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Relativization with respect to formulas
and its use in proofs of independence

Dedicated to A. Heyting on the occasion of his 70th birthday

by

Leon Henkin 1

In predicate logic the process of relativizing all the quantifiers
of a formula ç is a familiar one.2 The basic logical principle
involving this process is as follows: If p is logically valid and
contains free variables vo, ..., vn-1, if p is any formula containing
exactly one free variable, and if ~(03BC) is the result of relativizing
the quantifiers of cp to ,u, then the formula

is also logically valid.3
This elementary principle, which can be demonstrated in a

completely constructive manner, plays an important role in many
independence proofs. For example, suppose a is the conjunction
of some finite system of axioms (without free variables) for set
theory, and c is a sentence whose independence from a we are
trying to demonstrate. Assume we have a formula 03BC(v0) (e.g.,
p might express the proposition that vo is a constructible set in
the sense of Gôdel 4) for which we can prove the formulas

2 The research and writing for this paper were supported by a National Science
Foundation grant (No. GP-6232X) to the University of California. The work
reported here is closely connected with certain logico-algebraic investigations
which the author is conducting jointly with Donald Monk and Alfred Tarski, and
several of the ideas which contribute to the present paper are attributable to this
collaboration. In particular the form of Theorem 1 is largely owing to this joint
work. The author also acknowledges the contribution to his work of a valuable
talk »ith Don Pigozzi.

2 Cf. item [A] (page 24) of the bibliography, for example.
3 In caste 92 is a sentence, i.e., has no free variables, the antécédent is replaced by

v003BC(v0).
4 See [B].
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in some deductive system Y. Thus any deduction of

within 1 would give us a proof of contradiction within 1. By the
principle of relativization of quantifiers we thus show construc-
tively how a proof of 03C3 ~ 03C4 would give a contradiction within I.
In this way we obtain a proof of the independence of c from a,
relative to the consistency of 1.

In the present paper we wish to describe a process of relativizing
an arbitrary formula p with respect to a formula which may have
more than one free variable, of which the ordinary process of
relativizing quantifiers is a special case.5 And we shall demonstrate
the utility of the more general process by giving an independence
proof of an unusual kind - in a system of logic containing only
finitely many individual variables.

Let oc be any of the ordinal numbers 1, 2, ’ ’ ’, co. We shall
consider an arbitrary grammar Ga having individual variables
v0, v1, ···, vn, ··· for each n  oc. Atomic formulas are con-

structed by using a k-placed sequence of these variables with any
k-place predicate symbol of G03B1(k  oc). We assume Ga contains a
2-place predicate symbol, ~, the equality symbol. Further formu-
las are built up from the atomic ones in a familiar way, using the
primitive sentential connectives A (conjonction sign) and J (nega-
tion sign ), and the existential quantifier symbol 3. Other connectives
such as v (disjunction), ~ (conditional), and H (bi-conditional),
and the universal quantifier symbol V, may be introduced into
the system by definitions in terms of the primitive symbols. We
assume known the distinction between free and bound occurrences
of variables in a given formula.

DEFINITION. Let be any formula of Ga . To each formula of
Ga we associate a formula ~03C0, by the following recursive scheme:
If 99 is atomic, ~03C0 = rp; for all 99, (i ~)03C0 = -1 (~03C0); for all 99 and y,
(ç A 03C8)03C0 = (~03C0 A 03C803C0); for all 99, and for every n  a,

We say that ~03C0 results from ~ by relativizing with respect to Tt.

Il The more general process is perhaps not unknown, although 1 have not found
it set down in any standard work on logic. It is an application of the familiar notion
of rela,tivizing a boolean algebra to one of its elements (cf. [C]) applied to the boolean
algebra of classes of equivalent formulas of a deductive system.
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In the usual process of relativizing quantifiers we use, in place
of n, a formula ,u with just one free variable, obtaining a formula
~(03BC) which is defined in a similar manner except that we specify
(vn~)(03BC) = vn(03BC(vn) A ~(03BC)), where 03BC(vn) results by substituting
free occurrences of vn for the single free variable of ,u. The two
notions of relativization are related as follows.

Suppose p has just one free variable, n  oc, and cp is any formula
of Ga all of whose variables (free and bound) are among

vo,..., vn-1. Let n == 03BC(v0) A ... A 03BC(vn-1). Then the formula

(n A ~(03BC)) ~ (03C0 A ~03C0) is logically valid, and indeed provable in the
deductive system Da to be described below. Thus the formula
03C0 ~ q;(P,) will be provable in Da if, and only if, 03C0 ~ ~03C0 is provable.
In this sense the process of relativizing q with respect to an
arbitrary formula n may be considered a generalization of the
process of relativizing the quantifiers of 99 to a formula lu with
one free variable.
Based upon the grammar Ga we now define a deductive system,

Da, by providing a familiar set of axioms and rules of inference.
We first describe the axioms in several groups. In A2 (and else-
where in the paper) we use ~ij to indicate the result of substituting
free occurrences of vj for all free occurrences of vj in ru, simul-

taneously changing bound variables (in a manner we do not stop
to describe in detail) so as to avoid collisions.

A 1. Any formula of Ga obtained by substitution in a sentential
tautology, is an axiom of Da .

A 2 . If 99 is a formula and i, i  a, let H (99, i, j) hold if, and
only if, no free occurrence of vi in p is within the scope of a

quantifier involving v,. Then the formula ~ij ~ vi~ is an axiom
of Da whenever H(~, 1, j).

A3. vi(~ A y) - (~ A vi03C8) is an axiom of Da whenever v,
has no free occurrence in 99.

A4. vi ~ v, is an axiom of Da for each i  a.

A5 . (vi ~ vi A ç ) - y is an axiom of Da whenever p is an atomic
formula of Ga and y is obtamed from ç by replacing one or more
occurrences of vi by occurrences of v,.
As rules of inference we take detachment, to infer a formula 03C8

from given formulas p and ç - y, and generalization, to infer
~vi~ from a given formula 99 where vi is any variable, i  a.

By means of these axioms and rules we define the notions of a
f ormal proof and a formal theorem for the system D03B1, in the usual
way; we write 1- a, ~, or sometimes simply 1- ç, to indicate that a
formula ~ is such a formal theorem. Finally, if 0393 is any set of
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formulas we write 0393 F ~ to indicate that

for some "03C81’ ..., "Pn E r.

THEOREM 1. (Principle of relativization.) Let oc be any of the
ordinal numbers 1, 2, ..., ro, let F be a set o f formulas and 99 a
f ormula of Gex. Choose n  ex, and any formula 03C0 of Ga containing
no free variables other than vo, ..., vn-1, and let r1( be the set of all
relativized formulas 03C803C0 for all y E r. Let d consist o f

(i) all formulas

where (p is any formula of Da and v0, ···, Vm include all of its free
variables, and ,

(ii) all formulas

where v0, ··· vm include all variables occurring free in Jc ~ 03C0ij.
I f 0393 03B1 ~ then L1 ~ 0393 03B1 03C0 ~ ~03C0.

REMARK. In case 03BC is a formula with single free variable, vo,
and

all of the formulas of d of type (i) or (ii) are provable in D03B1;
hence the above theorem generalizes the principle of relativization
of quantifiers mentioned in the opening paragraph of this paper.
PROOF of theorem. We proceed by a series of lemmas.

LEMMA 1.1. If ~ is any of the axioms A1, i.e., if ~ results by
substitution in a sentential tautology, then  03C0 - ’fJJ1I.

Since for all formulas 99, 0 we have ( ~03C0) = "1 (~03C0) and

(~ 039B 03B8)03C0 = (~03C0 039B 03B803C0), we see that if y is built up from formulas
v1, ···, vk by negation and conjunction signs, then ’fJJ1I can be
obtained from y by substituting vi03C0 for vi, 1 = 1, ..-, k. In partic-
ular, if y is obtained by substituting v1, ···, vk for the variables
of a sentential tautology, then ’fJJ1I will be obtained from the same

tautology by substituting v103C0 , ···, vk03C0 for its variables. Hence y,,
is also one of the axioms A1, and so 03C0 ~ 03C803C0 is also. This proves
 03C0 ~ 03C803C0.
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LEMMA 1.2.  ~ij ~ vi(vi ~ v; A ~), for any formula lp and any
i, i  oc. For it is well known from predicate logic that axioms
A5 may be employed in a recursive fashion to give

and

From (A) we obtain

since vi is not free in q;:. And from (B) we obtain first

and then, since vi is not free in

Using axioms A4 we then get

which, together with A’, gives the desired result.

LEMMA 1.3. For any formula 99 of G03B1, and any i, i  oc, either

H(~, i, j) does not hold or

We show this by induction on the length of 99.
Of course if 99 is atomic then so is ~ij, so that (~ij)03C0 = (~03C0)ij - ~ij,

and hence n - [(~ij)03C0 H (~03C0)ij] is one of the axioms Al.
Since (i w)1 = 7 (~ij) and (~ A 0 )1 - (~ij) A (03B8ij) for ail 99 and 0,

the induction steps in the case of negations or conjunctions are
trivial. We proceed, therefore, to consider formulas of the form
vk~.
Assume that H(vk~, i, j) holds. Then either k = i and

(vk~)ij = vi~, or else k ~ i, j and H(~, i, j) holds.
In case k = i and (vk~)ij, = vi~ we obtain

and
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Thus [((vk~)ij)03C0 H ((vk~)03C0)ij] is a tautology and so of course

as desired.
In the other case, where k =1= i, i and H(~, i, j) holds, we have

the induction hypothesis

Since no variable is free in any formula of A, we obtain from (4):

and hence

By definition of relativization, this gives

Now using Lemma 1.2, we see that

Since Vvo ... ~vm(03C0 ~ n) is one of the formulas (type (ii)) of LI,
where v0, ···, vm include all variables free in n ~ (03C0ij), we infer
from (6) and the definition of relativization that

Since v., is not free in any formula of 4, this may be combined with

(5) to yield

Now the right member of the equivalence in (7) is simply
(vkvi(vi ~ vj A ~)03C0. Hence we may use the fact that

as we see from the form of the type (i) formulas of 4, to obtain
from (7):

Since k =1= i, j, we obtain (with the aid of the definition of
relativization)

which, with another application of Lemma 1.2, gives
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Again using the fact that L1 k n - n’, from the form of type (ii)
formulas of L1, we can combine (8) and (9) to obtain

which completes the inductive proof of Lemma 1.3.

LEMMA 1.4. If 03C8 is any of the axioms A 2 of D03B1, then L1 I 03C0 ~ 03C803C0.
For suppose y = (cp; - 3vicp) for some ~, i, and i satisfying

H(~, i, j). We have

by definition of relativization, and hence

by Lemma 1.3.
But [03C0ij 039B (~03C0)ij] - vi(03C0 A (~03C0) is one of the axioms A2, and

LI  03C0 ~ 03C0ij; because of the type (ii) formulas of d, hence (10)
implies 4 F n ~ 03C803C0, as claimed.

LEMMA 1.5. If ~ is any f ormula of G. containing no free occurrence
of the individual variable vi, then 0394 1- 03C0 ~ (~03C0 H (vi~)03C0).
We prove this by induction on the length of cp. In particular,

if 99 is atomic and does not contain vi , then CP1T = p and

1- (vi ~)03C0 H ((vi03C0) A ~). Hence F 03C0 ~ (~03C0 H (3Vi cP )1T).
Next suppose that v, is not free in  ~, and make the induction

hypothesis that d  03C0 ~ (~03C0 ~ (vi~)03C0). Since  (~03C0) = ( ~)03C0
we get

As vi is not free in any formula of L1, this gives

However, vi is not free in (vi~)03C0, since (vi~)03C0 = vi(03C0 A ~03C0).
Hence we get

Combining this with (11) and the definition of relativization,
we get

as desired.
The induction step for conjunctions can be handled in a similar

manner to the case of negations, and so we proceed to consider
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formulas of the form vk~ which contain no free occurrence of
v,. Of course if k = i then (vk~)03C0 = vi(03C0 039B ~03C0), so that

in this case, in accordance with the lemma.

On the other hand if k =1= i then vi has no free occurrence in cp,
and so our induction hypothesis yields

Since Vk is not free in any formula of A, this gives

i.e.,

Since 4 F (vkvi~)03C0 ~ (vivk~)03C0, by the type (i) formulas of J,
we obtain

completing the inductive proof of the lemma.

LEMMA 1.6. If 03C8 is any of the axioms A3 of D03B1, then L1  03C0 ~ 03C803C0.
For suppose y = vi(~ A 03B8) ~ (99 A 3v, 0), where q and 0 are

formulas of G. and v, is not free in 99. We have

From Lemma 1.5 we get

and hence (since vi is not free in any formula of 0394),

Thus

Applying Lemma 1.5 again, this becomes

But vi is not free in (vi~)03C0 = vi(03C0 A ~03C0), so that

is one of the axioms A 3 .
Hence L1 r 03C0 - 03C803C0, as claimed
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LEMMA 1.7. Il y is any of the axioms A 4 or A5 of D03B1, then

d J- 03C0 ~ 03C803C0. The proof is trivial.

LEMMA 1.8. If L1 J- 03C0 ~ ~03C0 and L1 1- n - (~ ~ O)1T’ then
L1 J- 03C0 ~ °1T.

This is obvious, since (~ - 0),, = (~03C0 ~ 01T).

LEMMA 1.9. Il L1 I- 03C0 ~ ~03C0 then also L1 J- 03C0 ~ (VViCP)1T f or any
variable vi .
We have

so that

But from the hypothesis L1 J- 03C0 ~ CP1T and the fact that v, is not
free in any formula of L1, we get 4 F ~vi(03C0 ~ ~03C0). Thus

d J- (~vi~)03C0, and the lemma follows.
With the lemmas at hand we can now quickly prove the

theorem. By hypothesis, there are formulas 03B31, ···, Yn E h such

that t- (03B31 039B ··· A 03B3n) ~ ~. Let 01,..., ok be the formulas, in

order, making up a formal proof of (yi A ... A yn ) ~ ~. For each
1. - 1, ··· k we can show, by induction, that L1 J- 03C0 ~ (03B8j)03C0. In
case 0, is an axiom, we obtain this by using one of the Lemmas
1.1, 1.4, 1.6, or 1.7; if 0; is obtained from earlier O’s by one of
the rules of inference, we use Lemma 1.8 or 1.9. Finally we see
that d  03C0 ~ (03B8k)03C0, i.e., d  03C0 ~ [(03B31 039B ··· 039B 03B3n) ~ ~]03C0, from

which we readily obtain

This shows that LI u 039303C0  n --+ ~03C0, as asserted in the theorem.

REMARK. Neither the definition of relativized formulas ~03C0,
nor the formulation of the principle of relativization (Theorem 1)
require the presence of the equality sign, ~, in the deductive

system. We call attention, however, to the essential use of Lemma
1.2 in proving Lemma 1.3. Although the latter deals only with the
relativization of an axiom relating quantifiers with substitution,
we brought in the equality sign in giving our proof. We do not
know how to eliminate this incursion, and so we do not know
whether Theorem 1 holds for systems of predicate logic without
identity.

It is well known that the deductive system D w is complete:
Any formula of G03C9 which is logically valid (i.e., holds for all

models) is provable in D03C9. Dl is also complete. But if
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1  oc  go, there are provable formulas of G03B1 which cannot be
proved in D03B1. In this section we shall give a simple example for
the case oc = 3.

Consider the completely obvious proposition that a function
with at most two distinct elements in its domain can have at
most two elements in its range. Note that this can be expressed
by a formula of G3 , as follows.
We take a system G3 having a single 2-place predicate symbol,

F, and two 1-place predicate symbols, D and R. Only the individ-
ual variables v0, v1, v2 are in the grammar, of course. Now we
consider the following formulas of G3:

Then the proposition that every function whose domain has at
most 2 elements can have at most 2 elements in its range, is

expressed by the following formula p* :

(~*) [Fun (F) A Dom (F, D) A Ran (F, R) A D~2] ~ R~2.
Since q* is logically valid it can, of course, be proved in D03C9.

Note, however, that the natural proof involves 6 variables, and
so would have to be carried out formally within D6.

Speaking very informally, to prove the proposition expressed
by ~* we would proceed by considering any elements u, v, w
in the range R of F, and taking x, y, z in the domain D of F so
that Fxu, Fyv, and Fzw. Using the hypothesis D~2 we would
conclude that x = y, x = z, or y = z. From this, and the hypoth-
esis Fun (F), we would infer that u = v, u = w, or v = w.
Since u, v, w were arbitrary elements of R, we would come to the
conclusion R~2, as desired.
Although this argument requires 6 individual variables, with a

little care we can convert it to one in which only 4 variables are
employed.
THEOREM 2. 4 cp*.
We shall outline a proof by means of a series of lemmas. To
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facilitate reading formulas we shall use the letters x, y, z, u in
place of v0, v1, v2, v3. Proofs of lemmas will be omitted where
they are very simple.
LEMMA 2.1.

Proof omitted.

LEMMA 2.2.

PROOF. Dom (F, D) 4 Fyx ~ Dy. Hence

so that

Since y is not free in Fzx we obtain

as claimed.

LEMMA 2.3.

PROOF. Combine Lemmas 2.1 and 2.2 with change of bound
variables.

LEMMA 2.4

PROOF.

Hence by Lemma 2.3,
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D:¡¡;2 A Dom (F, D)

But Fun
Thus

Since z is not free in y ~ x we obtain

as claimed.

LEMMA 2.5.

Proof omitted.

LEMMA 2.6.

PROOF. By Lemma 2.5,

Changing bound variables and noting that x is not free in

we obtain

Since

we obtain

as desired.

LEMMA 2.7.

PROOF. This is immediate from Lemma 2.6.
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LEMMA 2.8.

PROOF. We have

Hence by Lemmas 2.4 and 2.7 we obtain the desired result.
Theorem 2 follows readily from Lemma 2.8. In fact, since u

occurs free only once in the formulation of this lemma, we may
replace the part Fuz by 3uFuz and then, since Dom (D, F ) is a
hypothesis, uFuz may in turn be replaced by Rz. Thus we get

which leads directly to 1- 4 99*’
Having reduced the "natural" 6-variable proof of rp* to a

4-variable proof, one is of course led to wonder whether a 3-
variable proof can be constructed. yVe sliall show that it cannot.

THEOREM 3. NOt 3 99

PROOF. The normal, direct way to show the unprovability of a
logical formula is to provide a model in which it is false. But since
99* is logically valid, we cannot hope to do this in the present case.
However, the principle of relativization will serve us.

Let us consider the grammar G3 with the predicate symbols
F, D, and R which enter into the formula ~*. In this grammar
let us select a formula 03C0, as follows:

According to Theorem 1, i f 3 ~* then L1 3 03C0 ~ (q;*)1T’ where d
is a certain set of sentences of G3 described in that theorem. We
shall show, however, that in fact we do not have L1 3 03C0 ~ (~*)03C0,
by constructing a model M in which all sentences of L1 are true,
and a 3-place sequence of elements of M which satisfies but not
(~*)03C0. This will prove that we do not have I-3 99*’
Let U = {0, 1, 2, 3, 4, 5} be the universe of our model M. We

shall choose subsets D and R of U, and a binary relation 9 over U,
to serve as the denotations of the predicate symbols D, R, and F
respectively.
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With the model M = U, D, R, F&#x3E; thus determined, we may
interpret the grammar G3 and obtain a definite truth value for
each sentence 99. More generally, for any elements x, y, z E U

and any formula p of G3, we may determine whether the sequence
(az, y, z) -satisfies 99 in the model M, by assigning r, y, z as the
values respectively of any free occurrences of v0, v1, v2 in ~.

LEMMA 3.1. For any x, y, z E U, (r, y, z&#x3E; satisfies 03C0 if, and
only if, (r, y, z} ~ {0, 1, 2}.
By the definition of satisfaction we know that x, y, z) satisfies

the formula

if, and only if, [x, y, z E D and x, y, z are distinct]. Since
D = {0, 1, 2} and since n is the negation of the formula (12), we
obtain the lemma.

LEMMA 3.2. 1 f y is any of the sentences of d of type (i), then y
is true in the model M.

By part (i) of the definition of L1 (given in Theorem 1),

for some formula 99 of G3 and some i, i  3. Because of the sym-
metric way in which the variables vo’ Vl’ V2 enter into our formula

n, it suffices to consider the case where i = 0 and j = 1. Then,
because of the symmetric nature of 03C8 itself, we see that to prove
the lemma it suffices to show :

(13) For any (az, y, z) which satisfies (v0v1~)03C0 in M we also
have (az, y, z&#x3E; satisfies (v1v0~)03C0 in M.

Consider, then any formula p of G3 and

(14) let az, y, z be any elements of U such that x, y, z&#x3E; satisfies
(v0v1~)03C0 in M.

By definition of relativization,

Hence we infer from (14) and Lemma 3.1 that:
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(15 ) For some x’ E U we have {x’, y, z} ; {0, 1, 2}, and for some
y’ E Ü we have {x’, y’, z} ~ {0, 1, 2} and {x’, y’, z} satisfies
f!J1I in M.

Case 1. Suppose (z, y’, z} ~ {0, 1, 2}. In this case (z, y’, z)
satisfies by Lemma 3.1, and it satisfies 3vo(n A ~03C0) since, by
(15), x’, y’, z) satisfies A ~03C0. Hence (z, y’, z) satisfies
n A v0(03C0 039B ~03C0) in M. But then it follows, that x, y, z&#x3E; satisfies
3vl(n A v0(03C0 039B ~03C0)). By definition of relativization we thus
obtain:

(16) In Case 1, x, y, z&#x3E; satisfies (v1v0~)03C0 in M.

Case 2. Suppose (r, y’, z} = {0, 1, 2}. By symmetry it suffices
to consider the case where:

In this case we consider the permutation p of U which inter-
changes 0 with 1, 3 with 4, and leaves 2 and 5 unaltered:

Obviously this permutation leaves the sets D and R, and the
relation P, invariant. (In other words, for any s, t e U we have
s e D if and only if p(s) ~ D, t ~ R if and only if p(t) e R, and
(s, t&#x3E; e 9 if and only if (p(8), p(t)&#x3E; e P.)
As is well known (and easily established by induction), we can

infer from the invariance of D, R, and 9 under p that for any
elements s, t, u e U, and any formula 0 of G3,

s, t, u&#x3E; satisfies 0 in M if and only if

(p(s), p(t), p(u» satisfies 0.

In particular we obtain from (15) that p(x’), p(y’), p(z)&#x3E; satis-
fies Z 039B ~03C0 in M, which gives us, by (17) and the definition of p:

(18 ) (p (x’ ), 0, 2) satisfies n 039B ~03C0 in M.
From this it follows that x, 0, 2&#x3E; satisfies 3vo(Z A ~03C0). But

since x = 0, by (17), we certainly have fx, 0, 2} ~ {0, 1, 2} which
means (by Lemma 3.1) that

(19) x, 0, 2&#x3E; satisfies (03C0 1B 3vo(n 1B ~03C0)) in M.

But then clearly x, y, 2&#x3E; satisfies 3vi (n 1B v0(03C0 1B ~03C0)), and since
z = 2, by (17), we have (r, y, z) satisfies v1(03C0 A v0(03C0 A ~03C0)).



103

This implies, by definition of relativization:

(20) In Case 2, (r, y, z&#x3E; satisfies (3v,3vop),, in M.

Since Cases 1 and 2 are exhaustive, (16) and (20) together
show that in every case x, y, z&#x3E; satisfies (v1v0~)03C0. But by
(14) we chose (r, y, z) to be an arbitrary sequence satisfying
(v0v1~)03C0. Thus we have demonstrated the proposition (13)
which we know is sufficient to establish our lemma.

LEMMA 3.3. If 03C8 is any o f the sentences o f 0394 o f type (ii), then 03C8
is true in the model M.

Actually, we shall show that y is true in every model, i.e., that
it is logically valid. Indeed, by part (ii) of the definition of Li
(given in Theorem 1 ),

for some i, i  3. If i = i, then nij = 03C0 and certainly y is logically
valid in this case. On the other hand, if i =1= i then the formula 03C0ij
is itself logically valid (which obviously implies the validity of 1jJ).
By the symmetry of n, it suffices to consider the case where
i = 0, i = 1. In this case:

and the logical validity of n’ is evident.

LEMMA 3.4. The formula 03C0 ~ (Fun (F))03C0 is valid in the model M.
Referring to the definitions of Fun (F) and of relativization,

we see that:

(Fun (F))03C0 is logically equivalent to
ï [3vo[n A 3vl[n A v2(03C0 A Fvorol A Fv0v2 039B ï Vl w v2)]]].

Thus, using Lemma 3.1 we see that in order to show that
nez (Fun (F)03C0 is valid in M it su f f ices to show that:

Given any x, y, z e U such that (r, y, z} ~ (o, 1, 2} there
do not exist elements x’, y’, z’ E U such that
{x’, y, z} ~ {0, 1, 2}, {x’, y’, z} ~ {0, 1, 2},
{x’, y’, z’} ~ {0, 1, 2}, x’, y’&#x3E; E F, x’, z’&#x3E; E 9, and y’ ~ z’.

But this is obviously true because, by definition of .F, there do
not exist elements x’, y’, z’ E U such that x’, y’&#x3E; E F, x’, z’&#x3E; E F,
and y’ :A z’.
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LEMMA 3.5.

The formulas 03C0 ~ (Dom ( F, D))03C0 and 03C0 ~ (Ran (F, R))03C0 are
valid in the model M.
The two formulas are similar, and we shall only examine the

first. Referring to the definitions of Dom (D, F ) and relativiza-
tion we see that:

(Dom (D, F))n is logically equivalent to
 3vo[Z 1B -, [Dvo ++ 3vi(x A Fv0v1)]].

Thus, using Lemma 3.1 we see that in order to show that
03C0 ~ (Dom (F, D))n is valid in M it suffices to show that:

Given any x, y, z E U such that {x, y, z} ~ {0, 1, 2}, there is no
x’ E U such that {x’, y, z} ~ {0, 1, 2} and for which: either

x’ ~ D and for some y’ e U we have {x’, y’, z} ~ {0, 1, 2} and
x’, y’) E F, or x’ E .D and there is no y’ such that
{x’, y’, z} ~ {0, 1, 2} and x’, y’&#x3E; E F.

But this is certainly true. Referring to the definitions of 9 and
D, we see on the one hand that there is no x’ E U for which

x’ ~ D and for some y’ E U we have x’, y’&#x3E; E F. On the other
hand, if x’ E D then there must be some y such that x’, y’&#x3E; ~ F
- and furthermore {x’, y’, z} ~ {0, 1, 2} since y’ E {3, 4, 5}. This
proves the lemma.

LEMMA 3.6. The formula i -* (D~2)03C0 is valid in the model M.
We first remark that this lemma differs from the preceding two

in a very important respect. In the case of Lemma 3.4, for example,
not only is the formula n; ~ (Fun (F»,, valid in M, as stated,
but so also is the formula Fun (F) itself. Similarly in the case of
Lemma 3.5. On the other hand, the sentence D~2 is certainly
false in M. Nevertheless, we shall show that ~ (D~2)03C0 is valid
in M - and in fact, it is valid in every model (i.e., logically valid).

Referring to the definitions of 03C0, of D~2, and of relativization,
we see that:

(D~2)03C0 is logically equivalent to
i [3vo (yr A v1(03C0 A v2(03C0 039B  n) )) ],
and hence is logically valid.

Hence x - (D~2)03C0 is logically valid, and the lemma holds.

LEMMA 3.7. The formula 03C0 ~ (-, R~2)03C0 is valid in the model M.
The proof is similar to that of Lemmas 3.4 and 3.5, and will be

omitted. (Note that  R~2 is itself valid in M.)
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LEMMA 3.8. The formula 03C0 ~ (J ~*)03C0 is valid in the model M.
This follows at once from Lemmas 3.4, 3.5, 3.6, and 3.7, since

from the definitions of 99* and of relativization we see that
(J 9’*)11 is logically equivalent to

LEMMA 3.9. It is not the case that 0394 I-3 03C0 ~ P*’
This follows from Lemmas 3.2, 3.3, and 3.8 since the logical

axioms of the deductive system D3 are valid in M (as in every
model), and the rules of inference of D3 preserve validity in M
(as in every model).
Combining Lemma 3.9 with the principle of relativization

(Theorem 1), we see at once that we have not I-3 ~*. This proves
Theorem 3.

Theorem 3 is an independence proof, and it is customary for
logicians to inquire about the nature of the deductive system in
which an independence proof is carried out. Once Theorem 1 is

granted - and we believe our proof of it is intuitionistically
impeccable - the demonstration of the non-provability of cp*
in the system D3 reduces to the choice of the formula x, the
construction of the model M, and the demonstration that all

formulas of A, as well as the formula x - (1 ~*)03C0, are valid in M.
Since M has 6 elements in its domain, it is quite evident that we
can describe M by means of the grammar G6 in which F, D, and
R are the predicate symbols. On the basis of this grammar we can
construct a deductive system D’6 by adding to the logical axioms
and rules of .Ias a single non-logical axiom which, in terms of the
predicate symbols F, D, and R, completely describes our model M.

Let us write k 99 to indicate that a formula q of Gg is provable
in this system D’6. Although we do not pretend to have checked
the matter in any detail, it seems plausible that our non-formalized
proofs of Lemmas 3.2, 3.3, and 3.8 could be formalized within
D, leading to the results:

and

In this sense we may be said to have established the independence
of ~* in the system Da, relative to the consistency of the system
D6’ .

Despite the fact that 1 lived for a year in Amsterdam - and
a very pleasant year it was, thanks in large part to Professor
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dr. Heyting - I do not think I ever met a mathematician who
would have doubts about the consistency of the system D’6.
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