@article{CM_1969__21_2_185_0, author = {Roggenkamp, K. W.}, title = {Projective modules over clean orders}, journal = {Compositio Mathematica}, pages = {185--194}, publisher = {Wolters-Noordhoff Publishing}, volume = {21}, number = {2}, year = {1969}, mrnumber = {248170}, zbl = {0175.31801}, language = {en}, url = {http://www.numdam.org/item/CM_1969__21_2_185_0/} }
Roggenkamp, K. W. Projective modules over clean orders. Compositio Mathematica, Tome 21 (1969) no. 2, pp. 185-194. http://www.numdam.org/item/CM_1969__21_2_185_0/
Maximal orders. Trans. Amer. Math. Soc. 97 (1960), 1- 24. | Zbl
and [1]The Morita theorems. Mimeo. notes, Univ. of Oregon, 1962.
[2]Representation theory of finite groups and associative algebras. Interscience, N.Y. 1962. | MR | Zbl
and [3]Über die Idealklassenzahl hyperkomplexer Systeme, Math. Z. 43 (1937), 481-494. | JFM | Zbl
[4]On orders in separable algebras. Can. J. Math. 7 (1955), 509 - 515. | Zbl
[5]Über die Geschlechter von Gittern über Ordnungen. J. für reine und angew. Math., to appear. | MR | Zbl
[6]On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings. Can. J. Math. 7 (1955), 516-526. | MR | Zbl
[7]The Krull-Schmidt-theorem for integral group representations. Bull. Amer. Math. Soc. 67 (1961), 365-367. | MR | Zbl
[8]On the irreducible representations of orders. MS, U. of Illinois, 1967.
[9]A counterexample to a conjecture of A. V. Roiter. Notices Amer. Math. Soc. 14 (1967), 530 (67T-372).
[10]On the integral representations, belonging to one genus. Izv. Akad. Nauk, SSSR 30 (1966), 1315-1324. | MR | Zbl
[11]Faithfully projective modules and clean algebras. Ph.D. thesis, Reichsuniversität Utrecht, 1965. | MR | Zbl
[12]Induced representations and projective modules. Ann. Math. 71 (1960), 552-578. | MR | Zbl
[13]Projective modules over group rings and maximal orders. Ann. Math. 76 (1962), 55-61. | MR | Zbl
[14]The Grothendieck ring of a finite group. Topology, 2 (1963), 85-110. | MR | Zbl
[15]Neuer Beweis der Endlichkeit der Klassen- bei unimodularer Äquivalenz endlicher ganzzähliger Substitutionsgruppen. Hamb. Abh. 12 (1938), 276-288. | JFM | Zbl
[16]