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Persistent and invariant formulas

for outer extensions

Dedicated to A. Heyting on the occasion of his 70th birthday

by

Solomon Feferman1

1. Introduction

1(a) Summary. The notion of outer extension for structures
which is dealt with here is a generalization of the notions of end
extension for ordered structures and E-extension for models of type
theory and set theory. The principal results (2.4, 4.1, 4.2) char-
acterize those formulas from a wide class of languages which are
persistent, resp. invariant, for outer extensions. These incorporate
results announced by G. Kreisel and the author in [8]. The various
methods of proof mentioned in [8] are superseded here by a single
new method of a basically proof-theoretical nature. This leads
directly to theorems (4.4, 4.5) which are syntactic reformulations
of the main results in terms of notions of provable persistence and
invariance. In this form they are of particular interest for in-
vestigations into subsystems of classical analysis and set theory
having a predicative interpretation.

1(b) Background. In the usual first-order model theory of
languages with finite formulas a formula ~ is said to be persistent
f or (or preserved under) extensions relative to a set S of sentences
if whenever (i) M, M’ are models of S, (ii) -W is an extension of
M’, and (iii) ~ is satisfied by some elements of M’ in M’, then
it is satisfied by the same elements in M. ~ is said to be invariant
for extensions relative to S if both ~ and ~ are persistent relative
to S. It is a familiar result of Tarski’s [20] that ~ is persistent for
extensions rel. to 5 if and only if there is a purely existential
formula 6 with S i- (~ ~ 03B8). If ~ is also invariant there must then
also be a purely universal formula 03C8 with S I- (~~03C8). When S

1 Research supported by Grant DA-ARO(D)-31-124-G655; preparation supported
by grant NSF GP-6982.
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itself consists of purely universal sentences, this can be strength-
ened to S f- (~~ 03B8) for some quantifier-free 03B8 ([18]).
Now consider languages with a binary relation symbol e and

certain variables which are interpreted as ranging over sets, for
which e is interpreted as the membership relation. We have in
mind both languages for simple type theory, in which case one of
the kinds of variables ranges over individuals, and usual set theory
where we have just one kind of variable ranging over sets. Natural
models for the latter are M = (M, EM ) where M is a collection
of sets and EM is the e-relation restricted to M. Regarding sets
as completed totalities, the natural notion of extension for these
is: -4t’ = (M, EM) is an c--extension of M’ = ( M’, EM,) if vit is an
extension of M’ in the usual sense such that for all x e M’ and

y e M, yEM x always implies y e M’. It is seen that this notion
makes perfectly good sense even when applied to arbitrary
structures -4Y = (M, EM,···) with a binary relation EM. Note
that this coincides with the notion of end extension used by several
authors when EM is taken to be an ordering of M. In the case
of type theory, where models are many-sorted structures, one
domain of which is a set Mo of individuals, we must consider two
notions of e-extension, one as before and the other where we
demand that Mo = M’, i.e. that the set of individuals is kept
fixed or, as we shall say below, is stationary.

1(c) Notions and results. These considerations lead us to define
a more general notion of outer extension for arbitrary many-sorted
relational structures vit (of a given similarity class) including a
binary relation EM, and where certain of the domains may be
stationary. We shall write M’ ~ M if M is such an extension
of M’; the exact definition is given in 2.1. Furthermore, we can
consider properties of such structures expressed by formulas of
any language 2, finitary or infinitary, appropriate to the given
similarity class. The model-theoretic problem then is to char-

acterize those formulas ~ of 2 which are -persistent, resp.
~-invariant (i.e. for outer extensions) relative to a set S of

2 -sentences.
This problem is completely solved here for a wide class of sub-

languages YA of the language .,p HO with countably long conjunc-
tions rj and disjunetions 1 and finite quantification (HC =
hereditarily countable sets), and for a wide class of S in LA.
These are classes 2 A and S satisfying certain conditions found by
Barwise [1] for completeness of logic in LA, and A -compactness
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of S; we give a resumé of Barwise’s work in § 2(c) below. Of
special interest are the cases of the usual finitary language, corre-
sponding to A = HF = hereditarily finite sets (where S can be
arbitrary), and of the language with hyperarithmetic formulas,
A = HH = hereditarily hyperarithmetic sets.
The solution is as follows. By restricted quantification we mean

formation of ~y(y 03B5 t ^ ~) or ~y(y 03B5 t ~ ~) from a formula ~,
where t is a term not containing y. A formula is said to be essen-
tially existential (resp. universal) if it is built up from atomic

formulas and their negations by means of (i) arbitrary il and 03A3,
(ii) arbitrary restricted quantification, (iii) arbitrary quantifica-
tion with respect to variables of stationary sort, and (iv) only
existential (resp. universal) quantification otherwise. ~ is said to
be essentially restricted if it is in both forms, i.e. is built up using
only (i)-(iii). Then for the 2 A and S satisfying the Barwise
conditions, Theorems 2.4 and 4.1 below give: ~ is -persistent
relative to S i f and only i f there is an essentially existential 0

such that S F (~~ 0). Again one can get a sharper result for
~-invariant ~ relative to special S, namely (4.2): if every
sentence in S is essentially universal and ~ is -invariant relative
to S then we can find an essentially restricted 0 such that

S(~~03B8).
Theorem 4.3 below expresses that the model-theoretic condition

of ~-persistence is equivalent to a syntactic (derivability) condi-
tion, which we call provable -persistence. Then 4.1 and 4.2 can
be reformulated as certain proof theoretic results 4.4 and 4.5.
These include as particular cases the assertions of [5] p. 489 and
[6] Theorem 2.3, which are thus established by the work here.
The purpose of these is to determine a general collection of
instances of the comprehension axiom in analysis and of the
separation and replacement axioms in set theory which can be
given a predicative interpretation, namely those given by prov-
ably ~-invariant formulas (relative to a set S with prior predica-
tive interprétation).

1(d) Relations to earlier work; methods of proof. Tarski’s proof
in [20] of the result characterizing formulas of YHp persistent
under extensions made use of the method of diagrams and the
compactness theorem. These general model-theoretic arguments
do not extend to !eHo (Scott [19], p. 333). Malitz [15] obtained
the characterization result for 2 HO (with S countable) by means
of a special interpolation theorem for universal formulas; the
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proof of the latter made use of the completeness of a cut-free
formalization of logic in YHC from Lopez-Escobar [13]. According
to an abstract [2], the characterization result for YHC (with S
empty) as well as for some languages of inaccessible cardinality
was independently found by G. V. Choodnovsky, making use of a
special compactness theorem for sets of universal sentences.

Barwise [1] extended Malitz’ result and argument to arbitrary
!P A with A =1= HF and S satisfying his conditions for completeness
and compactness. 1 then found a uniform proof of the character-
ization result for all of Barwise’s cases together with the case
A = HF, allowing some domains to be stationary as well. This
was based on a combination of my interpolation theorem for
many-sorted logic (announced in [8], theorem 4) with a theorem
of Barwise’s relating forms of quantifier occurrences in an inter-
polant to forms in the hypothesis and conclusion; details of this
proof are given in [7], §§ 4, 5.
Early work on extensions in higher order model theory, for

example [16], [17], dealt with rather special situations, even just
for A = HF. The work by Kreisel and myself on -extensions
announced in [8] solved the basic problems for A = HF, A = HH,
A = HC, with no stationary domains. It also made use of a

variety of proofs, according to whether A = HF or not. In the
case A =1= HF we developed a variant of Malitz’ argument by
means of an interpolation theorem for essentially universal

formulas. In the case A = HF an even more special proof-
theoretic argument was employed. However, once 1 found the
uniform methods of [7] for persistence under ordinary extensions,
I was also able to develop the uniform methods now presented
here to treat outer extensions quite generally. The novel idea
beyond [7] is the use of a language and logical calculus in which
restricted quantifiers are given independent status. The core of
the argument below is to show that suitably modified versions
(3.1, 3.2 ) of the interpolation theorems of [7] hold for this calculus.
Only the new points in the verification of these are given below.
Nevertheless, the line of argument should be understandable
without a prior reading of [7], so that this paper may be read
independently.

It would be of great interest if the results concerning ordinary
and ~-persistence for the various 2 A could be recaptured by
strictly model-theoretic methods. In any case, we see once more
the fruitfulness of interpolation theorems in model theory origin-
ally realized by Craig [3] and Lyndon [14].
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1(e) Remarks on terminology. There is no generally accepted
terminology for what we call outer extension, which is used here
for the first time. The abbreviation  was used in [8] without
giving a name to this relation. Kreisel and I have both given
"e-extension" some currency via seminars and talks. In addition,
Kreisel used it in his abstract [11] ; Kunen used the terminology
transitive extension in his paper [12] in the same connection. End
extension is in common usage for ordered structures, cf. eg. [9]
"Outer" was chosen as so to be neutral between these situations.
While we have not done so, this might suggest calling M’ an
inner substructure of M if M’  M; this would include the

common use of "inner model" in connection with various set
theories.

The terminology "essentially existential (universal)" was

introduced in [4]. 1 used "essentially 1 (fl), (with and without
subscript "1") in [5] and [6] to indicate the connection with
familiar analytic and set-theoretical hierarchies (cf. also § 2(c)
below). The earlier terminology is used here in order to avoid
confusion with infinite disjunctions and conjunctions.

2. Preliminaries

2 (a ) Structures and extensions. The similarity class of a many-
sorted structure

is specified by means of a signature

where (i)03C3 j =,4 0, (ii)(1’ for i ~ I0, 0  ki  03C9, (iii)(1’ li ~ J for i c- Il,
(iv)03C3 for i El 2’ 0  mi  (J) and ~i is a non-empty partial f unc-
tion with D(~i) C Jm, and -4«p,) C J. For M to be of signature
a, the following conditions must be satisfied:

j is caJled the collection of sorts and M, the set of elements of sort
i in J. We write x ~ M for x e U Mi[j ~ J].
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For the special purposes here we shall restrict attention to
signatures a satisfying: (v)03C3 0 E Io and ko = 2. In other words,
Ro is a binary relation. Given -4X, we shall write E for Ro and
xEy for (x, y ) E E.
To simplify some details of syntax below it is convenient to

assume further that (vi)03C3 J, I0, I1, I2 are countable and a is
recursively given.
As an illustration of these notions a signature cr suitable for

simple type theory over the natural numbers is given by J = 03C9,

I0 = I1 = I2 = {0}, ko = 2, 10 = 0, m0 = 1, and -9(qgo) = {0},
~0(0) = 0. Interesting examples of structures vit with this sig-
nature are provided by Mo = co, Mj+1 ~ (Mj), R0 = {(x, y) : for
some j, x E Mj, y e M,,, and x e y}, ao = 0, F0(x) = x + 1 for

x E Mo. (P(X) = set of all subsets of X.) To treat cumulative type
theory, where one is interested in the cases M,+, C MI u .9(MI)
one would take instead

A signature a and any structure ,Yé of signature a are said to be
relational if 12 = 0. In general, we can associate with each a and
M correspondmg relational 03C3Rel and MRel in the obvious way,
having the same domains and individuals and having R’i&#x3E;i~I0 ~ I2
with R’i = Ri for i c- Io and R’i = Fi for i ~ I2. (First disjointing
I0 and I2.)

Let J. C J; the elements of JO will be called the stationary sorts.
It is assumed that a and Jo are fixed throughout the following
and that M and M’ = (M’j&#x3E;j~J, R’j&#x3E;i~I0, a’i&#x3E;i~I1, F’i&#x3E;i~I2)
are any structures of signature or, and E = Ro , E’ - Ro. 

2.1 DFFINITION. M is an outer extension 0f in symbols
M’ ~ -d, i f the lollowing conditions hold:

A still more general notion is discussed at the conclusion of the
paper.
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2 (b ) The language 2 HO with restricted quantification. The first-
order countably infinitary language 2 HO appropriate to structures
of signature a is described as follows. (i) For each i E J, we have

variables vj,0, ···, vj,i, ··· of sort i. There are infinitely many
variables of each sort, and variables of distinct sorts are distinct.

(In the following we shall use u, w, ul , 03C91, ··· to range over

variables of arbitrary sort.) There are (ii) a symbol for equality,
=, (iii) for each i E Io, a k,-ary relation symbol, ri, (iv) for each
i E I1 a constant symbol ci and (v) for each i E I2 an mi-ary
function symbol, f i . The terms and their corresponding sorts are
defined inductively by: (i) each variable of sort y is a term of sort
i; (ii) each constant ci is a term of sort 1,; (iii) if (j1, ···, jmi) ~ -9(qqi)
and t1, ···, tmi are terms of sort il, - - -, jmi resp. then fi(t1, ···, tm’)
is a term of sort 03C8i(j1, ···, jmi). The atomic f ormulas are the
formulas (tl = t2 ) for any terms t1, t2 and ri(t1, ···, tki) for any
terms t1, ···, tki. We shall write ( tl E t2 ) instead of r0(t1, t2).

Arbitrary f ormulas are built up according to the following
procedures: (i) every atomic formula is a formula; (ii), if ~ is a
formula, so is ~ ~; (iii) if K is any set of formulas with

0  K ~ co and there are altogether only finitely many free
variables among the ~ in K then 03A3~~K~ and 03A0~~K~ are formulas.
(iv) if ~ is a formula and u is any variable then vu§ and Aucp
are formulas; and (v) if ~ is a formula, u is any variable, t is any
term in which u does not occur, then ~(u, t)~ and ~(u, t)cp are
formulas. The operations in (v) are called operations of restricted
existential and universal quantification. The ordinary operations of
existential and universal quantification of (iv) are said to be un-
restricted. A formula is said to be standard if it is built up without
the useof restricted quantification. A sequent is a pair (T, 0394)
where Il, L1 are finite sequences (possibly empty) of formulas; a
standard sequent is one all of whose formulas are standard. It is
assumed from now on that no variable occurs both free and

bound in any formula or sequent considered.
We shall write: (~0 v ~1) for 03A3~~{~0, ~1}~, (~0 A ~1) for 03A0~~{ ~0, ~1}~,

(~0 ~ ~1) for (f’.I ~0 v ~1), (~0 ~ ~1) for (~0 ~ ~1) A (~1 ~ ~0),
Vu e tcp for V (u, t)~, ~u 03B5 tcp for ~(u, t)~, and (0393 ~ 0394) for (.T’, L1).
By a sentence we mean a formula without free variables.
The standard formula ~* associated with a formula ~ is found

as follows: * preserves atomic formulas and the standard opera-
tions, and
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If ris a sequence (~1, ···, CPk) put 0393* = (~*1, ···, ~*k).
We now single out the sorts of variables in a formula ~ which

appear in an essentially universal, resp. existential, unrestricted
quantification.

2.2 DEFINITION. Un(~) and Ex(~) are defined inductively by:

~ is said to be essentially existential (universal) if

and essentially restricted if both

The notions of value of a term, satisfaction of a formula, and
truth in a structure JI are defined in the expected way, taking
the range of variables of sort y to be M3 . If ~(u1, ···, Ut) has
free variables u1, ···, ut of sorts j1, ···, jt resp. and the se-

quence (xi , ..., xt) E Mi 1  ···  Mjt satisfies ~ in -4X we write
M~[x1, ···, xi]. If this holds for all sequences we write M~ and
say ~ is valid in -4Y. A sequent T D d is taken to be valid in -46
if every sequence of elements of -t satisfying each member of T’
.satisfies some member of L1. If S is a set of sentences, a formula ~,
resp. sequent 0393 ~ 0394, is said to be a consequence of S if it is valid
in every model of S; we write S F ~, resp. 5 J- (0393 ~ 0394). When S
is countable these are equivalent, respectively, to F (03A003C8~S03C8 ~ 4»
and  (0393, 03A003C8~S03C8 ~ d ).



37

2.3 DEFINITION. A formula ~(u1, ···, Ut) is said to be persistent
for outer extensions relative to S (more briefly: -persistent rel.
to S ) if whenever M, M’ are models of S with M’ ~ M and
M,~[x1, ···, xt] then M~[x1, ···, xt]. ~ is invariant for outer

extensions relative to S (more briefly -invariant rel. to S ) if both
it and "-1 cP are ~-persistent rel. to S.

2.4 THEOREM. Il 5 f-- (~ ~ 0) where 0 is essentially existential
then cp is -persistent rel. to S.

PROOF. It is easily proved by induction that if a formula is
ess. ex. then it is ~-persistent and if it is ess. un. then its negation
is -persistent.
To prove the converse of 2.4 below we make use of a syntactic

equivalent of the condition of -persistence, made possible by
a complete deductive system for the valid sequents of .!R HO.
The obvious extension of the Gentzen direct (cut-free) rules to the
standard sequents in the single-sorted case, together with direct
rules for equality, has been shown complete by Lopez-Escobar
[13]. The further obvious extension to the many-sorted case is
easily seen complete by the same argument (cf. alternatively,
the proof in [7]). We call this the standard (deductive) G-system
here.

We consider now a system of rules for deriving arbitrary valid
sequents in the syntax treated here. This consists of the foregoing
rules for the standard operations together with the following rules
for restricted quantification:

subject to: 03C9 is not free in r, d or t in (~ e D) and (D 1B e) and u
is of the same sort as w, and u is of the same sort as t1 in (D V E)1
and (~ 03B5 ~)1. We call this the f irst (deductive) G,-system, or
G.-system.
The above mentioned arguments are easily adapted to show the
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completeness of the first G-system. A direct reduction is also

possible by the following:
2.5 LEMMA. If (0393* ~ 0394*) is derivable in the standard G-system

then (0393 ~ 0394) is derivable in the first Ge-system.
While the first G,,-system permits a translation of certain model-

theoretic conditions into syntactic form, I have not been able to
use it directly to obtain the basic interpolation theorems of § 3.
These are obtained instead by using a modified deductive system
with the following new (A 03B5 ~) and (D ~ e) rules:

(u of the same sort as tl).
With all other rules taken as in the first G.-system, this is

called simply the G03B5-system.
2.6 THEOREM. (i) The Ge-system is closed under the cut-rule.

(ii) The same sequents are derivable in the GÉ and Ge-systems.
(iii) (0393 ~ 0394) is valid if and only if it is derivable in the Ge-

system.

PROOF. The proof of (i) is by an extension of usual cut-elimina-
tion arguments; cf. [7] for the argument in the standard case.
The new rules are handled just as directly. (ii) follows immediately,
since the differing rules of the two systems are equivalent when
eut is permitted. Then (iii) follows using 2.5 and the completeness
of the standard G-system.

2(c) The languages YA. To get a strong converse to 2.4 (for
suitable S) and a uniform proof for the finitary and infinitary
cases, we now consider the spectrum of sub-languages LA of
LHC dealt with by Barwise in [1 J. We give a brief resumé of his
notions and results, which have not yet been published.

Identify terms and formulas with sets in any natural way, so
that the logical operations appear as operations on sets, and sub-
formulas of a formula belong to its transitive closure. Specific
such identifications are given in [1], [7]; for example, ~ ~ is

taken as (5, ~) and 03A3~~K~ as (6, K) in [7]. Any collection A of
sets closed under these operations has associated with it a language
LA whose formulas are just those ~ which belong to A. By an
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A-formula, resp. A-sequent, we mean one which belongs to A.
With the identifications mentioned it is sufficient to assume that

(i)A 0 e A, and (ii )A x, y e A implies {x, y} E A. Then the collection
of hereditarily finite sets HF C A. For simplicity it is also assumed
that (iii )A A is transitive. Furthermore we shall only be concerned
here with the cases that (iv)A A C HC = collection of hereditarily
countable sets. Thus the A-formulas are always formulas of If HO.
Derivation trees in any of the deductive systems considered

above can also be identified with sets in a natural way; it is
assumed that all relevant information is encoded in these. Barwise
considers in [1] a more general notion of derivation in YHC than
the obvious one; he calls the latter notion that of a single-valued
derivation. The difference is illustrated by a derivation 2) of a
sequent (T D 0394) whose last step is an inferencè with one hypoth-
esis,

In the single-valued case, the derivation -9 has encoded within
it a single derivation D0 of (03930 ~ 03940); in the more general case,
£7) has encoded within it a non-empty set of derivations (03930 ~ 03940).
When dealing with a language £fA, we are particularly inter-

ested in derivations which belong to A. We cannot insure that for
every derivation in A there is a single-valued derivation in A of
the same conclusion without assuming some sort of choice hypoth-
esis on A. For simplicity, we shall always take "derivation"
here in its single-valued sense; the work below is easily extended
to the more general case with weaker assumptions on A by using
Barwise’ methods and results.

£7) is called a G-derivation or G.-derivation if it is a derivation
in the standard G-system or in the G,-system, resp. Following
[1], A is called v-admissible ("v" for "validity") if every standard
valid A-sequent has a G-derivation in A. A is called ve-admissible
if every valid A -sequent has a G,-derivation in A. Barwise found
rather general sufficient conditions in [1 ] for A to be v-admissible.
These are formulated in terms of the usual finitary language of
set theory (single-sorted, with basic symbols = and 03B5). A restricted,
or L10, formula is one which is essentially restricted for this

language (no stationary sorts). A 11-formula is one of the form
Vu§ where ~ is 03940. Formally define pairs (u, v) and the notion of
function, Fn(u), in the usual way. The 03940-separation axiom
consists of all instances of ~u ~v ~w[w 03B5 v ~ w 03B5 u ~ ~] for ~ a
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03940-formula (v not in ~). The 11-axiom of choice consists of all
instances of

with y a 1,-formula (z not in 1jJ). For any x, let TC(--) be the
transitive closure of x. The following is assumed from now on:
(v)A A satisfies the 03940-separation axiom and the 03A31-axiom of
choice, and A is closed under TC.

Barwise’s completeness theorem [1], § 2, is that under the

assumptions (1)A-(v)A, A is v-admissible. Since his arguments
work for any reasonable deductive system with cut-free rules,
combining these with the result 2.6 (iii) gives us the following
completeness theorem.

2.7 THEOREM. Under the operating assumptions (i)A-(V)A, A is
v e-admissible.

Let S be any set of A -sentences. S is called A-compact if every
A-sequent which is a consequence of S is also a consequence of
some subset S’ of S with S’ E A. In case A = HF, any S is A -
compact, but this is far from true in general. S is said to be

A-recursively enumerable (A-r.e.) if it is definable from some

elements of A by a il-formula with quantifiers restricted to A.
The following is Barwise’s compactness theorem [1], § 2, again
easily extended from the standard language to that considered
here.

2.8 THEOREM. Under the operating assumptions (i)A-(V)A, if S
is countable and A-r.e. then S is A-compact.

Various special cases of A satisfying (1)A-(v)A are studied in
[1]. Among these are A = HF, A - HH = the collection of

hereditarily hyperarithmetic sets and, more generally, A = La =
the collection of sets constructible before a, for any recursively
regular ordinal a ~ 1, and finally, of course, A = HC. Re-

garding compactness: any countable set S of HC-sentences is

trivially HC-compact since S E HC. For the case, A = HH, a set
S of HF-sentences is HH-r.e. if and only if it is rji (by theorems
of Kleene and Spector); this can be generalized suitably. This is of
significance for applications to generalized 03C9-models, i.e. structures
satisfying the set S consisting of ~u03A3n03C9u = tn , u of a certain
sort, and tn&#x3E;n03C9 a certain sequence of closed terms. For usual
m-models, we have a language containing that of number theory
and tn&#x3E;n03C9 is the recursive sequence of numerals, so that

~u03A3n03C9(u = tn) is certainly in HH. In practice, this sentence is
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supplemented by finitely many further axioms in HF concerning
0, successor, etc. (depending on what functions or relations are
taken as basic).

3. Interpolation theorems
involving restricted quantification

For any formula ~, let Sort (~) be the set of i such that a
variable of sort j occurs free or bound in ~, Fr (~) the set of
variables free in ~, and Rel (~) the set of relation symbols in ~.
The following is the analogue of the interpolation theorem 4.2
of [7] for the calculus with restricted quantification.

3.1 THEOREM. Assume a is relational. Suppose (~ ~ 03C8) has a
G03B5-derivation in A and that

Then we can f ind an A- f ormula 0 and G,-derivation.9 in A of
(~ - 0) and (0 - 03C8), with 0 satisfying the following conditions:

PROOF. As with theorem 4.2 of [7], this is obtained from a more
general statement about derivable sequents. Given T and F’,
by a mesh of 0393, 0393’ we mean any sequence having the terms of l’-’
and 0393’ arbitrarily interspersed, but otherwise maintaining the
original order of terms; F - 7" is taken to be any mesh of 0393, 0393’
in the following.
The more general statement is that for any G,-derivation in A

of (0393 · 0393" ~ 0394 · 0394’) and any var. wo not free in D, of sort jo,
we can find an A-formula 0 and G,-derivations in A of (0393 ~ 0394, 0)
and (03B8, 0393’ ~ 0394’) satisfying:

This is proved by induction on D. It is taken that no variable
occurs both free and bound in D. The argument is just as in [7]
when 0393 · 0393’ ~ 0394 · 0394’ is an axiom or inferred from a previous
sequent or sequents by one of the structural rules or rules for ~,
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2’ IL V? and ~. Thus we need only consider the rules for re-
stricted quantification. We just consider the rules (~ e D) and
(D ~ s), since the arguments for (D ~ s) and (A 8 ~) are dual.

Case 1. The last step in D is an application of (~ 03B5 ~) of the
form

where ~u 8 t ~(u) is a part of 0393’, so F’ = 0393’1, ~u 8 t X(u). It is
required that w not be free in 0393, F, d, d’ or t. By inductive
hypothesis we get an A -formula 0 and G,-derivations of (0393 ~ LI, 0)
and (03B8, 0393’1, w 03B5 t, X(w) ~ 0394’) satisfying (i)-(iv) with T, 4 and 0393’1,
w 03B5 t, ~(03C9), 0394’. Then is not free in 0 and we can make the

inference

Thus the same 0 continues to work.

Case 2. Last step (~ c D) with ~u e t x(u) in r. The argument
is similar.

Case 3. The last step in D is

where 0393’ = 0393’1, tl s t and 0394’ = 0394’1, vu 8 t z (u) . Inductive hypoth-
esis gives an A-formula 0 and G8-derivations of (T ~ 0394, 03B8) and
( e, 0393’1, t1, 8 t ~ 0394’1, x(tl)) satisfying the additional conditions

(i)-(iv). Then we can infer 0, 0393’1, t1 03B5 t ~ 0394’1, ~u 03B5 t ~(u), and
the same 0 continues to satisfy (i)-(iv).

Case 4. The last step in D is

where 0393 = 03931, t1 03B5 t and 0394’ = 0394’1, ~u 03B5 t ~(u). Inductive hypoth-
esis gives an A -formula 6 and Gg-derivations of

satisfying (i)-(iv). We consider two subcases.

Sub-case 4(a). tl is a constant or a variable free in 0393’, 0394’1,
~u 03B5 t ~(u). Using 03931, t1 e t D L1, tl e t we can infer
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Also we make the steps

Hence a suitable interpolant here will be (tl 8 t n 03B8(t1)).
Sub-case 4(b). tl is a variable w which is not free in F’, 0394’1,

~u e t x(u). Write 0 = 0(w) in this case (there is no harm if w
is not actually free in 0). Now we make the steps:

The last step on the right involves a permitted application of
(~ e D) by hypothesis on w. Then ~u e t 0(u) will satisfy the
conditions (i)-(iv) for the final sequents.

Case 5. (t, 03B5 t) in F and (~u 03B5 t y (u» in J; treated like Case 3.
Case 6. (fi 03B5 t) in F’ and (Vu e t X (u» in J.
Sub-case 6(a). t1 a constant or a variable free in 0393, 0394, ~u a t X(u);

treated like sub-case 4(a).
Sub-case 6(b). t1 a variable w not free in r, L1, ~u 03B5 t x(u).

Here we have

so Au e t 0(u) works in this case.
It is thus seen that the restricted quantifier steps never require

the introduction of unrestricted quantifiers in the interpolant.
When it is necessary to introduce unrestricted quantifiers in the
interpolant, this can be arranged to satisfy (iv) just in the same
way as in the standard case.
The following is the analogue of the interpolation theorem 4.4

of [7] for the calculus with restricted quantification.
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3.2 THEOREM. Suppose § is essentially universal and y is essen-
tially existential and that (~ ~ y) has a G,,-derivation in A. Then
we can find an essentially restricted A-formula 0 and G,-derivations
in A of (~ ~ 03B8) and (03B8 ~ ~).

PROOF. This again is obtained from a more general statement
about sequents: if T, .I" consist of essentially universal formulas,
LI, 4’ of essentially existential formulas and P - 0393’ D A - 4’ has

a G.,-derivation -9 in A then we can find an essentially restricted
A -formula 0 and G.-derivations in A of T D A, 0 and 0, 0393’ ~ A’.

This is proved by induction on £1), which is possible to apply
because if the conclusion of a rule consists of ess. un. formulas

in its antecedent and ess. ex. formulas in its consequent, the same
holds for each of the hypotheses of the rule.
The argument takes a little different tack from that of 3.1 since

now we have no hypothesis on the free variables of 0; but it is
just this which permits the stronger conclusion on the structure of
0. The only cases where it may be necessary to introduce quanti-
fiers in the interpolant is in the quantifier rules.

Consider, for example the rules for ~. If the last step in £1) is

where 0394’ = 0394’1, ~u ~(u), use the inductive hypothesis to find
ess. res. 0 and derivations of

Then we can infer 6, 0393’ ~ 0394’1, ~u ~(u), so the same 0 will work.
The argument is similar if ~u ~(u) is in L1. If the last step in Ç) is

where 0393’ = 0393’1, ~u ~(u) and w is not free in F, FI, d, 4 ’ then u
must be a variable of stationary sort since ~u ~(u) is assumed
ess. un. Now inductive hypothesis gives an ess. res. 03B8 and deriva-
tions of

Write 0 = 03B8(w). Since w is not free in T, L1 we can make the
inferences
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The argument is similar if ~u ;«u) is in r, but in that case we
must take ~u 0 (u) as the new interpolant. Universal quantifiers
are handled dually.

Consider, finally, restricted existential quantification. Again
the rule (D ~ a) requires no change. Suppose the last step in
D is

where is not free in T, 0393’1, L1, d’, t and 0393’ = 0393’1, Vu 8 t ~(u).
Applying inductive hypothesis gives 0 = 03B8(w) and derivations
we extend as follows:

The other cases are just as easy to handle.
It should be noted that we can obtain the stronger conclusion

in 3.2 that 0 can be taken to have free variables among those
common to ~ and y provided there is a closed term of each sort in
the language. For, simply substitute such a term for each variable
of 0 not held in common, according to sort. Simple examples
show that the stronger conclusion does not hold without such an
hypothesis. Note that it is not necessary to assume that a is
relational in this theorem.

4. The characterization theorems

We continue (i)A-(v)A; also assume now that a is relational.

4.1 THEOREM. Suppose, in case A -=1= HF, that S is countable and
A-r.e., and suppose that the A-formula ~ is -persistent relative
to S. Then there is an essentially existential A-formula 0 with the
same free variables as ~ such that S F (~ ~ 0).
PROOF. In order to express the ~-persistence hypothesis

syntactically, we consider an extended language L+A in which we
can express relations between pairs of structures M, M’. Let
J’, I’0, I’1 be in 1-1 correspondence with and disjoint from J,
Io, h, respectively; for each yey, let be the corresponding
element of J’, and similarly for i in I o (or Il) and i’. Let

J+ = J ~ J’, 1Ó = Io u I’0, I+1 = Il u I’, and
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(a relational signature) where kt = kt = ki for i El 0’ l+i = li = li
for i E I1. Given any vit, -d’ of signature 03C3, let [M, M’] be the
structure M+ = (M+j&#x3E;j~J+, R+j&#x3E;i~I+0, a+j&#x3E;i~I+1) of signature a+
with Mt = Mi and Mfi = M; for jE J, Rt Ri and Rt = R’i
for i E I0 , and at = ai and at = a, for i E Il. Given M+ of sig-
nature 03C3+, let MJ = U M+J[j E JI, Mj, = U Mj[j E J’]. Then take

and

-d+ is any a+ structure below. While M+ need not be the same
as [M+J, M+J’], it has the same elementary properties that concern
us, as we shall see in (2) below.

L+A is taken to be the language of 03C3+-structures; it contains the
language -9’A of a-structures directly as a sublanguage. Given a
variable u of the form v;,n with i E Jo we shall write u’ for the
variable v;’,n. In the following, u, w, u1, w1, ··· range only over
variables of YA - We write c’i for the constants ci,, i ~ I1, and r’i
for the relations ri’, i c- Io. Given any formula Y of -9A, let y’
be the formula obtained by replacing each constant, bound

variable, or relation symbol s by the corresponding symbol s’.
The free variables of y’ are the same as those of y. S’ is the set of
sentences y’ for y E S.
We now define Ext to be the set consisting of all sentences of

the following form:

Then we easily obtain the following:

(2) If 03C8 is an A-formula with free variables u1, ···, ut of sorts
j1, ···, it resp. and

and

then

and
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Let ul, ..., ut be the free vars. of ~. It follows immediately that
~ is persistent for outer extensions relative to 5 if and only if

(3) Ext ~ S ~ S’ ~ {~u’i(u’i = ui) : i = 1, ···, t} (~’ ~ ~).
Now Ext u S w S’ is also A-r.e. if A =1= HF. Hence by the exten-
sion 2.8 of Barwise’s compactness theorem and the completeness
theorem 2.7, there are subsets Extl of Ext and S1 of S which
belong to A for which we have an A -derivation of

We now apply the interpolation theorem 3.1. An interpolating
A-formula 0 can be chosen which is, by 3.1 (i) a formula with
just ui, ..., ut free, containing only relation symbols r; by 3.1
(ii), and only bound variables of the language YA by 3.1 (iii).
We can also arrange that only constants of the form ci appear in
6 by using the sentences (iv) of Ext and taking Ext1 large enough.
Hence 0 is just a formula of the language YA. Furthermore, 0
is essentially existential by (3.1) (IV). For if there were any
non-stationary variable u having an essentially universal occur-
rence in 03B8 there would have to be a variable of the same sort
with an essentially universal occurrence in some sentence of Ext;
but this is false by inspection. Now from derivability of

we easily get a derivation of Ilkcsly ~ (~ 0) and hence
S  (~ ~ 03B8).

4.2 THEOREM. Suppose S satisfies the hypothesis of 4.1 and that,
in addition, it is a set of essentially universal sentences. Suppose
the A-formula ~ is -invariant relative to S. Then there is an

essentially restricted A-formula 0 with S  (03B8 ~ B). 0 can be

chosen, to have the same free variables as provided there is a
closed term of each sort.
PROOF. By the preceding theorem we can find ess. un. ~1 and

ess. ex. CP2 such that S I- (~ H ~1) and S 1- (~ ~ ~2). By com-
pactness we get S1 ~ S with 51 E A and an A-derivation of

The hypothesis of this implication is also ess. un. Hence by
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Theorem 3.2 we can find an essentially restricted A -formula 0 as
interpolant; then 0 satisfies the conclusion of the theorem.

REMARK 4(a). The following example shows that it is not pos-
sible to weaken the hypothesis on S in 4.2. It applies to the
finitary language of structures consisting of two sorts Mo, Ml and
just a binary relation E. Let 03C8(u1) be

Then let ~(u0) be ~u1(03C8(u1) A uo e u1); ~ is invariant for outer ex-
tensions relative to S, since also S  ~ (u0) ~ ~u1[03C8(u1) ~ U0 a u1].
On the other hand there is no essentially restricted 0 with

S  (~ ~ 03B8).
There are, however, special circumstances in which the strong

syntactic hypothesis on S in 4.2 can be omitted. These are stated
in [8], using a certain notion of n-invariance relative to S as an
intermediate. For simplicity, consider the usual language of set
theory, with one sort of variable and a as the only relation symbol
besides =. Theorem 2 of [8] states that if (i) e-closure is definable
in S, then ~ is n-invariant relative to S iff there is an essentially
restricted formula 0 such that 5 l- (~ -Ho ()). 2 Furthermore, the
following are sufficient conditions for showing that ~ is n-

invariant if it is ~-invariant (rel. to S ): (ii) all models of S are
well-founded and extensional, and (iii) the intersection of any
two transitive models of S is again a model of S. Hypothesis (i)
can be insured in finite type theory or with A ~ HF. The hypoth-
esis (ii) can be insured by bounding the ranks of elements of
models of S, with varying degrees of freedom according to the
language .!RA which is used; (iii) holds whenever the existential
axioms of S have a predicative character, such as those considered
in [5]. We believe these circumstances (i)-(iii) are too special
to merit detailed consideration here. We simply remark that a
more general version of Theorem 2 of [8] can be obtained for
arbitrary £fA and S satisfying the hypotheses of 4.1, using a line
of attack related to that in the proof of 4.1.

REMARK 4(b). The hypothesis that a is a relational signature
can be omitted from 4.1. To see this, take the hypotheses of 4.1
without this assumption. Now simply apply the standard proce-

2 Due to an oversight, the following condition was omitted in [8] p. 482 from the
explanation of when x(u, w) defines e-closure in S : if 0 is a restricted formula then
~w[~(u, w) A 0] should be equivalent in S to a restricted formula.
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dure for eliminating function symbols in favor of relation symbols.
Then, of course, the statements of functionality of these relations
must be adjoined to S, giving an SRel. By 4.1 we can get ess. ex.
6 with SRel F (~Rel ~ 0). 0 may involve the new relation symbols;
however, these ean now be rewritten in terms of the original
function symbols without introducing new quantifiers, giving
S F (~ ~ 03B81) for ess. ex. 91. Since it is not assumed in 3.2 that a
is relational, the same argument as for 4,2 above can be applied
to obtain 4.2 in general from the general form of 4.1.

4(c) Provably -persistent and -invariant formulas.
For any of the systems of deduction considered here. (and in

particular, the system G,) we can introduce the notion, -9 iq a
derivation of (0393 ~ 0394) from S, meaning: the initial sequents in D
are the logical axioms of the system or sequents ( D y) for
y e S, . and the rules of inference of e are those of the system
together with the cut-rule, and EP ends in (0393 ~ A). Write
S FA (0393 ~ 0394) if there is a derivation -9 in A of (0393 ~ 4 ) from S,
and S 1- A cp if S FA ( D ~). Then (for the systems considered) if
S FA (0393 ~ 0394) we have S F (0393 ~ 0394). On the other hand, if S is

A-compaet and S 1- (0393 ~ 0394) then for some Si C 5,51 e A we have
I- (03A003C8~S1 03C8, 0393 ~ 0394) and hence Si FA (0393 ~ 0394). Finally, it can be
seen that if, in oasé A ~ HF, S is countable and A-r.e. and -9
is a derivation in A of (0393 ~ 0394) from S then the set Si of 03C8 in S
with ( D 11’) an initial sequent of C belongs to A and Si FA (0393 ~ 0394).
In fact, this is the avenue which Barwise took in [1] to establish
his compactness theorem.

Let us call ~ (with free variables u1, ···, ut) A-provably -
persistent relative to S if, in the notation of the proof of Theorem
4.1 we have

In these terms, the argument for 4.1 establishes two theorems,
under the hypothesis in case A ~ HF, that S is countable and
A-r.e.:

4.3 THEOREM. Suppose that the A-formula ~ is ~-persistent
relative to S. Then ~ is A-provably ~-persistent relative to S.

4.4 THEOREM. If ~ is A-provably ~-persistent relative to S then
there is an essentially existential A-formula 0 with the same free
variables as ~ such that S 1- A (~ ~ 03B8).
The argument for 4.4 simply consists in an application of the



50

interpolation theorem 3.1 as in the part of the proof of 4.1 from
(4) on.

Call ~ A-provably -invariant relative to S if both it and ~ ~
are A-provably ~-persistent rel. to S. Then what is essential in
the proof of Theorem 4.2 is that it establishes the following
syntactic version.

4.5 THEOREM. The Theorem 4.2 remains true i f we replace
"~-invariant" by "A-provably ~-invariant" and "" by "A".
The results 4.4 and 4.5 are generalizations of those announced

in [5], p. 489, and [6], theorem 2.3 and § 5.1. For applications
to formal systems in the usual sense, one takes A = HF. In this
case, the arguments for the interpolation theorems 3.1 and 3.2
and for 4.4 and 4.5 are completely finitistic.
The main notions and results of this paper can be generalized

still further, beginning with the notion of outer extension as
follows. Let I#0 be a subset of Io and for each i ~ I#0, let ki ~ 2
and 0 C ni  ki. Relative to this choice, we modify Definition
2.1 (vi) of M’ ~ M to read:

(IV)# for each 2 ~ I#0, y1, ..., uni, in -6 and x1, ···, xki-ni in M’,
if (y1 ···, 1 Y.il x1 ···, xki-ni ~ Ri then y1, ···, yni in M’.

The earlier condition (iv) is the special case of this where
I#0 = {0}, k0 = 2 and no = 1 (and ordinary extension simply
the case where Iô = 0). To emphasize the similarity, write

(y1, ···, yniEix1, ···, xki-ni) for (Yll ···, Y.il x1, ···, xki-ni) c- Ri.
The associated language with restricted quantification would have
"quantif iers" Q(ul, ... 1 uni03B5iti, ··· , tki-ni)~, Q = ~ and A. A
deductive calculus can be set up for thèse very similar to the

G.-system. Then, with the various definitions appropriately modi-
fied, it can be seen that all of the results of this paper continue
to hold for these more general notions of outer extension and
restricted quantification. The argument is only slightly more
delicate in the case of the interpolation theorem 3.1, where more
subcases like 4(a), 4(b), 6(a), 6(b) must be considered. This

generalization is of particular interest for applications to higher
type theories of relations as well as sets, where ni = ki+1 and
(y1, ···, yni Eix) holds in standard models if (y1, ···, yni) is an
element of x. 

Added in proof : The text [21] of Kreisel-Krivine contains a
detailed treatment of finite type theory of relations in YHp and
WHC and in particular of results on n -invariance for the case
A = HF (Le., pp. 119, 129).



51

BIBLIOGRAPHY

K. J. BARWISE

[1] Infinitary logic and admissible sets, Dissertation, Stanford, 1967.

G. CHOODNOVSKY

[2] Some results in the theory of infinitely long expressions, (abstract) 3d Intl.

Cong. for Logic, Methodology and Philosophy of Science, Amsterdam, 1967.

W. CRAIG

[3] Three uses of the Herbrand-Gentzen theorem in relating model theory and

proof theory, Journ. Symbolic Logic, v. 22 (1957), pp. 269 2014 285.

S. FEFERMAN

[4] Systems of predicative analysis, Journ. Symbolic Logic, v. 29 (1964), pp.1-30.

S. FEFERMAN

[5] Predicative provability in set theory, (Research Announcement) Bull. Amer.
Math. Soc., v. 72 (1966), pp. 486-489.

S. FEFERMAN

[6] Autonomous transfinite progressions and the extent of predicative mathe-
matics, Proc. 3d Intl. Cong. for Logic, Methodology and Philosophy of Science
Amsterdam, 1967 (to appear).

S. FEFERMAN

[7] Lectures on proof theory, Proc. Leeds Institute in Logic, Summer 1967

(to appear).
S. FEFERMAN and G. KREISEL

[8] Persistent and invariant formulas relative to theories of higher order, (Research
Announcement) Bull. Amer. Math. Soc., v. 72 (1966) pp. 480-485.

H. J. KEISLER

[9] End extensions of models of set theory, Proc. A. M. S. Institute on Set Theory,
U.C.L.A., 1967 (to appear).

G. KREISEL

[10] The axiom of choice and the class of hyperarithmetic functions, Indag. Math.
v. 24 (1962), pp. 307-319.

G. KREISEL

[11] Relative recursiveness in metarecursion theory (abstract) Journ. Symbolic
Logic, v. 33 (1967) p. 442.

K. KUNEN

[12] Implicit definability and infinitary languages, Journ. Symbolic Logic (to
appear).

E. G. K. LOPEZ-ESCOBAR

[13] An interpolation theorem for denumerably long formulas, Fund. Math. v.
57 (1965) pp. 253-272.

R. LYNDON

[14] Properties preserved under homomorphism, Pacif. Journ. Math. v. 9 (1959),
pp. 143-154.

J. I. MALITZ

[15] Problems in the model theory of infinite languages, Dissertation, Berkeley,
1966.



52

A. MOSTOWSKI

[16] On invariant, dual invariant and absolute formulas, Rozprawy Math. v. 29
(1962), pp. 1-38.

S. OREY

[17] Model theory for higher order predicate calculus, Trans. Amer. Math. Soc. v.
92 (1959), pp. 72-84.

A. ROBINSON

[18] Introduction to model theory and to the metamathematics of algebra, North-
Holland Publ. Co., Amsterdam, 1963.

D. SCOTT

[19] Logic with denumerably long formulas and finite strings of quantifiers, in
The theory of models (Proc. 1963 Symposium at Berkeley) North-Holland
Publ. Co., Amsterdam (1965), pp. 329-341.

A. TARSKI

[20] Contributions to the theory of models, Indag. Math. v. 16 (1954), Part I
pp. 572-581, Part II pp. 582-588.

G. KRFISFL and J. L. KRIVINE

[21] Elements of mathematical logic (model theory), North-Holland Publ. Co.,
Amsterdam (1967).

(Oblatum 3-1-’68) Stanford University
and

Massachusetts Institute of Technology .


