same as 03C12 S ~ 03C13 S. Clearly Z’
has f.i.p., so from (4) it follows that n T’ = (n D) n A ~ 0. Thus
A ~ 03C1(03C12 S ~ 03C13S).
The proof of (14) is immediate from (2).
PROOF oF (15). By (11) and (13) p2 n p = p2 ~ 03C13 = 03C1(03C12 ~ p3).

But by (2) and (14) 03C1(03C12 ~ p3) D p2(p2 n p). To show the reverse
containment, note that by (2) 03C1(03C12 ~ 03C13) ~ 03C13 ~ 03C14. By (10)
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p4 = p2, so that by another application of (2) we have

However, as before, by (13) and (11) 03C1(03C13 ~ p2 ) = p2 n p.
The relations (9), (11), and (14) determine the following lattice :

By (10), (13), and (15) the lattice is clearly closed under applica-
tions of the operator p.

REMARK. Note that the lattice considerations above show that

every 8 C 2x determines in general two pairs of anti-spaces
[ (X, 03C12S); (X, 03C13S)] and [(X, 03C1 S ~ 03C12S); (X, 03C1(03C1 S ~ 03C12S))]. Of
course it may be true that these pairs are the same. This happens
for precisely those spaces for which p s and p2 s are comparable,
i.e., 03C1S ~ 03C12S or 03C12 S ~ 03C1S; cf. (16) below. We will show later
(theorem 13) that (X, 03C1(03C1S n 03C12S)) is not only always an anti-
space but it is also always a topological space and the other mem-
ber of the antipair, (X, 03C1 S n 03C12S), is always compact.

After the next proposition, we will be ready to establish all of
the possible congruence relations (i.e., collapsings) of the lattice.

(16) The following are equivalent:
(a) 03C1(03C12 ~ 03C13) ~ 03C12 ~ 03C13,
(b) p2 and p3 are comparable,
(c) p and p2 are comparable.

PROOF. (a) ~ (b).
If (a)  (b), then there exists some S C 2x such that
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but 03C12 S  03C13 S and 03C13 S  03C12 S. Let A E 03C12 S 2013 03C13 S and B ~ 03C13 S 2013 03C12 S.
By the definition of p there exists D’ and D" such that

o ~ ZI C 03C1S, Ø ~ D" C 03C12 S, 1)’ U {B} has f.i.p. but ( n 1)’) n B = Ø,
and Z" u {A} has f.i.p. but ( n 1") n A = Ø.
By (9), ~ D’ E 03B303C1 S C 03C13 S so that ( n 1)’) n A E 03C13 S A 03C12 S.

However, by (6), 03C13 S A 03C12 S --- 03C13 S n 03C12 S C 03C13 S. Thus

so that (n 1)’ n A ) n (n Z" ) = 0 implies that there exists some
finite collection 9T C 1)" such that ( n T’ n A ) n (~ U") = 0.

Likewise by (8), n 1)" C yp2 s = 03C12 S, so that

Thus (n D" ~ B) ~ (~ D’) = Ø implies that there exists some
finite collection 9T C T’ such that (n D" n B ) n (n U’) - 0.

Let E = (n 9f ~ A) ~ (n 9T n B). Clearly by (8), n 9T n A ~ 03C12 S
and by (8) and (9) ~ U’ n B E p3 s. Thus since p2 C 03C1(03C1 n 03C12) and
p3 C p ( p n p2 ) it can easily be shown that E E /)(p3 n 03C12 S) which
by (a) is contained in 03C12 S ~ 03C13 S. However S’ u {E} has f.i.p.
and n S’ n E = Ø, so that E ~ 03C12 S. Likewise T" u {E} has f.i.p.
and n D" ~ E = Ø, so that E 0 p3 s, which is a contradiction.

(b) ~ (c).
If p3 C p2, we have by (9) that p C p2. On the other hand p2 C p3

implies that p2 = p2 n p3, so that by (11) 03C12 = 03C12 n p which shows
that p2 C p. Thus in either case p and p2 are comparable.

We now outline all of the possible ways in which the lattice under
consideration can collapse and give an example for each case. Each
class consists of those spaces for which only the given defining
relation (and those which follow from it) hold.

(Hl) p = p2; the lattice consists of only one element;
examples 3, 4, and 10.
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(Hs) no collapse; example 11.

THEOREM 4. Every space belongs to precisely one of the classes
Hl-H6’

PROOF. It is clear that the classes Hl - Hg are disjoint. We must
show that the cases Hl-Hs exhaust all possibilities for spaces.
Clearly if p and p2 are not comparable, H4 and H6 are the only
possibilities. Suppose that p2 C p. Then by (9) p2 C p C p3, so that

Thus the only possibilities are H1, H2, and Hs. If p C p2, we have
by (2) that p3 C p2, so that by (12), p = 03C13 C p2. Hence using (16),
the right side of the lattice collapses to p2 and the left side collapses
to p, so that the only possibilities are Hl and H3.

It is clear: that the class H1 is the union of classes El and E2;
that the union of classes H2, H3, and H4 is the union of classes E3
and E4; and that the union of classes Hs and H6 is the union of
classes Es, Es, and E7.

5. Antispaces

Recall that two (minus )spaces over X are said to be antispaces
(of each other), and thus constitute an antipair, provided that
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either can be obtained by interchanging the collections of closed
subsets and compact subsets of the other.

In this section we will develop some of the antispace theory and
provide detailed proofs of the results in [3]. Note that by the
definition, all antispaces will be Tl, and for any antipair, the
topologies when restricted to closed compact subsets are identical.

First we consider a particular class of spaces which are impo rtant
from an antispace standpoint.

DEFINITION. A Hausdorff space is said to be a k-space (cf. [6,
p. 230]) (or a compactly generated space (cf. [8, p. 5])) provided
that a subset is closed if and only if its intersection with every
closed compact subset is closed ; i.e., the space is Hausdorff and
the collection of closed sets, 58, satifies (k1) below.
Along with (k1) we have stated other variations of the k-axiom,

all of which are equivalent for Hausdorff spaces or even for those
spaces in which all compact sets are closed.

A space (X, B) is called a ki-space provided that B satisfies ki,
i = 1, 2, 3, 4. In general these axioms have relative strengths
indicated by:

t,

The proofs of these implications, as well as the fact that they
cannot be reversed in general, but are reversed for Hausdorff
spaces, are straightforward; cf. [2]. The k2-spaces are precisely
the c-spaces of [3] and a space (X, B) is k4 provided that every
D~2X satisfying p33 = 03C1B, is such that D ~ B; cf. [10]. The
connection between antispaces and the k2, k3, and k4 axioms will
be demonstrated in the next four theorems.

THEOREM 5. For a space (X, 0), the following are equivalent:
( i ) (X, 0) is an antispace;
(ii) Q3 = 03C12B, i.e. the closed sets are precisely the square compact sets.
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(iii) (X, B) is a k3-space and 03C1B A 03C12B C B, i.e. every intersection
o f a compact set with a square compact set is closed.

PROOF. (i) ~ (ii).
Clearly by definition (X, B) is an antispace if and only if there

exists a space (X, B*) such that B = 03C1B* and B* = 03C1B, and this
is true provided that B = 03C12B.

Thus the second condition of (iii) is satisfied. To show that

(X, B) is a k3-space, first let A E B; then by the above,

Conversely suppose that A C X and that {A} ̂  03C1B C 0 = p2o.
If Ø ~ D C pQ3 such that g u {A} has f.i.p., then

where Co is any member of OE. Thus, since D’ u {C0} has f.i.p., we
have by the definition of p, (n OE’) n C0 ~ 0. But

thus A e 03C12B = B.

Let (X, 93) be k3 and p58 A 03C12B ~ B. If A e %3 and Ø ~ D C 03C1B
such that OE u {A} has f.i.p., then by the k3 axiom

and for any Co E D, D’ u {C0} has f.i.p.; so that

Rence 58 C p2%S.
If A E p258, then {A} ̂  03C1B C 03C12B A 03C1B ~ B, so that by the k3

axiom A E 58. Thus p2Q3 C B, so ? = 03C12B.
COROLLARY. For every s C 2X, (X, p2 S) is an antispace.
PROOF. Immediate from (10).
For topological spaces, i.e. those spaces for which the underlying

set is closed, we obtain the following theorem and thus have a
characterization for antispaces in which we need not mention
square compact sets.
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THEOREM 6. For a topological space (X, B), the following are
equivalent:

(i) (X, B) is an antispace;

(iii) (X, B) is a k3-space and 03C1B &#x26; 03C12B C 0;

(iv) (X,)8) is a k2-space;
(v) (X,)8) is a k4-space and the intersection of compact sets is

compact (03B303C1B = 03C1B);

(vi) (X, B) is a k4-space and the intersection of any pair of compact
sets is compact (03C1B A 03C1B = 03C1B);

(vii) Every set which is compact or square compact is closed

(03C1B ~ p2113 C B).

PROOF. (i), (ii) and (iii) have been shown to be equivalent under
the more general hypothesis of Theorem 5. We will show that

Suppose that 8 = 03C12B. If {A} A (B n 03C1B) ~ 03C1B and if OE C p58
such that OE u {A} has f.i.p., then since the space is topological,
XE58 = p258. Thus D’ = {A} &#x26; D = {A} ^ {X} ^ D ~ {A} &#x26; 03C12B &#x26; 03C1B.
Thus by (6) OE’ C {A} A (p2o n 03C1B) = {A} A (B n 03C1B) C p58. By
hypothesis, X e 03C12B and OE’ u {X} has f.i.p. Thus

so that A ~ 03C12B = B. Conversely if A ~ B then by (5)
{A} A (B n 03C1B) C pll3 A 113 C 03C1B. Consequently (X, B) is a k2-space.

(iv) ~ (v).
Suppose that (X, B) is Ic2. If A e Q3, then by (5), {A} A PO C pQ3.

Conversely {A} ̂ 03C1B ~ 03C1B clearly implies that {A} A (S n 03C1B) C p58.
Thus every k2-spaee is k4. If Cep33, then {C} &#x26; (B ~ 03C1B) is

clearly contained in PO A B, which by (5) is contained in 03C1B. Thus
by the k2 axiom, C e B. Hence 03C1B C B, so that by (4) yp58 = pll3.

(v) - (vi).
Trivial.

(vi) - (vii).
Suppose that (X, S) is k4 and p58 A pQ3 = PO. If C e pll3, then

{C} &#x26; 03C1B C 03C1B A p%S = 03C1B; so that by the k4 axiom, C e B. Thus
po C B. If A e 03C12B, then by (6),
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so that by k4, A E 58. Hence 03C12B C B.

Suppose that p58 u p2%3 ~ B. Since %3 = y%3 and p58 C 58,
B A 03C1B C B. Thus, by (7) ? C 03C12B, so that 03C12B = B.

COROLLARY. Every Hausdorff k-space is an antispace.
We shall now see that if we restrict our attention to certain

important classes of spaces, we obtain an equivalence between the
Hausdorff property and the property of being an antispace.

DEFINITION. A space (X, B) is said to be locally compact if for
every p e X and B E 58 such that p ~ B, there exists some G E 58
and some C e p58 such that p e X-G C C C X-B.

THEOREM 7. For topological spaces (X, B) which are locally
compact or satisfy the first axiom of countability, the following are
equivalent:

(i) (X, B) is an antispace;

(ii) (X, B) is a k2-space;

(iii) p58 C B; i.e. every compact subset is closed ;

(iv) (X, 58) is Hausdorff.
PROOF. Clearly by theorem 6, (i) is equivalent to (ii) and (ii)

implies (iii ).

(iii) ~ (iv).
Let a and b be distinct points of X. For the case that (X, B) is

locally compact, by definition and the fact that any space satis-
fying (iii) is Tl, there exist Ga, Gb E 58 and Ca, Cb e 03C1B such that
a ~ X-Gb ~ Cb ~ X-{b} and b ~ X-Ga ~ Ca ~ X-{a}. Then by
(iii) Ca and Cb are closed, so that (X-Gb)-Ca and (X-Ga)-Cb
are disjoint open neighborhoods of a and b respectively. For the
case that (X, B) satisfies the first axiom of countability, let {Vn}
be a countable system of neighborhoods for a, and {Wn} a coun-
table system of neighborhoods for b. If for each n, Vn n W n "* 0,
choose cn e V. n Wn. Clearly {a} u {cn | n = 1, 2, 3 ···} is com-
pact, so by (iii) it is closed, which is impossible since every neigh-
borhood of b meets it.

(iv) ~ (ii).
It is well known that every locally compact Hausdorff space

and every first countable Hausdorff space is a k-space (cf. [6,



366

p. 231]) and as has been mentioned, for Hausdorff spaces all four
k axioms are equivalent.

THEOREM 8. Il (X, B) = (X, 03B303C1D) for some D, then the following
are equivalent:
(i) (X, B) is an antispace;
(ii) (X, 58) is a k3-space.

PROOF. By Theorem 5, (i) implies (ii). Conversely suppose that
(X, B) is a k3 space and 58 = 03B303C1D. Then p58 A 03C12B = 03C103B303C1D ^ p2ypOE.
By (3), (6), and (11), this becomes:

Therefore by theorem 5, (X, B) is an antispace.
The next three theorems provide some means of comparing the

notions of compactness and square compactness.

THEOREM 9. For a space (X, B), the following are equivalent:
(i) (X, B) is compact, i.e. X E 03C1B;

PROOF.

(i) - (ii).
Clearly if X e 03C1B, we have, using (5),

(ii) ~ (iii).
If 0 C 03C1B, we have, by (2),

Suppose that 0 U 03C12B C 03C1B. Then if 0 =A S C 0 and has f.i.p.,
we have by (4) that n S) ~ 0; thus X e 03C1B.

THEOREM 10. For a space (X, B), the following are equivalent:
(i) (X, B) is square compact, i. e. X e p2o;
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PROOF.

Let B ~B and 0 ~ D C 03C1B such that D u {B} has f.i.p. Then
by (5), D’ = {B} A D ~ B A 03C12B C 03C12B. If Co E OE, then Co C 03C13B
and OE’ u {Co} has f.i.p. so that

Consequently B E p2113, and we hâve 33 u 03C1B C 03C12B.

If B u p58 C p258 and if Ø ~ D ~ 03C1B has f.i.p. then by (4),

COROLLARY. Every Hausdorff space is square compact.
PROOF. (X, B) Hausdorff =&#x3E; 03C1B ~ B ~ 03C1B C 03C12B.
N.B. The above corollary is also immediate from (4).

THEOREM il. For a space (X, B), the following are equivalent:

(i) (X, B) is compact and square compact;

PROOF. Immediate from theorems 9 and 10.
Next we seek a classification of the pairs of antispaces.
DEFINITION. A space (X, 58) is called superconnected provided

that X itself is not closed, i.e. there do not exist Bi, B2 E 58 such
that X = B1 u B2.
The following lemma is easily verified. Part (iv) explains our

terminology.

LEMMA. For a space (X, B), the following are equivalent:
(i ) (X, B) is superconnected;
(ii) (X, B) is not topological;
(iii) every open set is dense;
(iv) every open set is connected 3.

3 We have thus adopted the convention that the empty set is not connected.
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THEOREM 12. Every pair of antispaces satisfies precisely one of
the following conditions:

(A) The spaces are identical, maximal compact4, and topological.
(B) One space is a k2 non-compact topological space, whereas the

other is a compact superconnected space.

(C ) Each space is superconnected and non-compact.

PROOF. Clearly no pair of spaces can satisfy more than one of
the conditions. To show that they include all possibilities, let

(X, B) and (X, B*) be a pair of antispaces. If neither is compact,
then X e 03C1B ~ 03C1B* = B* u B; hence neither space is topological,
so that by the lemma both are superconnected, and condition (C)
is satisfied.
Thus we may suppose that one space, say (X, B), is compact.

Hence X ~ 03C1B =: B*, so that (X, Q3* ) is topological and so by
theorem 6 is a k2-space. If (X, Q3* ) is also compact, we have by
theorem 9 that 03C1B* ~ B* = 03C1B ~ B = 03C1B*. Thus p is the identity
and the spaces are maximal compact and identical (condition (A ) ) .
If (X, Q3*) is not compact, then X ~ B1 u B2 where Bl,
B2 ~ 03C1B* = Q3. Thus (X, B) is superconnected, which completes
the proof.
Note that by (iii) of the lemma, superconnected spaces are

extremely non-Hausdorff in the sense that no pair of open sets is
disjoint. However by theorem 12 (B) and theorem 7 we see that
(for example) every non-compact metrizable space is completely
determined by some superconnected space - namely its antispace.
Examples 3 and 4 are antispaces satisfying (A), whereas

examples 1 and 2 satisfy (B), and example 7 satisfies (C). We now
introduce a natural method of combining a collection of spaces.

DEFINITION. If (Xi, Oi), i E I is a disjoint collection of spaces,
then their ultra-union is the space (X, B) where X == u {Xi | i ~ I}
and Q3 = y (~ {Bi | i ~ I}). The following is easily established.

LEMMA. Every ultra-union of superconnected spaces is super-
connected and every ultra-union o f an in f inite collection of spaces is
superconnected.
Thus since the ultra-union topology restricted to any of the

original sets yields the original space, we have the following:

4 A space is maximal compact iff it is compact and there exists no strictly finer
(stronger) compact topology on the underlying set; cf. [7].
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PROPOSITION 2. Every space can be embedded in a superconnected
space.
Moreover we have the following result for antispaces.

PROPOSITION 3. I f (Xi, fl$, ), 1 Elis a disjoint collection of compact
antispaces of type (B) then their ultra-union (X, B) and the topolo-
gical union (X, D) of the spaces (Xi, 03C1Bi), i eI form an antipair
of type (B).

PROOF. Clearly (X, D) is k2 and topological since it is the disjoint
union of k2-topological spaces. Thus, by theorem 6, (X, OE) is an
antispace. Now if C e pOE, then there exists some finite collection
j CI such that C C u {Xi | i E J} and C ~ Xi E p(p58i) = 58i for
each i. Thus

Conversely, if B e B, then there exists a finite collection i C I
such that B = u {Bi | i E J} where Bi e 58i = p(p58i) C pOE. Hence
B e 03C1D, so that 58 = 03C1D. But since (X, D) is an antispace, (X, B)
must be an antispace and by the lemma (X, B) is superconnected.
Thus (X, S) and (X, D) form an antipair of type (B).
We now will show that given any collection of subsets of some

set, one can obtain by application of the operator p not only an
antispace (cf. Corollary to theorem 5), but also a k2 antispace
which is topological and which is paired with a compact space.

TIIEOREM 13. For every

form a pair of antispaces, where (X, p s n 03C12S) is compact and

(X, 03C1(03C1 S n 03C12S)) is k2 and topological.

PROOF. By (15) and theorem 5,

form a pair of antispaces. By (14),

so that by theorem 9 (X, p9 n 03C12S) is compact. Thus by theorem
12 (X, 03C1(03C1S n 03C12S)) is topological, whence by theorem 6, it is a
k2 space.
Having investigated the conditions for which a given 3 C 2x

is the collection of closed sets of an antispace, we now list several
conditions which are sufficient for one application of the operator
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p to obtain an antispace, i.e., conditions which are sufficient to
guarantee that 03C1S = 03C13S.

PROOF. Relation (12).

PROOF. If A ~ 03C13S and OE ~ S is such that OE w {A} has f.i.p.,
then D’ = {A} A OE ~ 03C12 S and D’ u {A} has f.i.p., thus

PROOF. Theorem 10.

PROOF. Theorem 10.

PROOF. 03C1(S~03C12S)=03C1S (cf. [10]). Thus by (2) pg c p2 g
which is (d).

PROOF. Relation (2).

PROOF. This condition implies condition (b).

PROOF. By (7), this implies condition (f).

PROBLEM. Does the equality pfJ = ypl also imply pÙ = 03C13S?

6. Examples

EXAMPLE 1. Let ? = 2x; then pb = fA ~ X | A is finite} and
03C12B = Q3. Thus (X, S) is the discrete space and (X, 03C1B) is the

co-finite (or Zariski) space.

EXAMPLE 2. Let (X, B) be the real line with the usual topology.
Then 03C1B ~ B = 03C12S; thus (theorem 5) (X, 58) has a compact
antispace with a properly weaker topology.

EXAMPLE 3. Let (X, S) be any compact Hausdorff space. Then
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EXAMPLE 4. Let (X, B) be the one-point compactification5 of
the rationals (with the usual topology). Then 58 = p58 = 03C12B,
but (X, S) is not Hausdorff.

EXAMPLE 5. Let X be infinite and let a and b be two distinguished
elements of X. Let S = {A ex if A is infinite, then {a, b} ~ A}.
Then

EXAMPLE 6. Let (X, 0) be the integers together with one point
from their Stone-Cech compactification. Then

EXAMPLE 7. Let X be the set of real numbers with their natural

order, let (X, D) be the space with the usual order topology, and
let 58 = {A C X|A has a lower bound and A e D}. Then

EXAMPLE 8. Let W be the space of all ordinal numbers less than

the first uncountable ordinal number mi, with the natural order

topology. Let X = W X {0, 1} and let x : X ~ W be the projec-
tion. Let

Then

Note in particular that 03C1B A 03C13B = 03B303C1B ~ 03C13B.
EXAMPLE 9. Let X be the set of example 8 and let Y = X u {03C91}.

Let A be a member of 113 provided that (a) and (b) below are
satisfied:

1» A set U is an open neighborhood for the adjoined point if the complement of
U is closed and compact in the original space.
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(b) if A is uncountable, then col e A.

Then 03C1B consists of the collection of sets A satisfying (b)
and (c).

03B303C1B consists of those sets A satisfying (b).
03C12B consists of all finite subsets of Y.
03C13B = 2Y.

Consequently

EXAMPLE 10. Let W be the space of all ordinal numbers less

than the first uncountable ordinal number mi with the natural

order-topology. Let N be the discrete space of all natural numbers,
Y be the space W X N with the product topology. Let a, b be two
different points, which are not contained in Y. We set

X = Y u {a, b} and define:
A subset F of X belongs to B iff F fulfills at least one of the

following three conditions:

(1) F is a compact subset of Y,

(2) There exist oc E W, n E N with F = {(03B2, n) : 03B2 &#x3E; 03B1} u {a},
(3) There exist 03B1 ~ W, 03B2 ~ W, n ~ N with

Then the following statements are true (where 03C0N and 03C0W are
the projections from Y onto N and W, respectively):
1) A subset G of X belongs to 03C1B iff G fulfills the following three

conditions:

2) (X, 03B3B) is a ka-space but 03B3B ~ 03C12B.
3) p$8 = 03C12B but (X, 03C1B) is not Hausdorff.

4) There is no set S) ~ 2X such that any of the following is true:
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(This follows from (12) and the fact that pll3 equals 03C12B but is
different from 113 and 03B3B )
EXAMPLE 11. Let (X, B) be the disjoint topological union of the

spaces of example 1 and example 5. Then p33 is not equal to 03C13B,
and 03C12B is comparable neither with pll3 nor with 03C13B. From this it
follows that no two elements of the general lattice (fig. 2) are equal.

7. Problems

The main problem which remains unsolved is the axiomatization
of the notion of compactness in terms of an operator, i.e.

1. Given a function p : 22X - 22X, what is the "best" collection
of relations (possibly concerning powers of p, its relationship with
the space generating operator y, and/or lattice relations) that are
necessary and sufficient for p to be the compactness operator?
We have proved, for instance, that the relations (1)-(16) are

necessary. To what extent are they sufficient? In this context,
or purely for its own sake, one might consider extending the lattice
considerations of § 4 to encompass the operator y, and so include
the results of § 3; or of extending either section to include the
operation A. Possibly the axiomatization questions might also be
looked into from a wider context, e.g. from the standpoint of
category theory.
The following result of P. Bacon might be useful.

A related problem is that of describing p-1 (where p is again the
compactness operator), i.e. given 9 C 2x;

2. (a) Characterize {D C 2X|03C1D = S},
or even less:

(b) Determine whether or not {D ~ 2x 1 p Z = S} is empty.
Similarly,

(c) Determine whether or not {D C 2X|03B303C1D = S} is empty.
Note that 2(b) and 2(c) are actually different questions since

the collection of all countable subsets of an uncountable space can
be yp’Z for some M (example 8) but cannot be 03C1D for any T.

3. (a) Do E6 spaces exist?
The following are related problems:

(b) If ypÙ = 03C1S, then does 03C1S = 03C13S?
(c) If 03B303C1s ~ 03C12S C p9, then must 9 C 03C1S?
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We have called a space (X, B) square compact provided that
X E 03C12B. A subset A C X has been called a square compact subset
of (X, B) provided that A ~ 03C12B. Clearly every square compact
subset is a square compact subspace (with the relative topology).
It should be pointed out, however, that the converse is not true
(every non-closed subset of the real line is a square compact sub-
space but not a square compact subset.) However, for closed
subsets of any space, the two notions coincide. Thus it follows that
the property of being a square compact space is "closed here-

ditary."
4. (a) For what other operations is the property "square com-

pact space" an invariant?
(b ) Can a theory similar to that for compact spaces be devel-

oped for square compact spaces (cube compact spaces)?
In this paper we have investigated the operator p. One can

easily see that the square compactness operator p2 has "nicer"
properties than p (it is idempotent and commutes with the space
generating function y ). Thus we should state for p2 the questions
corresponding to 1 and 2 above, which were stated for p; namely

5. (a) Characterize p2
(b) Describe (p2)-l.

Antispaces are easily defined by the p operator (B = 03C12B).
However, for topological spaces we have a relatively simple charac-
terization without using the p operator (especially without using
p2 ), i.e. a topological space is an antispace provided that every set
which has a compact intersection with each closed compact set, is
closed.

6. Is there a simple characterization of antispaces in general
without using the p operator?
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